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Abstract

Background: Mitochondrial genomes (mtDNA) of multicellular animals (Metazoa) with bilateral symmetry (Bilateria) are
compact and usually carry 13 protein-coding genes for subunits of three respiratory complexes and ATP synthase. However,
occasionally reported exceptions to this typical mtDNA organization prompted speculation that, as in protists and plants,
some bilaterian mitogenomes may continue to lose their canonical genes, or may even acquire new genes. To shed more
light on this phenomenon, a PCR-based screen was conducted to assess fast-evolving mtDNAs of apocritan Hymenoptera
(Arthropoda, Insecta) for genomic rearrangements that might be associated with the modification of

mitochondrial gene content.

Results: Sequencing of segmental inversions, identified in the screen, revealed that the cytochrome oxidase subunit Il

gene (cox2) of Campsomeris (Dielis) (Scoliidae) was split into two genes coding for COXIIA and COXIIB. The COXIl-derived
complementary polypeptides apparently form a heterodimer, have reduced hydrophobicity compared with the majority
of mitogenome-encoded COX subunits, and one of them, COXIIB, features increased content of Cys residues. Analogous
cox2 fragmentation is known only in two clades of protists (chlorophycean algae and alveolates), where it has been
associated with piecewise relocation of this gene into the nucleus. In Campsomeris mtDNA, cox2a and cox2b loci are
separated by a 3-kb large cluster of several antiparallel overlapping ORFs, one of which, gnu, seems to encode a nuclease
that may have played a role in cox2 fission.

Conclusions: Although discontinuous mitochondrial protein genes encoding fragmented, complementary polypeptides are
known in protists and some plants, split cox2 of Campsomeris is the first case of such a gene arrangement found in animals.
The reported data also indicate that bilaterian animal mitogenomes may be carrying lineage-specific genes more often than

previously thought, and suggest a homing endonuclease-based mechanism for insertional mitochondrial gene fission.
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Background

Mitochondria contain residual genomes (mtDNA) with the
majority of their original a-proteobacterial gene set trans-
ferred to the host nucleus or lost by other means [1, 2].
Among the most compact mitogenomes are those of
multicellular animals (Metazoa) with bilateral symmetry
(Bilateria) [3—7]. They usually carry 37 annotated intron-
less genes, of which only 13 are protein-coding, and they
have dramatically reduced or entirely absent intergenic
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regions. Deviations from this conserved gene set in the
Bilateria are rare and comprise mostly tRNA genes.
Although cases of a protein-coding gene missing from
mtDNA are known in Vertebrata (atp8, nads5, nad6),
Chaetognatha (atp6, atp8), Nematoda (atp8), and Platyzoa
(atp8) [6], some of them may actually represent the
presence of highly derived gene variants rather than true
gene loss [6, 8, 9]. The only lineage-specific translated
genes identified in bilaterian mitogenomes are the f- and
m-ORFs found in bivalves (Mollusca) with doubly unipa-
rental inheritance of mitochondria [10, 11]. Moreover, a
conserved non-overlapping ORF was identified in the con-
trol region (CR) of mammalian mtDNA [12], unassigned
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ORF sequences have been found in Lingula (Brachiopoda)
[13], and an OREF that likely originated through the
duplication of a canonical gene was found in the
mtDNA of oysters (Mollusca) [14].

The association of cases of presumptive mitochondrial
gene loss or acquisition of new ORFs with the increase of
rate of nucleotide substitutions and mtDNA rearrange-
ments prompted speculation that modifications of the
mitochondrial gene content in Bilateria might be more
common than is currently assumed due, in part, to the
relative underrepresentation of faster-evolving mitogen-
omes among sequenced mtDNAs. Indirectly supporting
this hypothesis, additional protein-coding genes have
been identified in the mtDNA of basal metazoans [6],
and the transfer of genetic material from the mitochon-
dria to the nucleus is a well-known phenomenon that
still occurs in almost all eukaryotes, although it usually
generates nuclear pseudogene copies of mitochondrial
genes (NUMTS) [15-17]. Functional relocation of mito-
chondrial genes to the nucleus, where they would re-
sume their expression thus allowing for the loss of their
mitochondrial copy, has been shown to continue in pro-
tists and plants, and involve both intact and fragmented
genes [18]. Interestingly, half of the split, originally mito-
chondrial genes have at least one of the derived genes
transferred to the nucleus and lost from the mtDNA.
They include (i) coxl in the majority of eukaryotic
supergroups (excluding, among others, plants and
Opisthoconta) where it split at the 3" end and the 3’ ter-
minal fragment was transferred to the nucleus [19]; (ii)
cox2 in Alveolata and chlorophycean algae (Chloro-
phyta), where both or only the 3’ terminal half of the
gene was transferred to the nucleus [20-24]; (iii) rpl2 in
eudicots (Angiospermae), where both or only the 5" or 3’
section was transferred to the nucleus [25]; and (iv) sdhB
in Euglenozoa, where both derived genes were trans-
ferred to the nuclear genome [26]. The fission of
mitochondrial genes for proteins with transmembrane
topology, which might be difficult to transfer to mito-
chondria if they were encoded in the nucleus, may allow
for their partial relocation limited to a region coding for
a less hydrophobic part of a protein [19-21, 24, 27-29].
Split protein-coding genes with both derived genes
residing in mtDNA include nadl, nad2 and rps3 of
ciliates (Alveolata) [30—32] and ccmFy and ccmF¢ (cch)
orthologs of bacterial ccmF (ccll) in plants such as
Marchantia and several groups of angiosperms [25, 33].

Here, the correlation between mitochondrial gene loss,
gene fragmentation or the addition of new genes and
an increased rate of mtDNA evolution was explored
using the mitogenomes of the apocritan Hymenoptera
(Arthropoda, Insecta). Hymenoptera in the suborder
Apocrita, which includes Aculeata and families grouped
in the paraphyletic “Parasitica”, were selected for the
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present studies due to more rapid evolution of their
mtDNA compared with the evolution of the majority of
sequenced mitogenomes of other insects and metazoans
in general [34-36]. The screen applied in these studies
retrieved unique for animals fission of a canonical mito-
chondrial gene, cox2, in representatives of Campsomeris
(Dielis) (Scoliidae). Scoliids are a family of solitary wasps
that develop as idiobiont ectoparasitoids of the larval
stages of Scarabaeoidea and less often other Coleoptera.
Cox2 encodes the subunit II of cytochrome ¢ (CytC) oxi-
dase (COX) that mediates the transfer of electrons from
CytC to COX subunit I (COXI) during oxidative phos-
phorylation (OXPHOS). The split of cox2 in two genes
for complementary COXIIA and COXIIB polypeptides
likely occurred through intragenic insertion of a cluster
of several ORFs, one of which encodes a putative endo-
nuclease that might have been directly involved in the
process of cox2 fission.

Results

Mitochondrial cox2 gene in Campsomeris is split in half
The exploration of hymenopteran mitogenomes for
potential changes in gene content was guided by a PCR-
based screen that primarily targeted mtDNA segmental
inversions, as well as deletions and duplications/inser-
tions. Large, multigenic inversions represent uncommon
type of mitochondrial genome rearrangements and can
be mechanistically linked to gene translocation, frag-
mentation, loss and duplication, or the acquisition of
new genes. For instance, both inversions and modifica-
tions of gene structure and content may arise during the
process of the repair of DNA double-stranded breaks by
nonhomologous end-joining [37]. The screen was
designed to identify inversions of cox1- versus rrnL-bear-
ing segments of mtDNA (Additional file 1: Figure S1). In
the typical circular mitogenome of insects and other
pancrustaceans [38], coxl and rrul genes are separated
from one another by two and three rearrangement
hotspots located within clusters of tRNA genes (trn/I-Q-M];
trnfW-C-Y]; cox; tru[K-DJ; trn[A-R-N-S-E-FJ; tru[T-P]; rrnL)
[34]. The primers used in the screen were designed to
map within conserved regions of coxl and rrunL, and
their orientation permitted the amplification of mtDNA
between the two genes if one of the genes was inverted.
This strategy led to the identification of coxl versus
rrul segmental inversions in representatives of Scolii-
dae and Chrysididae of Aculeata and in Cynipidae and
Chalcidoidea of Proctotrupomorpha (Table 1, Fig. 1).
Subsequent sequencing of these rearranged mitogen-
omes revealed the presence of a 3.0-kb insertion within
the cox2 gene of Campsomeris (Dielis) plumipes (Drury)
(ssp. fossulana (Fab.)) of Scoliidae (Figs. 1 and 2).
Thereafter, a similar 2.6-kb insertion was found in cox2
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Table 1 Systematic list of hymenopteran species analyzed for the
presence of coxT versus rmL segmental inversions in their mtDNA

Species

Taxonomy

Inversion of
cox1 vs rml

Cephus cinctus Norton

Orussus occidentalis (Cresson)

Schlettererius cinctipes
(Cresson)

Evania appendigaster (L.)

Pseudogonalos hahnii
(Spinola)

Cotesia vestalis (Haliday)
Spathius agrili Yang
Diachasmimorpha

longicaudata (Ashmead)

Macrocentrus camphoraphilus
He & Chen
Aphidius gifuensis Ashmead

Protichneumon grandis
(Brulle)

Diadegma semiclausum
(Hellén)

Enicospilus sp.

Vanhornia eucnemidarum
Crawford

Cynips quercusfolii L.

Synergus sp.

Philotrypesis pilosa Mayr

Torymus auratus (Muller)

Primeuchroeus sp.
Chrysis sp.

Polistes carolina (L.)
Abispa ephippium (Fab.)

Euodynerus sp.

“Symphyta”

Phytophagous groups:
Cephoidea: Cephidae

Orussoidea: Orussidae
Apocrita: “Evaniomorpha”

Stephanoidea: Stephanidae

Evanioidea: Evaniidae

Trigonaloidea: Trigonalidae

Apocrita:
Ichneumonomorpha &
Proctotrupomorpha

Ichneumonoidea:
Braconidae: Microgastrinae

Ichneumonoidea:
Braconidae: Doryctinae

Ichneumonoidea:
Braconidae: Opiinae

Ichneumonoidea:
Braconidae: Macrocentrinae

Ichneumonoidea:
Braconidae: Aphidiinae

Ichneumonoidea:
Ichneumonidae:
Ichneumoninae

Ichneumonoidea:
Ichneumonidae:
Campopleginae

Ichneumonoidea:
Ichneumonidae: Ophioninae

Proctotrupoidea:
Vanhorniidae

Cynipoidea: Cynipidae:
Cynipini

Cynipoidea: Cynipidae:
Synergini

Chalcidoidea: Agaonidae
Chalcidoidea: Torymidae
Apocrita: Aculeata

Chrysidoidea: Chrysididae:
Chrysidinae

Chrysidoidea: Chrysididae:
Chrysidinae

Vespoidea: Vespidae:
Polistinae

Vespoidea: Vespidae:
Eumeninae

Vespoidea: Vespidae:
Eumeninae

inv

inv

inv

inv

inv

inv
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Table 1 Systematic list of hymenopteran species analyzed for the
presence of cox1 versus rmlL segmental inversions in their mtDNA

(Continued)

Wallacidia oculata (Fab.)
Ceropales femoralis Cresson
Pepsis elegans L.

Anoplius lepidus

atramentarius (Dahl.)

Myzinum maculatum (Fab.)

Vespoidea: Mutillidae:
Mutillinae

Vespoidea: Pompilidae:
Ceropalinae

Vespoidea: Pompilidae:
Pepsinae

Vespoidea: Pompilidae:
Pompilinae

Vespoidea: Tiphiidae:

Myzininae

Campsomeris plumipes Vespoidea: Scoliidae: inv

fossulana (Fab.) Campsomerinae

Campsomeris sp. HA10513 Vespoidea: Scoliidae: inv
Campsomerinae

Scolia bicincta Fab. Vespoidea: Scoliidae: inv
Scoliinae

Scolia dubia Say Vespoidea: Scoliidae: inv

Solenopsis geminata (Fab.)

Apis mellifera L.
Bombus ignitus Smith

Melipona bicolor (Lep.)

Scoliinae

Vespoidea: Formicidae:
Myrmicinae

Apoidea: Apidae: Apinae
Apoidea: Apidae: Bombinae
Apoidea: Apidae:

Meliponinae

Sceliphron caementarium
(Drury)

Apoidea: Sphecidae: -
Sceliphrinae

Ammophila sp. Apoidea: Sphecidae: -

Ammophilinae

Sphex pensylvanicus L. Apoidea: Sphecidae: -

Sphecinae

Bicyrtes quadrifasciata (Say) ~ Apoidea: Crabronidae: -

Bembicinae

Cerceris sp. Apoidea: Crabronidae: -

Philanthinae

of another yet undescribed Campsomeris (Dielis) sp.
HA10513 (Fig. 2).

To determine the incidence of the cox2 split within
Scoliidae and verify its confinement to this aculeate
family, the mtDNA of two Scolia species, S. bicincta and
S. dubia (Scoliidae), and cox2 of randomly selected
representatives of hymenopteran families of Tiphiidae,
Mutillidae, Pompilidae, Formicidae, and Apoidea (Table 1),
which are phylogenetically more closely related to
Scoliidae, were sequenced. The integrity of the cox2 gene
was preserved in all the additionally analyzed Hymenoptera,
suggesting that cox2 fission may be confined to Camp-
someris or Campsomerinae. Of note, the mitogenomes
of Scolia also featured segmental inversion corresponding to
the inversion of trn/Q-M-L2-M-H]-nad2-trnfW-C-Y]-coxI-
cox2a-insert-cox2b-trnK found in Campsomeris mtDNA
(Fig. 2).
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Discoba

Streptophyta
Chlorophyta

Rhodophyta

Scenedesmus (Chlorophyta:
Chlorophyceae)

Rhizaria

SARP

Stramenopila

Alveolata

Amoebozoa

Plasmodium (Alveolata:
Apicomplexa)

\

10 um

Fungi

Amorphea

Metazoa

“Symphyta”
Stephanoidea
Evanioidea
Trigonaloidea
Ichneumonoidea
Proctotrupoidea
Cynipoidea
Chalcidoidea

Metazoa: Bilateria: Arthropoda: Insecta: Hymenoptera

3

Chrysidoidea
Vespidae
Mutillidae

Pompilidae
Tiphiidae
Scolia

Formicidae

| | Scoljidae

Apoidea Campsomeris plumipes fossulana

Hymenoptera Aculeata

Fig. 1 Cox2 fission across phylogeny. Lineages harboring taxons
carrying the cox2 gene split into derived genes are marked in red.
Asterisks denote the presence of segmental inversions of cox! versus
rrL in the mtDNA of Hymenoptera (Additional file 1: Figure S1).
Simplified tree topologies are based on recent revisions by He et al.
[70] (Eukaryota), Mao et al. [71] (Hymenoptera) and Johnson et al.
[72] (Aculeata)

Mature cox2a and cox2b transcripts are discrete and
polyadenylated

The cox2-splitting insertion occurred within a relatively
less conserved region of the gene (Additional file 1:
Figure S2). It divided cox2 into cox2a, encoding two
transmembrane helices, the N-terminal intermembrane
space domain and the “heme-patch” region (containing
Trp'®®, which functions as the point of electron entry
from CytC; KT740996) of the canonical COXII],
and cox2b, encoding intermembrane space C-terminal
half of COXII containing the binuclear Cu, center. In C.
p. fossulana, the insertion is located in-frame with cox2a
and cox2b, meaning that cox2 might still be expressed as
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a single polypeptide that is larger than the original one.
In-frame insertions in the corresponding region of cox2
in ciliates, brown algae, microflagellata, and bacteria re-
sulted in enlargement, not fission, of cox2 genes [39, 40].

To determine whether C. p. fossulana COXII is encoded
by an enlarged, single cox2 gene or separate cox2a and
cox2b genes, the 5" and 3’ ends of the cox2 transcripts were
mapped by RACE. This analysis showed that cox2a and
cox2b transcripts are discrete, non-overlapping, and polya-
denylated. It also showed that the cox2a termination codon,
UAA, was completed by polyadenylation (Fig. 2). Moreover,
RACE analysis of the cox2 transcripts did not provide
evidence for cox2 splicing in Campsomeris. However, since
a group II intron is present within the cox! gene in the
mitogenomes of Annelida (the only known case of
mitochondrial RNA splicing in Bilateria) [41], the absence
of residual cox2 pre-mRNA splicing was additionally
verified by PCR using cox2a- and cox2b-specific primers
corresponding to sequences flanking the inserted DNA. The
PCR did amplify a 3-kb DNA product from Campsomeris
mtDNA but did not amplify any product from the cDNA,
again arguing against even residual cox2 RNA splicing or
cox2a and cox2b RNA trans-splicing into a single mRNA.

The relative levels of cox2a and cox2b transcripts were
determined by RT-qPCR and appeared to differ from
one another. In comparison with the RNA level of cox1,
the cox2a transcript was slightly less abundant
whereas the cox2b transcript was present at a level ap-
proximately 3 times higher. This finding further sup-
ports the results obtained by RACE that mature cox2a
and cox2b mRNAs represent separate entities.

Cox2a and cox2b genes are translated

To determine whether C. p. fossulana cox2a and cox2b
genes did not represent transcribed pseudogenes, the C. p.
fossulana mitochondrial proteome was analyzed by western
blotting using polyclonal antibodies (Abs) generated against
deduced COXIIA and COXIIB synthetic epitopes. Western
blot analysis revealed that Campsomeris cox2 was translated
as two separate polypeptides, COXIIA and COXIIB, with
sizes comparable to those predicted from the cDNA
sequences (115 and 100 amino acids, respectively) (Fig. 3a,
Additional file 1: Figures S3 and S4). Moreover, none of the
Abs detected a larger polypeptide that might otherwise
indicate the occurrence of posttranslational, intein-
mediated trans-splicing of COXIIA and COXIIB. To
date, split cox2 genes have only been found in two
groups of protists, i.e. Chlorophyta [20-22, 24] and
Alveolata [23, 42, 43] (Fig. 1). Alignment of the predicted
sequences of the COXII split sites indicated that, in pro-
tists, cox2 splitting occurred in the position corresponding
to the COXII splitting site in Campsomeris (Additional
file 1: Figure S2). In-frame insertions into cox2 in
ciliates (Alveolata), which generated enlarged COXII
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Fig. 2 Split of the cox2 gene in mtDNA of Campsomeris. Circular mitogenomes are arbitrarily linearized at the 3" end of trN. The Drosophila
mtDNA represents the plesiomorphic mitogenome of Pancrustacea. The inverted mtDNA segment in Scolia (KT276222) and Campsomeris
(KT740996, KX090217) is flanked by the trnD gene and the control region (CR). The inversion might have occurred due to recombination between
similar and oppositely oriented trnK and trnQ genes. Other modifications of the C. p. fossulana mitogenome include single-gene inversions of
trnQ, trC and trnST, translocations of trF and trnl.2, shuffling of tmS1, duplication of trnM, the presence of trnH in addition to trnH', the
presence of trnk™ (within the CR) in addition to trnk™°, and the loss of tr/ (or its replacement by a putative trn/ gene located within rrmL).
TrnS1, trnR and putative trnl encode tRNAs that lack the TYC (T) arm. The chromatopherogram of the cDNA sequence corresponding to the cox2a
mRNA 3" end (RACE product) shows that the cox2a stop codon, UAA, is generated by the polyadenylation of U (corresponding to TO19,
KT740996). The positions of genes/ORFs in Campsomeris sp. HA10513 were deduced from comparison with the corresponding regions of C. p. fossulana
mtDNA (5" part of the reading frame of Campsomeris sp. HA10513 orf3, marked dark gray, is shifted in comparison to the reading frame of C. p. fossulana
orf3). C. p. fossulana orf3-9 correspond to polyadenylated mRNAs that have been mapped by RACE. H2, N2, and K denote tmH~", putative (low covariance
score) trN“" and tmk™ (Campsomeris sp. HA10513) or tmk™° (C. p. fossulana), respectively

polypeptides, also occurred in the same position as COXII by taking advantage of the interactions between
COXII-splitting insertions in other protists and their unique C- and N-terminal extensions, respectively
Campsomeris. [22, 23]. Sequencing of the ends of C. p. fossulana cox2a

The three-dimensional structures of C. p. fossulana  and cox2b cDNAs indicated that C. p. fossulana COXIIA
COXIIA and COXIIB polypeptides were modelled using and COXIIB do not have extended terminal regions
a template-based method with the I-TASSER algorithm  (Additional file 1: Figures S3 and S4), and Instead, they
(NovaFold) (Fig. 3b). When superimposed on a similarly  might reassemble by taking advantage mostly of shape
determined structure of the intact COXII of S. bicincta, and electrostatic internal complementarity. Reconstitu-
both COXIIA and COXIIB showed a good fit supporting  tion of active proteins even from multiple fragments,
their functionality (Fig. 3b). COXIIA and COXIIB of including those with breakpoints mapping within well-
Chlorophyceae (Chlorophyta) and Alveolata have been  defined functional domains, has been demonstrated for
proposed to reassemble into functional heterodimeric numerous proteins [44—46]. Moreover, by analogy to
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< COXIIA

< COoXIiB

Campsomeris and
Scolia bicincta COXIl  |Campsomeris p. fossulana Scolia COXII 3-D
COXIIA and COXIIB structure alignment
C
C. p. fossulana [ || coxis ||
C.sp. 10513 [ el |  coxisl ||
S. bicincta N TR N

20 aa,

COXII residues of the
COXII-CytC interface

Fig. 3 The heterodimeric structure of Campsomeris COXIl. a Western

blot analysis of C. p. fossulana COXIIA and

COXIIB polypeptides. The

deduced position of the COXII band of Scolia, corresponding to that
of other bilaterian animals with the exception of Campsomeris, is
indicated by red arrowheads. b Tertiary structures of C. p. fossulana
and S. bicincta COXII polypeptides, modelled in I-TASSER using
crystal structures of bovine, Paracoccus denitrificans and Rhodobacter

sphaeroides COXII (PDB: ToczB, 3hb3B and
templates. The structural similarity between

Tm56B, respectively) as
split COXII of C. p. fossulana

and intact COXIl of S. bicincta is shown in the superimposition panel.
The central part of COXIl of Scolia (and other pancrustaceans), which
is missing in C. p. fossulana COXIIA and COXIIB, is depicted in blue.

¢ Schematic alignment of COXII polypeptides and some of the

regions proposed to be involved in COXII h

eterodimer reassembly.

Terminal domains that are likely engaged in electrostatic interactions
are shown in blue and marked “-"and “+", respectively. The COXII/CytC

interface is defined as in Schmidt et al. [49]
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intramolecular interactions found in Paracoccus denitri-
ficans COXII [47], the N-terminal loop of COXIIA
might contribute to COXII heterodimer assembly by
interacting in the mitochondrial intermembrane space
with COXIIB. Interestingly, the N-terminal intermem-
brane space domain of Campsomeris sp. HA10513
COXIIA is shortened, but in this case, the N-terminus
of COXIIB is significantly enriched in positively charged
Lys residues (Additional file 1: Figure S2). Since the C-
terminus of COXIIA contains negatively charged Glu
residues (Additional file 1: Figure S2), the COXII hetero-
dimer might be additionally stabilized in this case by a
salt bridge between the C- and N-termini of COXIIA
and COXIIB, respectively (Fig. 3c). Finally, the involve-
ment of interacting proteins usually dramatically im-
proves the kinetics of split protein reassembly [48].
COXII, together with COXI and COXIII, form the cata-
lytic core of respiratory complex IV, surrounded by sev-
eral COX subunits that are imported from the cytosol.
Some of these proteins likely interact with COXIIA and
COXIIB, contributing to the assembly of the functional
COXII heterodimer. Of note, COXII splitting occurred
within the CytC binding interface, the amino acid resi-
dues of which are scattered through the entire COXIIB and
C-terminal intermembrane space region of COXIIA (Fig. 3c)
[49]. Thus, COXII local folding around its binuclear center
might be further adjusted during interactions with CytC.

Hydrophobicity and Cys content of COXIIA and COXIIB
Comparison of the amino acid content of Campsomeris
COXIIA and COXIIB, with that of an intact COXII of S.
bicincta and Apis mellifera revealed a decrease in
fragmented COXII of Ile residues (the most abundant
amino acid residue in COXII) and an increase of Cys
residues (Additional file 1: Figure S5).

The impact of the reduced presence of hydrophobic Ile as
well as Leu on the overall character of Campsomeris
COXIIA and COXIIB was estimated by calculating the
average hydropathy (GRAVY) for COXIIA, for the first
and second transmembrane helices of COXIIA, for
COXIIB, and for the corresponding regions of intact
COXII of other Hymenoptera and representatives of other
taxonomic groups. A comparison of the GRAVY values
showed that Campsomeris COXIIA and, to a lesser degree,
COXIIB exhibited reduced hydrophobicity compared with
the corresponding regions of COXII in Scolia and in the
majority of other Hymenoptera (Fig. 4a). The hydrophobi-
city of the first transmembrane helix of Campsomeris
COXIIA was also among the lowest in Hymenoptera
(Fig. 4a). Interestingly, the hydrophobicity of Campsomeris
COXIIA and COXIIB polypeptides was similar to that of
Chlamydomonas COXIIA and COXIIB or Scenedesmus
COXIIB, all of which are encoded in the nuclear genome
and transported to mitochondria.
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Fig. 4 Relative hydrophobicity of hymenopteran COXII polypeptides. The grand average of hydropathy (GRAVY) values were estimated using the
GRAVY Calculator (http://www.gravy-calculator.de/; Kyte and Doolittle hydrophobicity scale). GRAVY values are plotted in red and black for
Campsomeris species and S. bicincta, respectively; in green for COXII of the non-hymenopteran species, Pediculus ("Phthiraptera”) (29) and Drosoph-
ila (Diptera) (30); and in yellow for COXII of chlorophycean algae Scenedesmus (31) and Chlamydomonas (32). The following genera of Hymenop-
tera were taken into account: 1, Perga; 2, Cephus; 3, Orussus; 4, Schlettererius; 5, Evania; 6, Cotesia; 7, Phanerotoma; 8, Spathius; 9, Diachasmimorpha;
10, Macrocentrotus; 11, Aphidius; 12, Diadema; 13, Enicospilus; 14, Vanhornia; 15, Nasonia; 16, Philotripesis; 17, Wallacidia; 18, Cephalonomia; 19, 20,
Campsomeris (p. fossulana and sp. HA10513, respectively); 21, Scolia; 22, Apis; 23, Bombus; 24, Melipona; 25, Solenopsis; 26, Polistes; 27, Abispa; 28,

Primeuchroeus. The transmembrane and intermembrane space domains of COXII correspond to Campsomeris COXIIA and COXIIB polypeptides,
respectively. The transmembrane regions were predicted using the TMHMM method (http://www.cbs.dtu.dk/services/TMHMM/) [73]. a The

split COXIl of Campsomeris is twice less hydrophobic than its intact counterpart in the next most closely related Scolia and is among the least hydrophobic
eukaryotic COXII polypeptides. b The hydrophobicity of the first transmembrane helix of Campsomeris COXIIA is among the lowest in eukaryotes

Cys residues are the only reactive amino acid side chains
with substantially changed representation in Campsomeris
COXIIB compared with intact COXIIs (Additional file 1:
Figure S5). A phylogeny-wide survey of the Cys content in
the COXII intermembrane domain, corresponding to COX-
IIB, revealed that this domain was specifically enriched in
Cys not only in Campsomeris COXIIB but also in other
split or enlarged COXII polypeptides (Fig. 5), all of which
might benefit from redox-based assistance to maintain their
proper folding or intermolecular interactions.

Cox2a and cox2b loci are separated by a cluster of
antiparallel overlapping transcribed ORFs

Sequencing of the C. p. fossulana 3-kb insert and its
conceptual translation revealed, in addition to the
mentioned continuous ORF bridging cox2a and cox2b,
the presence of five ORFs on the complementary
mtDNA strand, ranging in size from 0.2 to 1.1 kb (Fig. 2).
RACE analysis of C. p. fossulana mitochondrial cDNA
indicated that all ORFs were transcribed and their RNAs
were polyadenylated, with cleavage/polyadenylation sites
being much more scattered along the transcripts than in
case of canonical mitochondrial genes. This analysis also
revealed that the continuous ORE, including cox2a
and cox2b, was transcribed as RNA that was proc-
essed into cox2a and cox2b mRNAs and other

mRNAs, four of which (gnu and orfs3-5) had in-
frame TAA termination codons generated by polyade-
nylation (Fig. 2). In Campsomeris sp. HA10513,
continuity of the ORF corresponding to the C. p.
fossulana largest ORF (including cox2a and cox2b)
was interrupted in the middle of the insert, and there
were only two ORFs, wfw and orfI0, on the opposite to
cox2 strand (orf10 did not share amino acid sequence
similarity with polypeptides deduced from any of the C. p.
fossulana ORFs) (Fig. 2). Pairwise alignments of deduced
amino acid sequences of the inserted ORFs from the two
Campsomeris species identified four groups of ORFs, gnu,
wfw, orf3 and orf4, with orthologous ORFs sharing exten-
sive similarity and hence being likely of potentially func-
tional significance.

Nucleotide and protein database searches using
BLAST revealed that none of the ORFs encoded by the
inserted DNA fragment had significant sequence similar-
ity at the DNA or protein level to previously described
genes, thus obscuring the origin of the insertion (gnu
exhibits limited stretches of sequence similarity that are
discussed in the next section). The A + T content of the
inserted DNA fragment was ~13% lower compared to
that of the remaining part of the C. p. fossulana mito-
genome (Additional file 1: Figure S6), and was reflected
by the decreased frequency of almost half of the A- and
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T-containing synonymous codons of the inserted ORFs
(Additional file 1: Table S2).

A very distinctive feature of the insert was the anti-
parallel overlap of its ORFs (Fig. 2). Cis-natural sense
antisense transcripts (cis-NATs) are found relatively
frequently, even in the genomes of higher eukaryotes
[50, 51]. However, extensive bidirectional overlapping
is rare especially among protein-coding genes because
sequence variants in one gene can often have deleterious
effects on the sequence of the complementary gene.
In mitochondria, such gene arrangement has been
proposed for coxl and putative gene gau [52]. It
seems interesting in this context that the open read-
ing frames of overlapping gnu and wfw, as well as
orf3 (to a lesser extent) and orf4, have been pre-
served despite experiencing numerous indels as was
visualized by a pairwise comparison of their sequences
from two Campsomeris species (Additional file 1:
Figure S7).

RT-qPCR-determined relative transcript levels of the
inserted genes were in most cases 2-3 times higher than
those of canonical mtDNA-encoded genes (Fig. 6). For
each inserted pair of antiparallel overlapping genes, with
the exception of gnu-wfw, both transcripts were present at
relatively higher levels. In contrast, transcripts that were
antisense to the canonical mitochondrial genes, were usu-
ally present at low levels, resembling mRNA profiles of
Drosophila (Fig. 6) and human mitochondria [53]. Higher
levels of cis-NATs versus non-cis-NATs have also been
found in mammalian [50] and Arabidopsis [54] transcrip-
tomes. In Campsomeris, the increase in RNA levels of
some transcripts might indicate their mixed origin from the
mitochondria and nucleus. No evidence of heteroplasmy
was detected by sequencing RACE products correspond-
ing to the inserted ORFs, cox2a and cox2b, or in sequences
of cox2a amplified from total genomic DNA. Nevertheless,
it is still possible that fragments of mtDNA containing the
3-kb inserted region or cox2 genes have been copied into
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Fig. 6 Transcript levels of selected C. p. fossulana and D. melanogaster mitochondrial genes. Copy numbers of the analyzed genes were
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majority and minority strands of the insect ancestral mitogenome are marked in blue and black, respectively. Transcript levels of C. p. fossulana
inserted genes are shown within the red frame and, in most cases, surpass those of the canonical mitochondrial genes. Abbreviation: D.m.,

nuclear genome and became transcribed. An increase in
the stability of double-stranded RNAs or the presence of
transcription promoter(s) within the insert might also con-
tribute to higher levels of some transcripts. Sequences re-
sembling the 15-bp promoter motif of human mtDNA
were found similarly oriented upstream (GCTCCAGAA
AAAGGAA) and downstream (TTCAACCAAATTA) of
gnu and might account, in part, for the increased levels
of gnu and orf3-5 transcripts. Higher levels of orf6-9
and wfw transcripts might result from the proximity of
their corresponding genomic loci to the promoter(s) lo-
cated within the CR, which, following inversion, were no lon-
ger separated from protein-coding genes by a cluster of
several tRNA genes that likely slow down the elongation
phase of transcription.

Qnu encodes a putative nuclease that might have been
actively involved in cox2 fission
Possibility of translation of the inserted ORFs was
experimentally addressed for the two largest and best
conserved inserted ORFs, gnu (Gln-Asn [QN] repeat-
containing nuclease gene) and wfw (Trp-Phe-Trp [WFW]
repeat-encoding putative gene), by western blot (Fig. 7,
Additional file 1: Table S3). By this criterion, both ORFs were
likely expressed as polypeptides with sizes similar to those
predicted from the mapping of their mRNA ends by RACE.
The predicted QNU polypeptide (364 and 387 aa-long
isoforms) is hydrophilic (hydropathy value = -0.99) and rich

in negatively charged amino acid residues (Fig. 7a).
Bioinformatics analysis of its sequence using the BindN
server (http://www.web.archive.org/web/20060907042245/
bioinformatics.ksu.edu/bindn/) indicated that the Gln-Asn
(QN) signature motif-bearing domain and other regions
have the potential to interact with DNA and RNA
(Additional file 1: Figure S8). In agreement with this
prediction, the N-terminal two-thirds of this polypeptide
showed sequence similarity to proteins interacting with
nucleic acids (Additional file 1: Table S3). A 30-amino acid
sequence located within the C-terminal half of the
QNU (His*"*-3aa-His-10aa-Asn-9aa-His-3aa-His**! in C. p.
Sfossulana; KT740996) exhibits features of a nucleolytic
domain of homing endonucleases of the HNH family [55].
This domain could potentially form a finger-like structure
with a central Asn residue stabilized by a bivalent metal
cation coordinating two of its His and/or Cys residues
located closer to the C-terminus. Thus, QNU might have
been directly involved in cox2 splitting, functioning as
an endonuclease. Pairwise alignment of the sequences
around the inserted DNA ends in C. p. fossulana
cox2 revealed the presence of putative remnants of
direct repeats (Additional file 1: Figure S9), suggesting
that the insertion followed staggered cleavage of the
mtDNA, resembling cleavage at a target DNA site
generated by homing nucleases.

To further test the possible involvement of QNU in
cox2 fission, its gene was subcloned in an expression
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Fig. 7 Putative polypeptides encoded by the cox2-splitting DNA insert in the C. p. fossulana mitogenome. a Western blot and ribbon diagram

of the I-TASSER-modeled three-dimensional structure of the QNU (the larger of its two isoforms) polypeptide. The tertiary structure was predicted
by combining de novo and locally applied template-based modeling (PDB templates for local structure predictions were: TwOrA, 3iymA, 20cwA,
1pclA, 3cm99). Signature motif and regions with similarity to nucleic acid-interacting proteins (Nai) and the active site of HNH homing endonucleases
(HNH) are indicated on the polypeptide linear model. The inset shows the nuclease activity assay of the recombinant QNU using plasmid DNA as
substrate, analyzed by agarose gel electrophoresis. No plasmid degradation was observed in the absence of recombinant proteins (P mock). The
addition of rONU caused a decrease in both SC and C forms of the plasmid and smearing of the L form, indicating at least endonuclease activity of
the recombinant QNU (+rQNU). Addition of rAONU had no effect on the level of any form of the plasmid, indicating the absence of nuclease activity
(+rAQNU) over a 2-h incubation at 37 °C. Plasmid topology: SC, supercoil; L, linear; C, coil. Deletion of GIn-Asn (QN) repeats suppressed the nuclease
activity of the rONU polypeptide. b Westermn blot of the putative WFW polypeptide and deduced sequence of the repetitive signature motif of WFW

that was predicted to adopt helical structure stabilized by Trp residues

vector in E. coli, and the purified recombinant QNU
polypeptide (rQNU) was assayed for nuclease activity.
Two plasmid constructs were prepared, one expressing in-
tact rQNU and the other rAQNU, without DNA-binding
Gln-Asn repeats. In the double-stranded plasmid DNA
degradation assay, rQNU, but not rAQNU, exhibited weak
endonuclease activity (Fig. 7a). This result supports, in
particular, the role of the QN repeats in interaction
of QNU with DNA, although the two recombinant
QNU proteins were expressed in E. coli and thus
differed from the native protein due to differences
between genetic codes of invertebrate mitochondria
and bacteria.

The other putative polypeptide, WFW (360 aa)
(Fig. 7b), has been predicted to be hydrophobic
(hydropathy value =0.15). Interestingly, its deduced
amino acid sequence not only exhibits a relatively
high number of Cys residues, but they were inter-
spersed with an unusually high number of Trp resi-
dues (Fig. 7b). Because of this unusual amino acid
composition and lack of sequence similarity to
known proteins, the three-dimensional structure and
function of WFW cannot currently be predicted reli-
ably, necessitating expression and empirical structural
analyses.

Discussion

Screening of the fast-evolving mitogenomes of apocritan
Hymenoptera for segmental inversions was instrumental
in identifying a unique for animals fission of a canonical
protein-coding gene, cox2, in a genus Campsomeris
(Dielis) of Scoliidae. Cox2 was split by an equally unique
insertion of 3-kb long cluster of multiple ORFs of un-
known origin. This evolutionarily recent gene fission,
found in the mtDNA of two studied Campsomeris spe-
cies but not in Scolia of the same family or in related hy-
menopteran families, divided Campsomeris cox2 into
two translated genes, cox2a and cox2b. Such a genomic
arrangement has not been found for this gene in the
mtDNA of any other organism (Fig. 8). COXIIA and
COXIIB polypeptides apparently assemble into a func-
tional COXII heterodimer in a process that may involve
interactions in the mitochondrial intermembrane space
of COXIIA termini with COXIIB and is likely assisted by
other proteins of respiratory complex IV. Although the
folding of Campsomeris COXIIA and COXIIB has been
predicted to be similar to that of S. bicincta COXII,
COXIIA and, to lesser degree, COXIIB polypeptides ex-
hibit reduced hydrophobicity compared with the corre-
sponding domains of the majority of intact COXII
polypeptides. The reduction in hydrophobicity, especially
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Fig. 8 Augmented compilation of the split cox2 arrangement and its subcellular localization through phylogeny. In the vast majority of eukaryotes,
cox2 is intact and resides in the mtDNA. In wasps Campsomeris, cox2 is split into complementary cox2a and cox2b genes that reside in the mtDNA.

In the chlorophycean algae Scenedesmus, Podohedriella, Neochloris, cox2 is also split, but cox2b had been transferred to the nucleus and lost from the
mtDNA. In the chlorophycean algae Chlamydomonas, Polytomella, Volvox, Haematococcus, and in apicomplexan parasites, dinoflagellates, and Perkinsus,
cox2 is split and both cox2a and cox2b have been relocated independently of one another to the nuclear genome and lost from the mtDNA

of the first transmembrane helix of COXII, has been shown
to be essential for functional import into the mitochondria
of COXII encoded in the nucleus [29, 56], but it might also
promote intramitochondrial transport of fragmented
COXII expressed in the mitochondrial matrix. In particular,
Oxal is required for the export of the first transmem-
brane helix of COXII, synthesized in the mitochon-
drial matrix, to the inner membrane [57]. Similarly,
the export of nuclear genome-encoded COXII from
the mitochondrial intermembrane space has been pro-
posed to require anchoring of the polypeptide in the
inner membrane through its second transmembrane
helix and reinsertion of the first helix, which tempor-
arily entered the mitochondrial matrix, depending on
Oxal [58]. Alternatively, a general decrease in hydro-
phobicity, especially of COXIIA compared with the
N-terminal half of intact COXII, might have evolved
to compensate for the original increase in COXIIA
hydrophobicity caused by its split from the more
hydrophilic C-terminal half of COXII.

The other characteristic of split COXII, namely the
increase in Cys content in COXIIB, might facilitate the
export of COXIIB to the intermembrane space by inner
membrane translocases and chaperones [57] or its
interactions with other components of the respiratory
complex IV. Moreover, Cys residues might become
reversibly oxidized to intra and interpeptide disulfides
by, for instance, the intermembrane space MIA pathway
[57] to regulate COXII complex assembly and activity
in a redox-dependent manner [59, 60].

The 3-kb DNA fragment dividing Campsomeris cox2
includes several ORFs that are expressed as polyadeny-
lated mRNAs. Four of the ORFs have orthologs in both
Campsomeris species used in these studies. One of the
OREFs, gnu, was shown herein to potentially encode a
nuclease. The putative polypeptide QNU contains a nu-
cleic acid-binding domain and an HNH-like domain that
is present in HNH-class homing endonucleases and may
have been directly involved in mediating the split of
cox2, as the recombinant rQNU exhibited endonucleo-
lytic activity. The presence of remnants of direct repeats
flanking the inserted DNA segment further suggested in-
volvement of a homing nuclease in cox2 fragmentation.
Similarly, a homing nuclease encoded by a group I intron
located within the coxI gene of a basal metazoan, Metri-
dium (Cnidaria), was reported to be responsible for genic
insertion of the intron [61]. In addition, in vivo experi-
ments in yeast showed that endonuclease-encoding in-
trons ensured their own propagation [62]. Examples of
non-mitochondrial gene fission caused by insertion of a
gene for free-standing homing nuclease mediating fission
include split gene of the B-type DNApol of Methanobac-
terium [63] or fragmented nrdA gene of Aeromonas
phage Aehl [64]. Alternatively, Campsomeris cox2
fission might be primarily caused by insertion of
other DNA element that provided an integration site
for the insertion of 3-kb gene cluster. However, this
scenario seems less likely due to the lack of known
cases in animals of cox2 splitting by intervening
sequences other than the Campsomeris cases reported
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herein. The implications of the continuing expression of
QNU nuclease in the mitochondrial matrix are unknown.
The activity of native QNU remains to be determined and
might be residual or conditionally induced in vivo.

It is currently unclear whether copies of any portion
of the Campsomeris cox2 genes or their 3-kb insert have
been transferred to the nuclear genome. To date, no het-
eroplasmy has been detected for Campsomeris cox2a,
cox2b and new ORFs. However, based on the high levels
of some of the transcripts, it cannot be ruled out that the
expressed copies, especially of cox2b and some inserted
OREFs, also reside in the nuclear genome. In some le-
gumes (Angiospermae, Fabaceae), not only do mito-
chondrial and nuclear copies of cox2 exist, but in
Dumasia and a few other genera (mostly Phaseoleae),
they are transcribed simultaneously from both ge-
nomes [65].

Conclusion

The discovery of functional fission of cox2 in the
mtDNA of Campsomeris highlights the dynamics of
mitogenome evolution in Hymenoptera. As a very
distinctive character, cox2 fission can be used to clarify
phylogenetic relationships within and among subfamilies
of Scoliidae. Importantly, it also raises more general
questions concerning the evolution of metazoan mito-
genomes and their REDOX systems. Split COXII and
the increased number of Cys in COXIIB likely estab-
lished an additional regulatory mechanism to control
OXPHOS by linking COXII assembly and activity to
varying levels of reactive oxygen species. Interestingly,
the fission of cox2 occurred through the genic insertion
of a relatively large DNA fragment, hence contrary to the
general trend of metazoan mitogenome evolution
towards a decrease in mtDNA size. The current func-
tion, if any, of the ORFs encoded by the cox2-splitting
insert remains unknown, although four of them have
been largely preserved between the two compared
Campsomeris species. It seems possible that at least
QNU, which is encoded by one of these ORFs, might
have been involved in cox2 fission and insert integra-
tion into mtDNA, similarly to the role played by
mobile element-encoded homing nucleases. Further
structural and functional studies of the inserted ORFs
might contribute to a better understanding of the
mechanisms of insertional mitogenome modifications.

Methods

Specimens, isolation of mitochondria, and nucleic acid
extraction

The hymenopteran species analyzed herein are listed in
Table 1. Voucher specimens were deposited at Texas
A&M University (College Station, TX). Intact mitochon-
dria were isolated from thoracic muscles of C. p.
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fossulana using the Qproteome Mitochondria Isolation
Kit (Qiagen, Frederick, MD). For DNA preparation,
mitochondria or thoracic muscle tissue were lysed in
SDS-containing buffer and digested with proteinase
K. The lysates were treated with phenol/chloroform,
and DNA was precipitated with isopropanol. RNA
was extracted using the miRNeasy Mini Kit (Qiagen)
and treated with DNasel (Invitrogen, Carlsbad, CA).

Screening of mitogenomes for segmental inversions, DNA
sequencing, and mtDNA annotation

The PCR primers used to detect inversion were
mHCO2198 (5-TAAAATATAAACTTCAGGGTGWC
CAAAAAAYCA-3’), a modification of HCO2198 [66]
specific for cox1, and HPK16Sbb [67] specific for rruL.
The PCR primers used to verify the absence of inversion
were mCl1-J-1751 (5-CTCTAATATTGGGAKYACCT
GATATAGCWTTCCC-3’), a modification of C1-J-1751
[68] and HPK16Sbb. To minimize the possibility of se-
quencing NUMTS, circular mitogenomes bearing
segmental inversions were first amplified in two overlap-
ping fragments using primers mHCO2198 and
HPK16Sbb, and a pair of outward-facing primers
complementary to the terminal regions of the fragments
amplified with mC0O2198 and HPK16Sbb (ouC0O2198:
5-GTAGGAAAAGGAATTGGGACAGGATGAACTA-3
and oul6S: 5-GAATAATGACATCCTGAAGATCAGC
CAGAA-3’ for Campsomeris). Mitogenomes without
detected segmental inversion were partially amplified
using primers rcCOI-2198 (5- TTTATTTTGRTTTTT
TGGWCACCCTGAAGTTTA-3) or mCl-J-1751 and
HPK16Sbb. PCR was performed using LA Taq DNA poly-
merase (TaKaRa, Otsu, Japan). Reactions were carried out
at 94 °C for 30 s and 62 °C for 10 min for 30 cycles. The
amplified mtDNA fragments were subsequently used as
templates for primer walking. Following direct Sanger
sequencing of PCR products, the mitogenomes were
assembled using Sequencher v4.8 (Gene Codes, Ann
Arbor, MI). Protein- and rRNA-gene boundaries were
delimitated by alignment with homologous regions of the
mtDNA of other Hymenoptera and, in some cases, by
RACE. tRNA genes were identified with tRNAscan-SE
1.21 (http://www.lowelab.ucsc.edu/tRNAscan-SE/). Het-
eroplasmy was tested by sequencing almost the entire
cox2a gene amplified from total genomic DNA using the
following primers: 5-TTCAGGATCCAGTATCCCCT
AACA-3 and 5-AAACCTGAATATTCTGCTGATCAA
A-3] and by analysis of RACE product sequences from
cox2a, cox2b, and inserted ORF transcripts.

Transcript analyses by RACE and RT-gPCR

The mitochondrial RNA was reverse-transcribed with
the SuperScript III First Strand Synthesis System (Invi-
trogen). The cDNA ends were amplified using SMART-
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RACE cDNA Amplification Kit (Clontech, Mountain
View, CA), cloned into pGEM-T vector (Promega,
Madison, WI), and on average 10 clones for each end
were sequenced. Primers for qPCR (Additional file 1:
Table S4) were designed with PrimerQuest (http://
www.idtdna.com/Primerquest/). The cob gene was
chosen as an internal control. Readings were normal-
ized to C. p. fossulana coxl for Campsomeris genes
or D. melanogaster cox1 for Drosophila genes. Aside
from cob and coxI, only transcripts of similarly ori-
ented genes were converted to cDNAs together using
transcript-specific qPCR primers. The qPCR was per-
formed in triplicate using Power SYBR Green PCR
Master Mix (Applied Biosystems, Warrington, UK)
under the following conditions: incubation at 95 °C for
10 min and 40 cycles of incubation at 95 °C for 15 s and
60 °C for 1 min. For relative quantification, the compara-
tive Ct method was used.

Antibodies and western blot analysis

Polyclonal Abs against synthetic epitopes of the C. p.
fossulana polypeptides COXIIA, COXIIB, QNU, and
WEW were raised in rabbits and affinity-purified
(GenScript, Piscataway, NJ). Epitope peptides (COXIIAL:
CQWKH{NIe}NFQDPVSPN; COXIIA2: CNGYTYRKLT
HGSFI; COXIIB: CSMGVKVDSIPGRLN; QNU: {NlejN
YNHTGQYKTSNC; WFW: CSKP{Nle}FASSSGTG{Nle}
NK) were designed using the OptimumAntigen Design
Tool (GenScript). Cys residues were added to the N- or
C-terminus to facilitate conjugation. Isolated mitochon-
dria (3 pg of protein) were lysed for 10 min at 75 °C in
reducing SDS-sample buffer and subjected to 4-20%
SDS-PAGE. The proteins were subsequently electro-
transferred from the gel to Immobilon FL. PVDF mem-
branes (Millipore, Billerica, MA). The western blot
signal was detected using primary Abs diluted 1:1000
and Cyb-labeled anti-Rb secondary Abs (Molecular
Probes, Eugene, OR) diluted 1:10,000. The membranes
were scanned on an Odyssey CLx imager (LI-COR,
Lincoln, NE). Antibodies against COXIIA1 and COXIIA2
epitopes recognized the same polypeptide band.

Subcloning of the gnu gene in the bacterial expression
vector and QNU activity assay

The full-length gnu and its truncated allele, Agnu,
missing the N-terminal 30% encoding the DNA-binding
QN domain, were PCR amplified using the following
primers: qnuR (5-GAGGTACCTGGATTAATATAATT
TTATGGTCGAGGAG-3’), and qnuFl (5- AGGGATC
CATGAATTATAATCATACTGGTCAATATAAAAC-3)
or qnuF2 (5- AGGGATCCATGTTACCTCATAATAAT
AATCTTCCTAATTT-3’), respectively. Upon cleavage
with Kpnl and BamHI, the amplified products were
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cloned at the Kpul-BamHI site of the pProEx THb
vector (ThermoFisher, Pittsburgh, PA).

The recombinant plasmids were introduced into E. coli
NiCo21(DE3) (New England Biolabs, Ipswich, MA).
Bacteria were grown to the exponential phase, at which
point the expression of recombinant proteins was
induced with 1 mM IPTG at 30 °C for 6 h. Upon
harvesting, the cells were disrupted using xTractor
Buffer (Clontech). Recombinant proteins were purified
using a CapturemHis-Tagged Purification Kit (Clontech).
For the nuclease activity assay, 20 ng of protein was in-
cubated with 400 ng pGEM-derived plasmid in a 20 pl
reaction mixture containing 50 mM Tris-HCl (pH 8.0),
150 mM NaCl, and 2 mM MgCl, at 37 °C for 2 h. The
samples were then electrophoresed in 1% agarose gel
with ethidium bromide and analyzed under UV light.

Three-dimensional polypeptide structure prediction
Polypeptide tertiary structures were predicted using the
I-TASSER algorithm [69] included in the NovaFold
software (DNAStar, Madison, WI). The I-TASSER proced-
ure involves multiple threading attempts to match the
query and template sequences and ab initio folding utiliz-
ing the physical characteristics of the query sequence and
simulations. Visualization of the polypeptide structures
was performed using Lasergen Protean 3D (DNAStar).
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