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Abstract

Background: Nicotine is known to differentially regulate cortical interneuron and pyramidal neuron activities in the
neocortex, while the underlying molecular mechanisms have not been well studied. In this study, RNA-sequencing
was performed in acutely isolated cortical somatostatin (Sst)- positive interneurons and pyramidal neurons (Thy1)
from mice treated with systemic nicotine for 14 days. We assessed the differentially expressed genes (DEGs) by
nicotine in Sst- or Thy1- neurons, respectively, and then compared DEGs between Sst- and Thy1- neurons in the

absence and presence of nicotine.

Results: In Sst-neurons, the DEGs by nicotine were associated with glycerophospholipid and nicotinate and nicotinamide
metabolism; while in Thy1-neurons those related to immune response and purine and pyrimidine metabolisms were
affected. Under basal condition, the DEGs between Sst- and Thy1- neurons were frequently associated with signal
transduction, phosphorylation and potassium channel regulation. However, some new DEGs between Sst- and
Thy1- neurons were found after nicotine, the majority of which belong to mitochondrial respiratory chain complex.

Conclusions: Nicotine differentially affected subset of genes in Sst- and Thy1- neurons, which might contribute to the
distinct effect of nicotine on interneuron and pyramidal neuron activities. Meanwhile, the altered transcripts associated
with mitochondrial activity were found between interneurons and pyramidal neurons after chronic nicotine.
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Background

The inter-play between interneurons and pyramidal neu-
rons in the neocortex forms the basis of inhibition and
excitation and neural network function [1, 2]. Interneurons
powerfully regulate pyramidal neuron functions, albeit with
low synaptic inputs in number [3]. Recent studies demon-
strate that GABAergic interneurons play a critical role in
local circuit function and behavior [4—6]. Dysfunction
of GABAergic signaling is associated with age-related
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cognitive decline, schizophrenia, ischemia and Alzheimer
Disease [7-10].

Nicotine has been found to improve working memory
and learning by activating nicotinic acetylcholine recep-
tors (nAChRs) [11, 12]. Emerging evidence has shown
that nicotine differentially regulates interneuron and
pyramidal neuron activities. For instance, nicotine layer-
specifically regulates neuronal activities where distinct
interneurons and pyramidal neurons are located [13].
While nAChRs enhance AMPA receptor mediated
current and firing rate in interneurons [14, 15], they cause
a sustained reduction of NMDA receptor mediated cur-
rents in pyramidal neurons [16], suggesting an involve-
ment of different molecular mechanisms. Although gene
profiling studies have made great progress in identifying
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individual neurons in the cortex [17, 18], and microarray
studies have demonstrated that nicotine causes different
gene expression in neuroblastoma cell line [19, 20] and in
distinct brain regions including the cortex [21, 22], how
nicotine may specifically regulate the gene expression in
interneurons in relation to pyramidal neurons in cortical
circuit remains unknown.

In this study, we acutely isolated cortical somatostatin
(Sst) labeled interneurons and thymus cell antigen 1
(Thyl) labeled pyramidal neurons in mice treated with
saline and systemic nicotine for 14 days, and the
transcriptome profiling was compared in Sst- and Thyl-
neuons with or without nicotine. We found that in Sst-
neurons the most prominent genes affected by nicotine
were associated with glycerophospholipid and nicotinate
and nicotinamide metabolism, and in Thyl- neurons
those associated with immune response and purine and
pyrimidine metabolisms were influenced. In addition,
the differentially expressed genes (DEGs) between Sst-
and Thyl-neuons were associated with mitochondrial
respiratory chain complex after nicotine treatment.

Methods
Animals
The following mice were used throughout the experi-
ments: GIN mice (FVB-Tg [GadGFP] 45704Swn/], The
Jackson Laboratory, #003718) expressing enhanced green
fluorescent protein (eGFP) in a group of somatostatin-
positive interneurons (Sst), and thyl-YFP-H (YFPH) mice
(B6.Cg-Tg [Thyl-YFP] HJrs/J, The Jackson Laboratory,
#003782) expressing yellow fluorescent protein in layer V
pyramidal neurons (Thyl) [23, 24]. A previous study has
compared the genetic profiling between four lines of mice
including GIN and YFPH used in our study. The authors
found that the correlation coefficient between the samples
from these two mice was not significantly different, indi-
cating that GIN and YFPH mice do not show significant
transcriptome differences in specific cell types, under
basal condition [17]. Although another major group of
interneurons are parvalbumin (PV)-positive, they do not
express nicotinic acetylcholine receptors in the cortex
[25, 26] and thus were not chosen in this study.
Twelve male mice (20 g, 5-7weeks) were divided into
four groups, with 3 GIN or YFPH mice in each group re-
ceiving nicotine or saline, respectively. Mice were implanted
subcutaneously with an osmotic mini pump (model 2002;
Alzet, Cupertino, CA) that delivered 48 mg/kg/d nicotine
hydrogen tartrate (Sigma, St. Louis) or saline vehicle for
14 days [27, 28]. This dosage of nicotine is known to alter
neuronal activity and gene expression in the brain of mice
[29, 30]. Mice were housed in the 12/12 h light/dark cycle
and were given food and water ad libitum. Genotypes were
confirmed by PCR analysis before study. All protocols were
approved by the Commission of Chongqing Medical
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University for ethics of experiments on animals and were in
accordance with international standards.

Brain slice preparation and cell sorting

Mice were deeply anesthetized with sodium pentobar-
bital (100 mg/kg; i.p.) and decapitated [30]. Brain slices
(400 um) were prepared by a vibratome (Leica VP1200S,
Germany) in ice-cold artificial cerebral spinal fluid
(ACSF) containing (in mM):119 NaCl, 2.5 KCI, 1 MgCl2,
26 NaHCO3, 1 CaCl2, 1.25 NaH2PO4, 25 dextrose
aerated with 95% O,/5% CO, (pH7.4). The slices were
then incubated in ACSF containing 50 uM APV, 20 uM
DNQX and 100nM TTX for 30 min at 32 °C and then
for at least 30 min at RT. The cortex were morphologic-
ally dissected and enzymatically digested by pronase E
(1.5 mg/ml; Sigma Aldrich) in ACSF (containing 50 pM
APV, 20 uM DNQX and 1 uM TTX) for 45 min, then
triturated by three fire-polished Pasteur pipettes (400,
300 and 150 pum in inner diameter, respectively) in ACSF
containing APV, DNQX, TTX and 1% BSA [31, 32]. The
resultant pieces were allowed to settle for 2 min and the
supernatant were collected for centrifugation at 800 g
for 5 min, which removed the cellular debris and
molecular contaminants [31]. Fluorescent cells (Sst- or
Thyl- positive) were carefully aspirated by a micropipette
(30-50 um) shaped by a pipette puller (P-97, Sutter, USA)
[32]. 10 cells were aspirated each time and 30 cells were
collected from each mouse. Cells (10 in each) were then
transferred to 3.5 pl lysis buffer containing 2% Triton X-
100 and 5% RNaseOUT (20U/yl, Invitrogen) in nuclease
free water and were immediately stored at — 80 °C. A total
of 90 cells from 3 mice in each group were collected
for final sequencing. This amount of cells has been
proven to be enough to reliably measure the population
transciptome [17].

RNA library construction and sequencing

SMARTer Ultra Low Input RNA for Illumina Sequen-
cing kit (Clontech) was used to amplify cDNA from cell
lysates, according to manufacturer’s instruction. This kit
allows high-quality cDNA synthesis in a single cell con-
taining as low as 10 pg RNA [30, 33]. The cDNA library
was generated using Ovation® Ultralow DR Multiplex
System (NuGEN). The amplified products were quanti-
fied by Qubit® 2.0 Fluorometer (Invitrogen) and validated
by Agilent 2100 bioanalyzer (Agilent). TruSeq PE Cluster
Kit v3 (Illumina) were used for cluster generation in an
[lumina cBOT instrument. And the sequencing was per-
formed on an Illumina HiSeq2500 instrument (Illumina)
following the manufacturer’s protocol. Raw reads were
performed with base-calling and quality-filtering process
and then aligned to mouse genome (version: mmul0.p2)
using the Tophat program [34]. Differentially expressed
genes (DEGs) were expressed as FPKM (Fragments Per
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Kilobase of exon model per Million mapped reads), which
were filtered by EBSeq algorithm, after the significant ana-
lysis and false discovery rate (FDR) analysis under the fol-
lowing criteria: i) Fold Change >2 or <0.5; ii) FDR < 0.05,
in which the FDR was used to correct P values [35-37].
Gene ontology (GO) annotations from NCBI, UniProtand
the Gene Ontology were used to elucidate the biological
implications of DEGs [38]. Pathway analysis was used to
find out the significant pathway of DEGs according to
KEGG (Kyoto encyclopedia of genes and genomes) data-
base [39, 40]. Fisher’s exact and FDR tests were used to
select the significant GO categories and pathways, and the
threshold of significance was defined by P-value and FDR
[41, 42]. The pathway and gene interaction networks were
built based on KEGG database [43, 44].

Semi-quantitative PCR

Reaction mixtures contained of 5 x buffer (contained
2 mM MgSO4), 0.5 mM each of the dNTPs, 1 puM
primers, 0.02U Phanta® Super Fidelity DNA Polymerase
(Vazyme, Nanjing, China), and 0.5ul of the cDNA tem-
plate was made from the SMARTer Kit. The thermal
cycling program for the amplification was as follows:
95 °C for 3 min, 45 cycles of 95 °C for 30 s, 56 °C or 60 °C
for 15 s, and 72 °C for 15 s followed by 72 °C for 7 min.
The triplicate PCR products were mixed and visualized in a
1.5% agarose gels. The expression levels were visualized by
a chemiluminescence system (Fusion Fx7, Fisher Biotech)
and quantified by Quantity One software (Bio-Rad, CA,
USA). Data were shown as means+ SEM (n=3). The
statistically significant differences between groups were
accessed by paired Student’s ¢ test using Graphpad Prism 5
software (GraphPad). Detailed sequences of the primers
were shown in Additional file 1: Table S1.

Results
Overview of RNA sequencing
All samples were subjected to massively paralleled
paired-end cDNA sequencing. Before the read (sequen-
cing fragment) mapping, clean reads were obtained from
the raw reads (5GB) by removing the adaptor sequences
from each library, reads with >5% ambiguous bases
(noted as N) and low-quality reads containing more than
20% of bases with qualities of <20. Of all uniquely
mapped reads, about 60% were aligned to the transcript
exon, 10% at the intron, 25% at the UTR regions and the
remaining at TES (transcription end site), TSS (transcrip-
tion start site) and intergenic regions (Additional file 2:
Figure S1A). Mapped reads (Additional file 1: Tables
S2 & 3) were distributed consistently on the chromo-
somes (Additional file 2: Figure S1B-E).

To identify the purity of manual sorting, we measured
the expression level of genes associated with non-neurons,
such as glia, astrocyte, oligodendrocyte, microgila and red
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blood cells [17, 18, 45]. Generally, non-neuron marker
genes such as glia marker Vim, astrocyte marker Gfap
and red blood cell marker Hbb-bl in control groups
were expressed at very low level (Additional file 1:
Table S4).

Nicotine induced DEGs related to different pathways in
Sst- and Thy1-neurons

There were 789 and 711 DEGs (>2 fold change; FDR <
0.05) in Sst- and Thyl-neurons after nicotine treatment,
respectively. Additional 20 common genes shared by Sst-
and Thyl-neurons were both up- or down- regulated by
nicotine (Additional file 3: Supplemental Excel S1).
Pathway interaction network analysis revealed that 24
pathways were affected by nicotine in Sst-neurons (Fig. 1a,
Additional file 4: Supplemental Excel S2). Not surprisingly,
nicotine significantly activated NFxB signaling as previous
reported [46]. The genes associated with cancer and neuro-
active ligand-receptor interaction were upregulated while
those in metabolic pathways were downregulated by nico-
tine (Fig. 1a). As shown in Fig. 1b, an integrated pathway
tree was depicted according to KEGG database, in which
hyperactive pathways associated with glycerophospholi-
pid metabolism and nicotinate and nicotinamide me-
tabolism (red) and hypoactive metabolic pathways
(blue) were shown. Ppap2b, Pld2, Pld1, Mboatl and Lpl
were grouped into glycerophospholipid metabolism,
and Nmnat3, Nudtl2 and Nmnatl were categorized
into nicotinate and nicotinamide metabolism, which
were all activated by nicotine (Fig. 1c). Among these
genes, Pld1, Pld2 and Paap2b owned the strongest de-
gree of centrality, suggesting that glycerophospholipid
metabolism has a powerful role in Sst- neurons after
nicotine.

In Thyl-neurons, nicotine affected 12 pathways re-
lated to ABC transporters, calcium signaling, cytokine-
cytokine receptor interaction, rheumatoid arthritis,
natural killer cell mediated cytotoxicity and pyrimidine
and purine metabolism (Fig. 2a, Additional file 5:
Supplemental Excel S3). It was interesting to note that
pathways in cytokine-cytokine receptor interaction, rhe-
umatoid arthritis, and natural killer cell mediated cyto-
toxicity are all associated with immune response.
According to KEGG database, gene networks related to
immune response (Fig. 2b) and pyrimidine and purine
metabolism (Fig. 2c) were built. Among these genes,
Csflr and Fltl, Nt5e and Nme4 were considered as the
highly-connected genes in immune response (Csflr and
FItl) and pyrimidine and purine metabolism (Nt5e and
Nme4), respectively. These results indicated that in
Thyl-neuons, nicotine significantly increased immune
response genes while decreased pyrimidine and purine
metabolism related genes.



Yang et al. BMC Genomics (2017) 18:194

Page 4 of 11

a

-log2P
-10

o
«n
=
S)

NF-kappa B signaling pathway
Nicotinate and nicotinamide...
Basal cell carcinoma
SNARE interactions in...
Pathways in cancer
RIG-I-like receptor signaling...
Vitamin B6 metabolism
Hedgehog signaling pathway
Acute myeloid leukemia
TGF-beta signaling pathway
Glycerophospholipid...
Fc gamma R-mediated...
Neuroactive ligand-receptor...
Ether lipid metabolism
Adherens junction
Pyruvate metabolism

T

(2]

Tyrosine metabolism
Drug metabolism -...
Fructose and mannose...
Glycine, serine and threonine ...
TGF-beta signaling pathway
Metabolic pathways
Degradation of aromatic...

Homologous recombination

b, binding/association; a, activation

Glycine, serine a‘onine metabolism
etabolism
Ether I.etabolism
( Friyictose and e metabolism
Glycerophos
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DEGs between Sst- and Thy1-neurons under basal condition
There were total 3185 DEGs between Sst- and Thyl-
neurons without nicotine treatment (Additional file 6:
Supplemental Excel S4). GO analysis revealed that these
DEGs were significantly enriched in intracellular signal
transduction (P =4.4x 107°), nervous system develop-
ment (2.16 x ~*) and potassium ion transport (2.66 x ~°).
Small GTPase mediated signal transduction (P =7.8 x 107)
and phosphorylation (P=3.7 x 10™%) were also significant
(Additional file 7: Supplemental Excel S5). The representa-
tive genes with the lowest FDR involved in these biological
processes were listed in Fig. 3. As previously known that
nervous system development genes such as neuronal
differentiation 1/2/6 (Neurodl/2/6) were associated
with glutamatergic neuron development in axon out-
growth and glutamatergic synaptogenesis [47, 48].
Moreover, potassium ion channel subtype genes Kcngl,
Kceng2, Keng5, Kcenip3, Kenh7, Kenj4, Kenj6, Kensl,
Kenvl and Kcenh3 were significantly higher in Thyl-
neurons, while Kent2, Kenj12, Kennl and Keng4 were
significantly higher Sst-neurons. Some of the DEGs
might be cell-type specific. The genes with high expres-
sion pattern (FPKM >1000) relative to low expression pat-
tern (Fold change >20, FDR=0) were considered as
specific genes [18]. The top 80 Sst- and Thyl-neuron
specific genes were shown in Additional file 8: Figure S2.
Many of these were expressed in a manner consistent with

previously published observations [17, 45], while some
genes such as Thsd7a in Sst-neurons and Kcnh7 and
Crym in Thyl-neurons were not previously reported, sug-
gesting that these genes might represent new marker
genes in these neurons.

Pathway analysis of DEGs between Sst- and Thy1- neurons
in the absence and presence of nicotine

To further assess nicotine effect on DEGs between Sst-
and Thyl-neurons, we performed pathway analysis ac-
cording to KEGG data base in the absence and presence
of nicotine (Additional file 9: Supplemental Excel S6).
As shown in Fig. 4a & b, the DGEs between Sst- and
Thyl-neurons associated with many common pathways
remained exist regardless of nicotine application, which
included retrograde endocannabinoid signaling, calcium
signaling, axon guidance, glutamatergic synapse, cholin-
ergic synapse, morphine addiction and GABAergic syn-
apse, indicating that DEGs related to these pathways
were not affected by nicotine. However, some new DEGs
associated with Alzheimer Disease (AD, P = 3.57E-04), oxi-
dative phosphorylation (P =243E-03), Parkinson Disease
(PD, P=243E-03) and metabolic pathway (P =3.37E-3)
were present only in nicotine treated mice (marked by the
rectangles in Fig. 4b). For most genes associated with AD
and PD, significant changes were absent between Sst- and
Thyl- neurons (Sst vs. Thyl, P> 0.05) in normal condition.
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After nicotine treatment however, these genes were signifi-
cantly down-regulated in Sst-neurons compared with those
in Thyl- neurons (Sst + Nic vs.Thyl + Nic, Fig. 5a). Among
these significantly changed genes, 62.5% in AD pathway
and 74.1% in PD pathway were overlapped and were mito-
chondrial respiratory chain complex genes, which are
closely associated with oxidative phosphorylation. In meta-
bolic pathways, some top-ranked genes were shown in
Fig. 5b. Different from AD/PD pathway genes which
showed a clear trend of decrease (Sst vs. Thyl) in the pres-
ence of nicotine, metabolic pathway genes exhibited a com-
plex profile. Both significantly decreased and increased
genes in Sst neurons relative to Thyl neurons were found
after nicotine (Sst + Nic vs.Thyl + Nic, Fig. 5b). Collectively,
these results suggested that the relative alteration of mito-
chondrial respiratory chain complex genes between Sst-
and Thyl- neurons may contribute to nicotinic regulation
of neural network function, in which metabolic pathway
may also play a role.

Validation of representative genes by RT-PCR

To validate RNA-seq findings, we examined the expres-
sion level of some hub genes described in Figs. 1 & 2 by
RT-PCR. As expected, the expression of DIx1 and
Gdpd3 were very low in Thyl-neuron relative to the
high level in Sst-neurons. And DIx1 that is necessary for
interneuron differentiation and migration [45, 49] was
selectively expressed in Sst- neurons (Fig. 6a). Consistent
with RNA-seq findings, Ppap2b, Pld1 and Crlsl were
significantly up-regulated by nicotine in Sst neurons. In
addition, Flt1 was up-regulated and Entpd3 and Nme4
were down-regulated by nicotine in Thyl-neurons
(Fig. 6b & ¢).

Discussion

Previous microarray studies have shown that in SH-
SY5Y cells, brief exposure (1 h) of nicotine (1 mM) re-
sults in DEGs associated with 14 pathways, in which the
Toll-like receptor and death receptor pathways involved



Yang et al. BMC Genomics (2017) 18:194

Page 6 of 11

a b
Sst Thy1 Sst Thy1
Vav3 Rasd1
— Plcg2 Rasl12
S Prkeq ? Bcar3
k=) Unc13c ® 5 Rem2
® 5 Rab40b °E Rab39
= Dab1 == Rab13
= Rasal1 o3 Rasgefic
=35 Gucy2g g % Arl15
[OIT) Smad3 o= Rab40b
8 g Ppp1rib I—‘—ﬂ Rgl2
sE Igfbp5 (O Rasl10a
< Rasgrp1 2 Rasgef1b
Asb11 1= Rab40c
Adcyap1 @ Dock6
Dcdc2a Dab1
t Cacnb2 + Slc24a4
o Cacnailh o Kcng1
> Kent2 > Kcng2
c c Kenh7 c Kengb
ogs Itgav © Kcnip3
w Kcnip4 - Kenh7
o2 Kengs S Kcnj4
Se Cacna2d1 = Kcnj6
=0 Scn4b £ Kcns1
o e Kcnip3 = Kenv1
35 0 Kcng1 (24 Kenh3
DE Grik1 o Kent2
s g Kcnip1 ° Kcnj12
© Kcnc2 Q Kenn1
= Crin2d Kecng4
Ndnf Alpk2
Arx Stk32a
£ 1gf1 c Nek7
O Gdpd5 2 N4bp2
@ % Neurod1 © Camk2n2
ﬁ £ Sema3c = Prkcq
» o Bdnf ° Pnck
=] Neurod6 < Ak4
o0 Nrp1 a Ptk2b
z3 Nrn1 o Prkcb
o] Fezf2 < Stk32¢
c S
Neurod2 Itpka
Adcyap1 Mapk4
Dcdc2a Cdkl5
Gfra2 Tyro3
-1 0 1
Fig. 3 Top-ranked GO terms associated with DEGs between Sst- and Thy1-neurons under basal condition. a Heat map representation of the top
15 genes with the lowest FDR involved in intracellular signal transduction, regulation of ion transmembrane transport and nervous system development,
respectively (n = 3). b Representative genes involved in small GTPase mediated signal transduction, potassium ion transport and phosphorylation,
respectively (n=3). Gene expression is shown with pseudocolor scale (—1.0 to 1.0) with red denoting high gene expression levels and green
denoting low gene expression levels. FDR is ranged from a maximum of 1.11 x 107" to 0, which is used for the correction of P values

J

in immune response were significantly affected [19]. On
the other hand, chronic nicotine causes regional DEGs,
with prefrontal cortex (PFC) and nucleus accumbens
(NAc) being most responsive to nicotine. The DEGs
induced by nicotine in these areas are involved in phoso-
tidylinositol signaling, calcium homeostasis and neuro-
protection [50]. In addition, a comparative study reveals
that genes involved in protein modification are altered
by systemic nicotine in a region specific manner [21]. In
the present study, we provide evidence that the effect of
nicotine on DEGs is also dependent on distinct cell
types. In addition, the relative DEGs between inter-
neuron and pyramidal neurons might help understand
how nicotine regulates brain functions at circuit level.

Effect of nicotine on lipid metabolism in interneurons

In our work, Pld1 (phospholipase D1), PId2 and Ppap2b
(phosphatidic acid phosphatase 2b, LPP3) in interneu-
rons are significantly increased by nicotine. These results
are consistent with the notion that glycerophospholipid
signaling is affected by nicotine [50]. Neuronal PLD can
be activated by variety of stimulators such as neuro-
transmitters, hormones and growth factors [51]. The

basic functions of PLD are associated with vesicular traf-
ficking, brain development and neuroprotection [52].
However, different roles of PLD1 and PLD2 in Alzhei-
mer Disease have been found. While PLD1 acts as a
negative regulator of B-amyloid (AP) formation [53],
PLD2 is required for Ap-induced synaptotoxic action
[54]. PPAP2b is a lipid phosphohydrolase enzyme that
catalyzes the conversion of phosphatidic acid (PA) to
diacylglycerol (DAQG). It also hydrolyzes lysophosphatidic
acid (LPA), ceramide-1-phosphate (C1P) and sphingosine-
1-phosphate (S1P), thus participating in a variety of cellu-
lar signaling [55]. PPAP2b plays a key role in neuronal
development through S1P signaling [56]. However, the
function of PPAP2b in interneurons is poorly understood.

Effect of nicotine on immune response and purine and
pyrimidine metabolism in pyramidal neurons

An important pathway affected by nicotine is immune
response. Two genes upregulated by nicotine are Csflr
(macrophage colony stimulating factor 1 receptor, M-
CSFR) and Flt1 (fms-related tyrosine kinase 1, VEGFR1).
CSFIR can be activated by CSF1 and interleukin-34
(IL-34), thus contributing to innate immunity by regulating
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the development of macrophage and microglia in the brain
[57]. FLT1 regulates VEGF mediated angiogenesis [58]. It
also binds to PIGF (placenta growth factor) that acts as a
cytokine and is neuroprotective for cortical neurons [59,
60]. These results are consistent with the findings that nico-
tine regulates innate immune response in neuronal cells
[19, 61]. The immune responses in the central nervous
system are thought to modulate endocrine activity that
controls cell migration, thermoregulation, drinking and
feeding, among others [62]. Furthermore, the chemokine
mediated neuo-glial crosstalk plays important role in mul-
tiple sclerosis and AD [63].

Systemic application of nicotine leads to down-
regulated genes associated with purine and pyrimidine
metabolism, in which Nme4 (nucleoside diphosphate
kinase D, NDPKD) and Nt5e (5'-nucleotidase, ecto,
CD73) are considered to be highly-connected genes.
NME4 binds to mitochondrial inner membrane through
cardiolipin and is associated with short chain fatty acids
metabolism, Kreb cycle and apoptosis [64]. NT5E is a
membrane-anchored protein that catalyzes the extracel-
lular formation of adenosine from AMP. This protein me-
diates the inhibition of hippocampal synaptic plasticity

and nociception [65, 66]. Although the functional conse-
quences of these changes are not well understood, a re-
cent study demonstrates that these genes are abnormally
expressed in the brain of Parkinson disease [67].

—_

Intrinsic transcriptome differences between Sst- and

Thy1- neurons

Our study demonstrates that many intrinsic differences
between interneurons and pyramidal neurons remain
exist regardless of nicotine administration. Consistent
with previous reports [17, 32], the majority of DEGs
between Sst- and Thyl- neurons in our study are associ-
ated with intracellular signal transduction, nervous
system development and ion channel expression and
regulation (Fig. 3). Pathway analysis links these genes to
neurotransmitters (glutamate and GABA), neuromodu-
lators (e.g. dopamine, serotonin and acetylcholine) and
drug addiction relative to cocaine, morphine and nico-
tine (Fig. 4a), suggesting that these DEGs might contribute
to the integrated function of cortical interneurons and pyr-
amidal neurons [2]. In addition, we also find some new
cell-specific genes, which include Thsd7a (thrombospondin,
Type I, domain containing 7A) in Sst-neurons and Kcnh?7
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metabolic pathway. Paired columns on the left: comparison of transcripts between Sst- and Thy1- neurons without nicotine (Sst vs. Thy1, P> 0.05,
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(potassium voltage-gated channel subfamily H member
7, HERG-3) and Crym (crystallin Mu, NADP-regulated
thyroid-hormone-binding protein) in Thyl-neurons.
The functional role of these genes is currently unknown.

Nicotine induces relative DEGs associated with
mitochondrial respiratory chain between Sst- and

Thy1- neurons

Major functions of mitochondria in neurons include the
regulation of synaptic plasticity [68, 69]. Our study
demonstrates that chronic nicotine causes significantly
decreased genes of mitochondrial respiratory chain in
interneurons relative to pyramidal neurons, suggesting
that nicotine favors pyramidal activity. Consistently, ectro-
physiological studies have demonstrated that chronic
exposure to nicotine results in persistent depression of
interneuron, while glutamatergic neurotransmission is
always increased [70, 71]. At circuit level, nicotine induces
gamma oscillations in hippocampal neurons [72, 73],
which are associated with the integrated function of

pyramidal neurons and interneurons [74]. Thus, the rela-
tive DEGs between Sst- and Thyl- neurons might play a
key role in nicotinic regulation of synaptic plasticity and
network function. Unlike mitochondrial genes which show
a clear trend of relative decrease in interneurons after
nicotine, both the decreased and the increased genes are
found in metabolic pathway, suggesting the complicated
regulation. Example genes in metabolic pathway include
nsdhl (NAD (P) dependent steroid dehydrogenase-
like), mthfd1l (methylenetetrahydrofolate dehydrogenase
(NADP" dependent) 1-Like) and dhrs3 (dehydrogenase 3).
However, the functional role of these genes in neurons is
not well-understood.

Conclusions

Is this study, most DEGs by nicotine are not enriched in
Sst- or Thyl- neurons (FPKM <1000, Additional file 4:
Supplemental Excel S2 & Additional file 5: Supplemental
Excel S3), suggesting that nicotine might not have sig-
nificant effect on major transcripts [30]. However, the
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relative changes of mitochondrial genes between Sst-
and Thyl- neurons are highly enriched (FPKM >1000,
Additional file 9: Supplemental Excel S6), which implies
that nicotine may play a more prominent role in the
regulation of functional balance between interneurons
and pyramidal neurons. In addition, although many of
the genes affected by nicotine can be categorized into
pathways, still the majority of genes cannot be grouped,
which does not rule out their functional importance.
Moreover, the limitation of this study is that nicotinic
effect was assessed from two genetically different mouse
strains, thus the potential bias of DEG results between
Sst- and Thyl- neurons may be existed (Fig. 3), as com-
pared to the findings by Sugino K and colleagues [17].
Nonetheless, our study highlights the following findings:
(1) Interneurons instead of pyramidal neurons might
play a dominant role in nicotinic regulation of glycero-
phospholipid signaling in specific brain regions [50]. (2)
Pyramidal neurons might be important in nicotinic
regulation of immune response and calcium signaling
[61, 75]. (3) The relative alterations of mitochondria re-
lated genes may contribute to nicotinic regulation of

synaptic activity and neural network function [68, 73].
However, the role of the highly connected genes affected
by nicotine in individual neurons is currently unknown,
which remains to be studied in the future.

Additional files
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Additional file 2: Figure S1. Overview of RNA-sequencing quality. A:
Percentage of mapped reads onto the regions of exon, intron, 5-untranslated
region (5-UTR), 3-untranslated region (3"-UTR), transcription start site (TSS),
transcriptionend site (TES) and intergenic region (InterGenic) in all samples.
B-E: Distribution of reads on chromosomes in independent samples of Sst-
and Thy1-neurons, in the absence (- Nic) and presence of nicotine (+ Nic).
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Additional file 3: List of DEGs affected by nicotine in Sst- and Thy1-
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Additional file 4: Pathways and related genes affected by nicotine in
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Additional file 7: GO analysis of DEGs between Sst- and Thy1-neurons
in the absence of nicotine. (XLSX 76 kb)

Additional file 8: Figure S2. Heat map of top 80 cell-type-specific
genes expressed in Sst- and Thy1-neurons. The genes with high expression
pattern (FPKM > 1000, top and bottom) relative to low expression pattern
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