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Abstract

Background: Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield
losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum
pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a
host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to
the middle (48 h) stages of infection.

Results: Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with
aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were
categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development,
secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes
agreed with their predicted functions. Principal component analysis delineated gene expression patterns that
signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and
provided evidence for the occurrence of a brief biotrophic phase soon after host penetration.

Conclusions: The current observations support the notion that S. sclerotiorum deploys an array of factors and
complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad
overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S.
sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant
interactions.

Keywords: Sclerotinia sclerotiorum, Brassica napus, Infection, Transcriptome, Necrosis, Effectors, Hydrolytic enzymes,
Secondary metabolites, Oxalic acid

Background

Sclerotinia sclerotiorum (Lib.) de Bary causes one of the
most devastating diseases of canola, stem rot. This
pathogen has a wide host-range and can infect more
than 400 plant species, including many other important
crop plants [1]. This fungus was long considered to be a
prototypical necrotrophic pathogen whereby immediately
upon host cuticle penetration a highly aggressive pathogenic
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phase ensues where acids and hydrolytic enzymes are
liberated in advance of the invading mycelia with a
trailing saprophytic phase that supports sclerotia
formation [2]. Recent studies, however, have provided
evidence for a brief biotrophic phase occurring within
the apoplastic space immediately after cuticle penetra-
tion and the pathogen may, therefore, be more accur-
ately classified as a hemi-biotroph [3]. Transition
between these various developmental and pathogenic
phases is governed by physical and metabolic cues in-
cluding detection of contact with hard surfaces [4], glu-
cose levels [5], cAMP levels [6], pH [7] and oxidative
stress [8]. Communication between the associated
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signaling pathways is critical and involves numerous pro-
tein kinases [9-11] and phosphatases [12, 13].

Much of the research on the molecular mechanisms of
virulence in S. sclerotiorum has focused on oxalic acid
(OA) which plays various roles during several stages of
the infection [14]. OA suppresses the oxidative burst
and callose deposition during the early stages of the in-
fection [15]. Suppression of host defenses by OA during
the biotrophic phase is thought to allow sufficient time
for the pathogen to establish itself in the host as a pre-
lude to mycelial ramification [3]. Subsequently, OA
induces the production of host reactive oxygen species
(ROS), which in turn leads to host cell death [16]. As a
central player in S. sclerotiorum pathogenesis, it is not
surprising that plants expressing oxalate-degrading en-
zymes exhibit increased resistance to this pathogen [17].
Pathogen-derived ROS generated through NADPH oxi-
dase activity are associated with appressoria formation
and sclerotial development, as well as oxalic acid synthe-
sis [8]. Catalase (SCatl) [18] and superoxide dismutase
(SsSodI) [19] appear to modulate the deleterious effects
of these compounds internally. The apoptosis inhibitor,
BAX inhibitor-1 (SsBIl), is also required for full viru-
lence and was postulated to prevent hyphal apoptosis
resulting from exposure to host-derived ROS [20].

The production of numerous types of hydrolytic and
cell wall degrading enzymes (CWDE) facilitates host
cuticle penetration, lesion expansion and tissue macer-
ation [4, 21, 22]. Although pectinolytic CWDEs, such as
polygalacturonases (SsPG1, SsPG3, SsPG5 and SsPG6),
have captured more attention as the main group of
hydrolytic enzymes involved in S. sclerotiorum virulence
[23], non-pectinolytic enzymes like proteases, cellulases
and glucoamylases also contribute to the infection
process in this fungus [21].

Several other factors are known to contribute to S.
sclerotiorum pathogenicity and host interactions. Both
y-glutamyl transpeptidase (SsGgtl) and compound
appressorium formation-related protein 1 (Ss-Cafl)
influence the production of compound appressoria
and subsequent host penetration, but also develop-
ment of sclerotia [24, 25]. A secreted integrin-like pro-
tein (SSITL) inhibits the deployment of plant defenses
through the jasmonic/ethylene signaling pathways [26]
and a chorismate mutase (SsCmI) may function simi-
larly to suppress plant defense responses during the
biotrophic phase [27]. Host chemical defenses may be
inactivated by inducible detoxification systems [28],
while other proteins, such as SsPemG1 (protein elicitor
from Magnaporthe grisea), are recognized by the host and
induce defenses [29]. SSNEP1 and SsNEP2 encode necrosis
and ethylene-inducing like proteins (NLP), which induce
necrosis in host tissues [30], as does cutinase [31]. A gene
(SS1G_00263, ssv263) encoding a hypothetical protein
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with unknown mode of action is a virulence factor in S.
sclerotiorum [32].

Transcriptomics and proteomics approaches have been
used to gain insight into molecular interaction of S.
sclerotiorum with its various hosts. Expressed sequence
tag (EST) analysis was used to identify genes associated
with pathogenesis by comparing the transcriptome of S.
sclerotiorum grown on artificial medium to that during
infection of Brassica napus [33]. A similar approach was
used to identify genes expressed during different stages
of S. sclerotiorum development on this host [34], which
was later supported by proteomics analysis [35]. Subse-
quently, microarray [36] and RNA-Seq analysis [37] was
used to explore the B. napus responses to S. sclerotiorum.
The release of the S. sclerotiorum genome sequence [38]
in combination with next generation sequencing has
allowed for in-depth analysis of the S. sclerotiorum -
pea [39], S. sclerotiorum - Phaseolus vulgaris [40] and S.
homoeocarpa - creeping bentgrass [41] pathosystems.
Proteomic analysis of exudates from liquid cultures has
identified several secreted proteins that may be involved
in aspects of pathogenesis [42]. Bioinformatic studies re-
vealed that S. sclerotiorum has the potential to secrete a
large number of proteins, many of which have the poten-
tial to influence host-pathogen interactions [43, 44].

While significant progress has been made in the
characterization of individual S. sclerotiorum virulence
and pathogenicity factors, a gap exists in our under-
standing of how the transcriptome is deployed through-
out the course of S. sclerotiorum infection on a host
plant. In this study, we used RNA-Seq analysis to com-
prehensively catalogue genes that were expressed and
up-regulated during infection of B. napus, with a particu-
lar focus on the events occurring early in the infection.
This work provided new insight into S. sclerotiorum
pathogenesis through examination of the sequential ex-
pression of virulence and pathogenicity genes during
infection establishment.

Methods

Biological materials and disease assay

S. sclerotiorum isolate 1980 (Ss1980) was used in this
study as the genome sequence of this strain is available
[38]. The doubled haploid B. napus cultivar DH12075
for which a genome sequence is available (Parkin,
unpublished) was used as the host plant. Ss1980 was
grown on minimal salts-glucose (MS-Glu: 2 g/L
NH4NO3, 1 g/L KH,PO,, 0.1 g/L MgSO,-7H20, 0.5
g/L yeast extract, 3 g/L DL-malic acid, 1 g/L NaOH,
supplemented with 1% glucose) medium and mycelia
were used for inoculation as described earlier [23].
One gram of mycelia (wet weight) was spread over a 5-cm
diameter circle on a detached leaf of a four week old plant
and incubated in a sealed and humidified tray at room
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temperature. The experiment was conducted with three
biological replicates. Samples collected from the fungal
isolate grown in culture and on plants at 1, 3, 6, 12, 24
and 48 h post-inoculation (hpi) were subjected to
RNA-Seq analysis.

RNA extraction, library preparation and Illlumina
sequencing

Fungal mats and the infected plant tissues beneath it
were flash-frozen in liquid nitrogen and stored at -80 °C.
The samples were ground to a fine powder with an
RNAse-free mortar and pestle precooled with liquid
nitrogen. Total RNA was extracted using an Illustra
RNAspin mini RNA isolation kit (Illumina, San Diego,
USA). RNA quantity and quality was assessed using a
Qubit fluorometry assay (Invitrogen Corp., Carlsbad,
CA, USA) and an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA), respectively.
Libraries were prepared using a Truseq stranded mRNA
kit (Illumina, San Diego, USA) following the manufac-
turer’s instructions. Sequencing was conducted on an
[llumina MiSeq sequencing system using the Illumina
MiSeq reagent kit V3 (Illumina, San Diego, USA)
following the manufacturer’s instructions.

Data analysis

S. sclerotiorum transcripts available in the database (http://
www.broadinstitute.org/annotation/genome/sclerotinia_scle
rotiorum/MultiHome.html) were used as a reference for
mapping the short reads using CLC Genomics Workbench
7.04 (http://www.clcbio.com). Gene expression was esti-
mated by extracting read counts as integers from the CLC
Genomics alignments. The count data were normalized to
generate effective library sizes using the scaling method
Trimmed Means of Means values (TMM) [45]. Statistical
analysis was performed with these data using a generalized
linear model linked to the negative binomial distribution
performed using the EdgeR package [45]. Pair-wise analyses
were performed to assess differential gene expression using
the control library as a common reference standard. Genes
were considered differentially expressed where the prob-
ability after adjustment for multiple hypothesis testing [false
discovery rate (FDR)] was less than 0.05. The extent of the
observed differential expression was considered meaningful
if the fold change exceeded a factor of two. Finally, all sig-
nificantly up-regulated genes at different sampling times
were assigned a functional classification using the BLAS-
T2GO plugin (v14.4) in the CLC Genomics Workbench
8.0.1 for functional annotation using Interpro and the NCBI
refseq protein database. Gene ontology (GO) terms for each
gene were extracted. The results were filtered to remove
top-level annotations and apply the GO-slim categorization
from Aspergillus in order to summarize the results. Blas-
t2GO ran ANNEX [46] to add implicit GO terms for a
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more complete annotation. Finally, Blast2GO was used to
calculate the abundance of GO classifications for the sig-
nificantly up-regulated genes for each time point. Candidate
genes were categorized into different groups based on
known functions of orthologous genes in other fungi.

Validation of RNA-Seq analysis using droplet digital PCR
(ddPCR)

c¢DNA was synthesized from 1pg of total RNA using the
iScript Reverse Transcription Supermix for RT-qPCR kit
(Bio-Rad, CA, USA) following the manufacturer’s in-
structions. The ddPCR was conducted with three bio-
logical replicates using a droplet digital PCR QX200
system (Bio-Rad, CA, USA). No-reverse transcriptase
(no-RT) controls were also used to detect genomic
DNA contamination. Primers and probe for each gene
were designed using PrimerQuest tool (IDT) and all
probes were labeled with fluorescein amidite (FAM),
except for the reference gene (B-tubulin) which was
labeled with hexachloro-fluorescein (HEX). Sequences
and details of primers and probes have been provided
in Additional file 1: Table S1. The ddPCR reaction mix-
tures (20 ul) contained 1X ddPCR supermix (Bio-Rad
Laboratories, Hercules, CA), 900 nM of each primer,
250 nM of probe and 4 pl of 1:100 diluted cDNA. The
PCR was performed in a C1000 Touch Thermal Cycler
(Bio-Rad, CA, USA) with the following cycling condi-
tions: 95°C for 10 min; 50 cycles of 94°C for 30 s, 53°C
for 75 s, Ramp 2°C/s; 98°C for 10 min. The droplet
generation and reading for ddPCR were conducted
using a Droplet Generator and Reader (Bio-Rad QX200
system), respectively, according to the manufacturer’s
instructions. The gene expression ratio was calculated
by QuantaSoft droplet reader software (Bio-Rad). The
expression of the B-tubulin gene (SS1G_ 04652) is con-
stant during the infection, confirming its validity as a
reference gene. The fold change in the expression of
each gene was calculated by dividing the ratio of the
target to the reference (B-tubulin) gene for each time
point by the ratio from the sample collected from fungi
grown in culture (i.e. time zero).

Results and discussion

RNA sequencing

[lumina sequencing (RNA-Seq) was used to conduct
sequential transcriptional profiling in order to identify
differentially expressed genes involved in S. sclerotiorum
establishment on and subsequent infection of B. napus.
Mycelia were collected from liquid media immediately
prior to inoculation (time 0) and at 1, 3, 6, 12, 24 and 48
hpi. The number of reads per each biological replicate per
each time point is shown in Additional file 2: Table S2. A
total of 40,210,134 paired-end reads were generated. Reads
mapped to 14,503 of the 14,522 predicted genes (99% of
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total reference transcripts), indicating sufficient sequen-
cing depth. Genes with expression ratios greater than two
relative to the inoculum grown on MS-Glu medium and a
false discovery rate (FDR) p-value correction of < 0.05
were considered to be up-regulated. The numbers of up-
regulated genes were 584, 582, 526, 371, 822 and 1283 at
1, 3, 6, 12, 24 and 48 hpi, respectively, ranging from 2.6%
to 8.8% of total expressed genes. The RNA-Seq data was
submitted to NCBI (accession # GSE83935) and the list of
up-regulated genes with BLAST2GO annotation can be
found in Additional file 3: Table S3.

To confirm the relatedness of the three biological
replicates and the accuracy of the RNA-Seq analysis,
principal component analysis (PCA) was conducted
(Fig. 1). Individual replicates of each time point clus-
tered together, indicating a high degree of similarity in
the expression profiles and low biological variability
among the experimental replicates. Of the early infection
time points sampled (1-12 hpi), the 1 hpi sample was
most different from the zero time point with succes-
sive early time points becoming increasingly more
similar to the inoculum. PCA also showed a clear dis-
tinction between the S. sclerotiorum transcriptomes at
24 and 48 hpi compared to the other time points
which was due to a significant increase in both the
number and types of genes expressed at these time
points.
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Gene ontology analysis of up-regulated genes

To obtain an overall view of the genes involved in S.
sclerotiorum infection, gene ontology (GO) analysis of
the up-regulated genes was performed. Blast2GO using
different forms of annotations, including Interpro, GO-
slim, enzyme code and Annex, was used to calculate the
abundance of GO classifications in each of these ontol-
ogy categories, molecular function (Fig. 2) and biological
processes (Fig. 3) for each time point. In total, 25%, 25%,
26%, 22%, 15% and 18% of the up-regulated genes at the
1, 3, 6, 12, 24 and 48 hpi sampling times, respectively,
were annotated as encoding proteins with unknown
functions and therefore could not be assigned to a GO
category. The majority of up-regulated genes in the
molecular function group fell into the subcategories of
oxidoreductase and hydrolase activity in all sampling
times. The highest proportion of up-regulated genes
belonging to oxidoreductase and hydrolase activity
subcategories was at 24 hpi, and declined at 48 hpi
coincident with the appearance of visible necrotic le-
sions. For the other molecular function subcategories,
genes classified as encoding proteins with transferase,
transporter, protein binding, DNA binding, protein
kinase and signal transducer activity, the lowest pro-
portion of up-regulated genes was at 48 hpi, suggesting
a decrease in the expression of these genes after the
start of necrotic stage.
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Fig. 2 Percentage of genes encoding enzymes assigned to Molecular Function subcategories (indicated) that were induced upon Sclerotinia
sclerotiorum infection of Brassica napus. Gene ontology analysis was conducted using Blast2Go software. hpi, hours post-inoculation

The majority of up-regulated genes within the biological
processes category belonged to carbohydrate metabolic
process subcategory. The highest proportion of genes
within this subcategory was found at 24 hpi, with a not-
able increase compared with 12 hpi, and a decline by
48 hpi, similar to the hydrolytic activity subcategory.
This supports the connection between carbohydrate
metabolic activity and hydrolytic enzyme activity as
these processes work in concert to supply nutrients and
energy for mycelial proliferation and to facilitate the
transition to the necrotrophic phase occurring beyond
24 hpi in this experimental system.

The highest proportion of up-regulated genes related
to transcription and signal transduction was observed at
1 and 3 hpi, respectively. This is expected as the patho-
gen needs to modulate the expression of a wide variety

of developmental and metabolic genes during the early
stages of the infection as it penetrates the host cuticle
and then establishes within the host. Beyond this, the 6
hpi time point had the highest percentage of up-
regulated genes involved in response to stress. This is
likely a response to the exposure of the pathogen to host
plant defense mechanisms. Kabbage et al. [3] proposed
that a brief biotrophic phase occurs soon after cuticle
penetration where the pathogen either remains undetected
or compromises/tolerates host defenses. The induction of
stress-related genes soon after cuticle penetration
would alleviate some of the effects of these stress con-
ditions and allow host colonization. Interestingly, after
events leading to cuticle penetration (1 hpi), dramatic
changes in gene expression appear to subside as the
overall gene expression profiles at 3, 6 and 12 hpi
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Fig. 3 Percentage of genes encoding enzymes assigned to Biological Process subcategories (indicated) that were induced upon Sclerotinia

sclerotiorum infection of Brassica napus. Gene ontology analysis was conducted using Blast2Go software. hpi, hours post-inoculation
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become increasingly similar to that of the inoculum at time
0 (Fig. 1). This period may constitute the biotrophic phase
which is followed by a mycelial ramification phase (24 hpi)
and finally a necrotic phase (48 hpi), each of which have
unique expression profiles. This is in accordance with the
gene expression profiles of B. cinerea on Arabidopsis
thaliana leaves where three distinct groups of genes
were identified, these being early, outset of colonization
and complete colonization, based on expression
patterns [47].

Validation of RNA-Seq analysis using droplet digital PCR
(ddPCR)

Three different types of genes from the RNA-Seq data
list were selected for validation, including three highly
expressed genes that were induced in most of the sampling
times (SS1G_07027, SS1G_07661 and SS1G_08104 genes
encoding a hypothetical protein, cutinase and acetylxylan
esterase, respectively), three that were not induced during
the sampling time points (SS1G_14133, SS1G_02486 and
SS1G_05839 genes encoding SSITL, SsCafl and SsBil, re-
spectively) and four well-characterized S. sclerotiorum genes
(SS1G_08218, SS1G_10796, SS1G_10167 and SS1G_07355
encoding oxaloacetate acetyl hydrolase (OAH), oxalate
decarboxylase, SsPG1 and the Pacl transcription factor,
respectively). The ddPCR analysis generated patterns of
expression for the induced genes that were very similar to
that predicted from the RNA-Seq data (Fig. 4). Only one
out of the seven genes (SS1G_08104) tested showed a
slightly different trend between ddPCR and RNA-Seq. Pre-
vious work showed about 90% correlation between qPCR
and RNA-Seq [48] suggesting that slight variation between
the two methods is expected, but is generally negligible.
Furthermore, for the three genes that were not induced in
the RNA-Seq analysis, the fold-change in expression did
not exceed a factor of 2 when examined by ddPCR, provid-
ing additional evidence that they were not induced in the
current study (data not shown).

Functional classification of the genes

To simplify the exploration of genes expressed during
the course of S. sclerotiorum infection, genes were clustered
based on expression patterns (Additional file 4: Figure S1)
and categorized based on their functional annotation and
predicted roles in pathogenicity or virulence; these are dis-
cussed below.

1. Hydrolytic enzymes

The current study revealed that a large number of the
genes induced during infection encoded enzymes with
hydrolytic activity (Table 1). The largest group of these
genes encoded carbohydrate-active enzymes (CAZymes).
Most of the CAZyme genes predicted in the S. sclerotiorum
genome by Amselem et al. [38] were up-regulated during
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infection in this study and in the study by Lyu et al, [49]
which examined different S. sclerotiorum developmental
stages. These results consistently support the important
role of these enzymes during infection. The majority of the
genes encoding CAZymes reported in the current study
were from the glycoside hydrolase (GH) and carbohydrate
esterase (CE) families. The expression of numerous genes
encoding GH and CE enzymes in the current study and in
a similar study of Sclerotinia homoeocarpa reflects the
ability of these pathogens to infect a wide range of plant
hosts [41]. These are discussed in more detail below.

1.1 Cutinases/lipases The first barrier to pathogen in-
vasion is the plant cuticle, a composite layer of C:16
and C:18 fatty acids and their derivatives that form
cutin and surface waxes [50]. Among the genes from
the CE family, the gene encoding the cutinase, SsCuta
(SS1G_07661), was up-regulated during the early
stages of infection (from 1-24 hpi). The induction of
SsCuta soon after contact with the leaf surface in the
current study agrees with the previous report showing
that it was induced upon contact of mycelia with hard sur-
faces [4] and supports the predicted role of this enzyme in
degrading plant cuticle. Additionally, it is not surprising
that expression of this gene declined after 24 hpi since
host penetration has already been achieved by this time.
In addition to SsCuta, three other genes from the lipid
degradation group (Table 1), SS1G_09557, SS1G_01953
and SS1G_11930, were also induced during the early
stages of infection. The similarity between the expression
patterns of these genes and that of SsCuta, as well as their
potential lipolytic enzymatic activity, suggest that these
enzymes may also be involved in host penetration. Evi-
dence that lipase acts as virulence factor in fungal phyto-
pathogens was observed in Botrytis cinerea (LipI) [51].
The secreted lipase in Fusarium graminearum encoded by
FglL1 is also a virulence factor contributing to the infection
of cereals [52]. Genes encoding other lipases and members
of the CE family, such as the cutinases (S51G_13386 and
SS1G_12907) and an extracellular lipase (SS1G_14146),
were significantly up-regulated at 24 and 48 hpi (Table 1).

1.2 Plant cell wall degrading enzymes Once the cuticle
has been breached, the pathogen must establish within
the host and then proceed to ramify through host tissues.
The production of enzymes that degrade plant cell wall
components physically allows this to occur, while provid-
ing nutrients to drive the infection process [53]. The pri-
mary plant cell wall is composed mainly of cellulose,
hemicellulose and pectin, along with structural glycopro-
teins (e.g. hydroxyproline-rich extensins) and phenolic
esters (e.g. ferulic and coumaric acid). The secondary
cell wall consists mostly of lignin, a highly cross-linked
phenolic macromolecule.
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Table 1 Description and expression of up-regulated genes encoding hydrolytic enzymes
Gene ID Description® Expression level (hpi)®
1 3 6 12 24 48
1. Lipid Degradation
SS1G_07661 cutinase (SsCuta) 3 39 43 4.7 34 -
SS1G_13386 cutinase - - - - 14.9 296
SS1G_12907 cutinase - - - - 29.7 236
SS1G_09557 lipase/esterase 34 55 6.5 6.1 26 -
SS1G_11473 lipase/esterase 22 - - - - 32
SS1G_05990 lipase/esterase - - - - 22 -
SS1G_00767 lipase/esterase - - - - - 344
SS1G_03597 lipase/esterase - - - - - 5.1
SS1G_01849 lipase/esterase - - - - - 2.7
SS1G_08869 lipase class 3 - - - - - 28
SS1G_14146 extracellular lipase - - - - 315 387
SS1G_04490 extracellular lipase - - - - 25 3
SS1G_00877 extracellular lipase - - - - - 43
SS1G_14441 triacylglycerol lipase - - - - 5 6.9
SS1G_13982 triacylglycerol lipase - - - - 4.8 275
SS1G_01472 triacylglycerol lipase - - - - 36 13.1
SS1G_03007 alpha beta-hydrolase (esterase) - 26 26 - - -
SS1G_09718 alpha beta-hydrolase (esterase/lipase) - 2.1 29 - - -
SS1G_01703 alpha beta-hydrolase (esterase/lipase) - 39 35 22 38 6.5
SS1G_13361 alpha beta-hydrolase (esterase/lipase) - - - 23 32 22
SS1G_11402 alpha beta hydrolase (esterase/lipase) - - - 36 48 3.7
SS1G_13263 alpha beta hydrolase (esterase/lipase) - - - - 38 38
SS1G_08133 alpha beta-hydrolase (esterase/lipase) - - - - - 25
SS1G_02163 alpha beta-hydrolase (esterase/lipase) - - - - - 125
SS1G_01953 GDSL lipase acylhydrolase family protein 36 4 5 49 48 56
SS1G_13560 GDSL lipase acylhydrolase family protein - - - - 27 2.7
SS1G_06389 GDSL lipase acylhydrolase family protein - - - - - 2.7
SS1G_02708 cellulose-binding GDSL lipase - - - - 33 7.8
SS1G_14289 cellulose-binding GDSL lipase - - - - 53 6.6
SS1G_03610 cellulose-binding GDSL lipase - - - - 5.1 224
SS1G_04592 cellulose-binding GDSL lipase - - - - 11.8 94
SS1G_11930 carboxylesterase/lipase (cholinesterase) 4 39 89 52 - -
SS1G_00376 carboxylesterase/lipase (cholinesterase) - - - - 44 9.2
SS1G_09613 carboxylesterase/lipase (cholinesterase) - - - - - 4.7
SS1G_04422 carboxylesterase/lipase (cholinesterase) - - - - - 32
SS1G_11853 carboxylesterase/lipase (cholinesterase) - - - - - 3
SS1G_04030 lysophospholipase - - 36 - 23 -
SS1G_10482 lysophospholipase - - - - - 4.1
2. Polysaccharide Degradation
2.1 Cellulose
SS1G_08493 beta-1,4-endo-glucanase 26 - - - - -
SS1G_00891 beta-1,4-endo-glucanase (cellulase) - 4.5 58 35 - 38
SS1G_01485 beta-glucanase - - - - - 2.1
SS1G_09365 endo-glucanase - - - - 2.7 -
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Table 1 Description and expression of up-regulated genes encoding hydrolytic enzymes (Continued)
SS1G_03387 endo-glucanase - - - - 53 414
SS1G_08837 endo-glucanase - - - - 10.3 364
SS1G_04945 endo-glucanase - - - - - 23
SS1G_01828 endo-glucanase - - - - - 26
SS1G_09821 endo-glucanase - - - - - 144
SS1G_03041 endo-glucanase - - - - - 292
SS1G_00321 endo-glucanase - - - - - 4.2
SS1G_00471 endo-glucanase - - - - - 2.1
SS1G_06037 exo-glucanase - 3 32 - 99 123
SS1G_02334 exo-glucanase (cellobiohydrolyase) - - - - 38 -
SS1G_09020 exo-glucanase - - - - 15.1 79
SS1G_00892 exo-glucanase - - - - 54 222
SS1G_09118 exo-glucanase - - - - - 2.5
SS1G_02245 exo-glucanase - - - - - 33
SS1G_13872 exo-glucanase - - - - - 76
SS1G_02501 Concanavalin A-like lectin/glucanase 5.1 8.7 6.1 3.1 - -
SS1G_08907 glycoside hydrolase (beta-glucanase) 26 - - - - -
SS1G_07863 cellobiose dehydrogenase 37 - - - - 22.1
SS1G_05151 cellobiose dehydrogenase - - - - 59 6.6
SS1G_05118 beta-glucosidase 24 - - - - -
SS1G_01662 beta-glucosidase - - - - 28 95
SS1G_09366 beta-glucosidase - - - - 28 8
SS1G_06304 beta-glucosidase - - - - 26 6.8
SS1G_07847 beta-glucosidase - - - - 31 4.7
SS1G_07146 beta-glucosidase - - - - 74 18.7
SS1G_13255 beta-glucosidase - - - - 404 54.8
SS1G_05368 beta-glucosidase - - - - 32 46
SS1G_12622 beta-glucosidase - - - - - 2.1
SS1G_07162 beta-1,4-glucosidase - - - - - 23
SS1G_09129 beta-glucosidase - - - - - 13.1
SS1G_04264 beta-glucosidase - - - - - 22
SS1G_01021 beta-glucosidase - - - - - 52
2.2 Pectin
SS1G_10167 endo-polygalacturonase (SSPGT1) - - - - 3.7 64.6
SS1G_10698 endo-polygalacturonase (SSPG3) - - - - - 55
SS1G_05832 exo-polygalacturonase 4. 6.5 - - 4.2 324
SS1G_02553 exo-polygalacturonase (exoPG2) - - - - - 226
SS1G_04207 exo-polygalacturonase (exoPGT1) - - - - 14.6 168
SS1G_12057 exo-polygalacturonase - - - - - 4.2
SS1G_03540 pectin lyase - - - - 4.5 33
SS1G_10071 pectin lyase - - - - - 6.2
SS1G_14449 pectin lyase - - - - - 24
SS1G_04551 pectin methylesterase - - - - 116 358
SS1G_00332 pectin methylesterase - - - - 339 178
SS1G_03286 pectin methylesterase - - - - 48 16.5
SS1G_00468 pectin methylesterase - - - - - 214
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Table 1 Description and expression of up-regulated genes encoding hydrolytic enzymes (Continued)
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SS1G_04095
SS1G_12048
SS1G_11992
SS1G_09857
SS1G_12964
SS1G_13501
SS1G_04541
SS1G_08229
SS1G_07039
SS1G_04552
2.3 Hemicellulose
SS1G_12191

SS1G_10092
SS1G_03618
SS1G_07749
SS1G_05140
SS1G_08104
SS1G_05434
SS1G_00746
S51G_05977
S51G_08208
SS1G_08118
SS1G_09367
SS1G_11535
SS1G_04662
SS1G_03386
SS1G_07904
SS1G_02462
SS1G_03602
2.4 Arabinogalactans
SS1G_01216
SS1G_11585
SS1G_02618
SS1G_10842
SS1G_11763
SS1G_01572
SS1G_03647
SS1G_02781
SS1G_09866
SS1G_11922
SS1G_01238
SS1G_02620
2.5 Lignin
SS1G_04196
SS1G_06365
SS1G_05112

rhamnogalacturanan acetylhydrolase
rhamnogalacturanan acetylhydrolase
rhamnogalacturonan acetylesterase
rhamnogalacturonyl hydrolase
alpha-l-rhamnosidase
alpha-l-rhamnosidase
alpha-I-rhamnosidase
rhamnogalacturonase
rhamnogalacturonase

endo-xylogalacturonan hydrolase

endo-14-beta-xylanase
endo-beta-xylanase
endo-beta-xylanase
endo-beta-xylanase
xylanase

acetylxylan esterase
acetylxylan esterase
beta-mannosidase
beta-mannosidase
endo-1,4-beta-mannosidase
alpha-xylosidase
alpha-xylosidase
alpha-fucosidase
alpha-galactosidase
alpha-galactosidase
feruloyl esterase
alpha-l-arabinofuranosidase

alpha-l-arabinofuranosidase

arabinogalactan endo-beta-galactosidase
arabinogalactan endo-beta-galactosidase
galactan 1,3-beta-galactosidase
beta-galactosidase

beta-galactosidase

beta-galactosidase

beta-galactosidase

beta-galactosidase

1,6-beta-galactanase

arabinan endo-1,5-alpha-L-arabinosidase
beta-D-glucuronidase

beta-glucuronidase

dihydrogeodin oxidase/laccase
dihydrogeodin oxidase/laccase

dihydrogeodin oxidase/laccase

28 6.2
2.1 45
- 53
36 35
23 14.2
4.1 96
4.1 25
- 48
76 -

- 31
- 3.1

77 53
175 -
45 26
79 4.6
42 43
583 421
119 7.2
24

45 3.1
4.7

26 46
57 4.1

2.7

7.1

6.4

34
26

6.6
36
36
4.5
22

4.5

36

53

6.3

4.1

57

22

4.7

6.8

35

144.3

35

335
375
86

212
83

159

25

451
56.7
8.1

11.8
423
64
89
38

18.3
6.9
2.7
124
245

8.2



Seifbarghi et al. BMC Genomics (2017) 18:266 Page 11 of 37

Table 1 Description and expression of up-regulated genes encoding hydrolytic enzymes (Continued)

2.6 Starch
SS1G_01776 alpha-amylase - - 2.1 - - -
SS1G_11100 alpha-amylase - - - - 6.6 52
SS1G_01083 alpha-glucosidase 24 4.7 3 - 46 53
SS1G_01005 alpha-glucosidase - - - - 9.2 72

2.7 Mannans
SS1G_10867 endo-1,6-alpha-mannosidase - - - - 6.4 -
SS1G_04468 endo-1,6-alpha-mannosidase - - - - 75 253
SS1G_12937 endo-1,6-alpha-mannosidase - - - - - 104
SS1G_05110 endo-1,6-alpha-mannosidase - - - - - 35
SS1G_11579 endo-1,6-alpha-mannosidase - - - - - 35
SS1G_09229 alpha 1,2 mannosidase - - - - 55 40.2
SS1G_00505 alpha-1,2-mannosidase - - - - 98 47
SS1G_04148 alpha-mannosidase - - - - 41 4
SS1G_02022 alpha-mannosidase - - - - 12.5 109
SS1G_04200 alpha-mannosidase - - - - 6 56.3
SS1G_01334 alpha-mannosidase - - - - - 115

2.8 Callose
SS1G_01422 1,3 (4)-beta-D-glucanase 22 - - - - -
SS1G_10048 1,3 (4)-beta-D-glucanase - 2.1 - - 2.1 -

3. Protein Degradation

3.1 Proteases

SS1G_10992 caspase domain-containing protease 2.1 - - - - 7.1
SS1G_00862 cysteine protease (calpain family) 6.1 5.1 6.3 34 32 -
SS1G_09978 peptidase (family 41 protein) 32 - 32 29 - 6.4
SS1G_07836 (acid) non-asparty!l protease (ACP1) - - - - - 404
SS1G_05329 aspartyl protease 12.2 - - - - 46
SS1G_02870 aspartyl protease 2 26 3 3 2.7 33
SS1G_03181 aspartyl protease - - - - 39 16.6
SS1G_06534 serine protease (trypsin-like) 28 3 - - - 39
SS1G_12419 serine protease (subtilisin-like) - - 3 - - -
SS1G_07655 serine protease (subtilisin-like) - - - - 85 19.8
SS1G_02423 serine protease (subtilisin-like) - - - - - 22
SS1G_03282 serine protease (subtilisin-like) - - - - - 22
SS1G_07168 serine protease (subtilisin-like) - - - - - 25
SS1G_12210 serine protease (subtilisin-like) - - - - - 73
SS1G_05348 metalloprotease - - - - - 26
SS1G_05349 metalloprotease - - - - - 3.1
3.2 Peptidases
SS1G_04565 cytosolic no-pecific dipeptidase - - - - 26 9.2
SS1G_10529 cytosolic no-pecific dipeptidase - - - - - 2.2
SS1G_04140 dipeptidyl-peptidase - 2.5 - - - -
SS1G_03087 membrane dipeptidase - - - - - 26
SS1G_03392 proline dipeptidase - - - - 4.5 -
SS1G_08920 proline dipeptidase - - - - 24 2

SS1G_04958 tripeptidyl-peptidase - - - - 5 229
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Table 1 Description and expression of up-regulated genes encoding hydrolytic enzymes (Continued)
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SS1G_07268
SS1G_13922
SS1G_09225
SS1G_09268
SS1G_02857
SS1G_03518
SS1G_01236
SS1G_08558
SS1G_00617
SS1G_12775
SS1G_05449
SS1G_12413
SS1G_08855
SS1G_03361
SS1G_09475
SS1G_13633
SS1G_12499
SS1G_04819
4. Other Hydrolytic Enzymes
SS1G_01113
SS1G_09143
SS1G_02141
SS1G_11096
SS1G_08093
SS1G_04475
SS1G_11842
SS1G_01389
SS1G_01493
SS1G_09000
SS1G_02369
SS1G_04497
SS1G_09789
SS1G_06426
SS1G_07515
SS1G_07656
SS1G_09251
SS1G_12106
SS1G_12083
SS1G_04152
SS1G_12917

tripeptidyl-peptidase
tripeptidyl peptidase
tripeptidyl peptidase
tripeptidyl-peptidase
tripeptidyl peptidase
tripeptidyl peptidase
tripeptidyl peptidase
prolyl aminopeptidase
prolyl aminopeptidase
prolyl aminopeptidase
carboxypeptidase
carboxypeptidase
carboxypeptidase
carboxypeptidase
carboxypeptidase
carboxypeptidase
carboxypeptidase

carboxypeptidase

metallo-dependent amidohydrolase
metallo-dependent amidohydrolase
alpha beta-hydrolase
alpha beta-hydrolase

alpha beta-hydrolase (epoxide hydrolase)

endo-alpha-1,4-polygalactosaminidase
sialidase

polysaccharide lyase family 7 protein
glycoside hydrolase family 3 protein
glycoside hydrolase family 5 protein
glycoside hydrolase family 12 protein
glycoside hydrolase family 16 protein
glycoside hydrolase family 16 protein
glycoside hydrolase family 43 protein
glycoside hydrolase family 43 protein
glycoside hydrolase family 61 protein
glycoside hydrolase family 61 protein
glycoside hydrolase family 76 protein
glycoside hydrolase family 115 protein
glycoside hydrolase family 125 protein
glycoside hydrolase family 128 protein

25 43
- 25
46 -
3 -
31 -
- 49
27 -
- 22

36
49

34
9.5

35
89
6.9
59
64

24

49

33

35

37
4.2

32

57
44

4.2
2.7

24
138

7.8

23

2.1
504
16.9
34
25
6.1
9.7
22
52

133

518
936
9.1
13
17
125
17.3

?Annotation based on the presence of conserved PFAM domains and BLAST reports
BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression
More information about the genes can be found in Additional file 3: Table S3

The GH28 subfamily contains the polygalacturonases
(PGs), enzymes that degrade cell wall pectin. Previously,
four genes encoding endo-PGs (SsPG1, SsPG3, SsPGS,
and SsPG6) and two genes encoding exo-PGs (SsXPGI

and SsXPG2) were found to be expressed during S. scler-
otiorum infection of B. napus [23]. In the current study,
the genes encoding SsPG1 (SS1G_10167) and SsPG3
(SS1G_10698) were up-regulated at 24-48 hpi and 48
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hpi with expression levels 3.7- 64.6 and 5.5-fold greater
than the inoculum, respectively. The two exo-PGs genes,
SsXPGI1 (SS1G_04207) and SsXPG2 (SS1G_02553), were
up-regulated at 24-48 hpi and 48 hpi with expression
levels 14.6-168.3 and 22.6- fold greater than the inocu-
lum, respectively. While the main pectin backbone is a
homopolymer of a-(1 — 4)-linked D-galacturonic acid
residues, branched and unbranched side chains are
appended to it that contain several different types of
sugars. Most of the genes encoding these ancillary pectin-
degrading enzymes were highly expressed at 24 and 48
hpi in concert with the endo-PGs genes SsPGI and SsPG3,
except for SS1G_05832 (exo-PG), SS1G_04095 (rhamno-
galacturanan acetylhydrolase) and SS1G_08229 (rhamno-
galacturonase) which were up-regulated at 1-3 hpi, 1-24
hpi and 1-12 hpi, respectively.

Li et al. [23] reported that SsPGI expression could be
induced by contact with hard surfaces, while Bashi et al.
[4] reported that SsPG1, but not SsPG2, was moderately
induced by contact with B. napus leaves and that SsPGI
expression was restricted to the expanding margin of the
lesion. They suggested that since SsPG1 expression was
also induced by carbon starvation and repressed by
galacturonic acid that it may be involved in both early
penetration events and lesion expansion. During
Phaseolus vulgaris infection, SsPG1 is induced during
the later stages of the interaction (48-72 hpi), SsPG3 is
up-regulated earlier at 12 hpi, while SsPG6 exhibits a
bimodal pattern with peaks of expression at 6 and 48
hpi [40]. SsPG3 and SsPG6 are also potent inducers of
light-dependent necrotic reactions [54]. Similarly, B.
cinerea BcPGI and BcPG2 exhibit strong necrosis-in-
ducing activity [55] and deletion of either gene reduces B.
cinerea virulence [55, 56]. The induction of SsPG or
orthologous genes well after host penetration and their
ability to cause tissue necrosis suggests that the primary
role of these enzymes is in lesion expansion and move-
ment of the pathogen through the host tissues.

Many of the up-regulated GH and CE family members
reported in this study also have a putative role in the
degradation of hemicellulose and cellulose. This was
similar to the previous results obtained for up-regulated
GH genes in S. homoeocarpa [41]. Cellulose is a homopoly-
mer of beta-(1, 4)-linked D-glucose and is sequentially
hydrolyzed into its component glucose by enzymes in-
cluding cellulases (endo-1,4-glucanases), cellobiosidases
(exo-glucanases) and beta-glucosidases. Numerous genes
encoding putative cellulases were up-regulated at some
point during the infection, mostly at the later stages, with
SS1G_09821 and SS1G_03041, up-regulated 144 and 292
fold at 48 hpi (Table 1). Genes encoding putative exo-
glucanases and beta-glucosidases followed a similar pat-
tern of expression with most being up-regulated at the
later stages and only a few during the earlier stages of the

Page 13 of 37

infection. In higher plants, hemicellulose comprises
approximately 20% of the total biomass. Unlike the
more homogenous cellulose, hemicellulose is com-
posed not only of glucose, but of other sugars such as
xylose, mannose, galactose, rhamnose, and arabinose.
As such, its deconstruction requires a more compli-
cated bevy of enzymatic reactions. Similar to the genes
encoding cellulose-degrading enzymes, genes encoding
putative hemicellulose degrading enzymes were also
up-regulated later in the infection. The exceptions
were genes encoding enzymes involved in the release
of xylose from xylan (beta-1,4-linked xylose), namely
SS1G_12191, SS1G_05140 and SS1G_08104, which were
first induced at the earlier stages. Two other genes encod-
ing xylanases (SS1G_10092 and SS1G_03618) were among
the most highly induced genes found in this study with
levels of expression 155 and 451 fold higher than that of
the inoculum at 48 hpi. These patterns may attest to the
abundance of this sugar in the plant cell wall and/or
its significance to S. sclerotiorum nutrition. Interest-
ingly, SS1G_10092 is likely orthologous to the gene
encoding B. cinerea xylanasellA (90% amino acid
identity) which induces a strong necrotic reaction and is
required for virulence [57]. Both proteins share a 30 amino
acid region associated with necrotizing activity [57]. In the
S. sclerotiorum— P. vulgaris interaction, SS1G_01493 (beta-
xylosidase) was up-regulated during the early stages before
the emergence of visible necrotic symptoms on the stem,
whereas genes encoding cellulose-degrading enzymes,
SS1G_13255 (beta-1,4-glucanase) and SS1G_07146 (cello-
biohydrolase), were induced during the later stages of
infection coinciding with the formation of visible stem
lesions [40]. In B. cinerea, the expression patterns of genes
encoding xyloglucan-degrading enzymes was found to be
vastly different dependent upon the host plant [58].

Two genes encoding other hemicellulose-degrading
enzymes with alpha-L-arabinofuranosidase activity,
SS1G_02462 and SS1G_03602, were also up-regulated
at 24-48 hpi. These enzymes target the L-arabinofuranose
residues of hemicellulose with pectin side chains [59].
Alpha-L-arabinofuranosidase was first reported in S.
sclerotiorum by Yajima and Kav [42]. An earlier study
on Sclerotinia fructigena suggested that there was sig-
nificant correlation between the quantity of alpha-L-
arabinofuranosidase and virulence of this fungus
through its contribution to disease initiation or fungal
proliferation [60].

Arabinogalactans are structurally complicated branched
galactans with arabinose side chains and can be found as
either beta-1,4-galactans linked to rhamnogalacturonan I
in pectin, or as beta-1,4-galactans associated with proteins
[61]. As with the other cell wall degrading enzymes, the
majority of the genes encoding putative arabinogalactan-
degrading enzymes were induced later in the infection
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(24-48 hpi) (Table 1). However, a gene encoding an arabi-
nogalactan endo-beta-galactosidase (SS1G_01216) and an-
other encoding a beta-galactosidase (SS1G_10842) were
already induced at 1 hpi.

Mannans are polymers of mannose. Those with f
(1-4) linkages are typical of plant storage polysaccha-
rides, while mannans with « (1-6) linked backbone
and a (1-2) and « (1-3) linked branches are often
associated with glycoproteins. As noted above, glycopro-
teins are a significant cell wall component and several genes
encoding mannosidases capable of hydrolyzing these chem-
ical bonds were up-regulated during the later stages of the
infection (Table 1).

Lignin provides additional structure and rigidity to the
plant cell wall and increased lignification is often a con-
sequence of imposed biotic and abiotic stresses [62].
Three genes encoding extracellular dihydrogeodin oxidases
were up-regulated at the mid to later stages of the infection
(Table 1). All contain three multicopper oxidase domains
which are often associated with enzymes, such as laccases,
that oxidize phenolic compounds. Laccases are involved in
the disassembly of lignin [63], though some may detoxify
phenolic secondary metabolites as discussed below.

Collectively, the plethora of CAZymes expressed by
Sclerotinia species allow this group of pathogens to
break down most host polysaccharides to efficiently
access nutrients from a wide variety of hosts. The ex-
pression patterns of the CAZyme genes in the current
study, which were mostly expressed at later stages of
infection (24-48 hpi), support the hypothesis that they
are primarily involved in tissue maceration. Factors
such as host plant species, the type of tissues being
colonized and the environment also influence the ex-
pression of different CAZyme genes. In B. cinerea, the
expression of PG genes, in particular BcPG1 and BcPG2,
was markedly different on different hosts or on the same
host at different temperatures [58]. This same phenomenon
was observed with genes encoding various pectin lyases,
pectate lyases and pectin methylesterases [58]. The large
number of genes encoding CAZymes and their different
patterns of expression strongly indicate that they make
an important contribution to pathogenesis and host
range through adaptation to various environmental and
host factors.

1.3 Proteases Although CAZymes have captured most
of the attention as the main group of hydrolytic enzymes
involved in pathogenesis, there are other groups of
hydrolytic enzymes which also play crucial roles. Many
genes encoding endo-proteases, as well as mono-, di-
and tri-peptidyl peptidases were up-regulated during
infection (Table 1). The in planta expression of the acpl
(non-aspartyl acid protease, SS1G_07836) was recorded
during S. sclerotiorum infection of sunflower cotyledons

Page 14 of 37

with the peak expression level at 24-56 hpi [21]. Acpl was
also up-regulated in the current study with 40-fold greater
expression than the inoculum at 48 hpi. The expression
of this gene only at the necrotic stage is in support of
the previous study. During infection of P. vulgaris,
acpl is first induced during the very early stages of
the infection and then again at the later stages [40].
The expression of acpl is regulated by several environ-
mental factors including glucose and nitrogen starva-
tion and acidification. The PacC transcription factor is
involved in the regulation of acpl expression under
acidic conditions [21].

A gene encoding an aspartyl protease (aspS, SS1G_03629)
from S. sclerotiorum was previously reported as being
induced at the very early stages of the infection and was
involved in decomposition of host defense proteins [22]. An
aspartyl protease was also reported as a cell death-inducing
factor secreted by S. sclerotiorum and B. cinerea [64].
Although the aspS gene was not up-regulated in the
current study, genes encoding proteases similar to aspS
(SS1G_05329 and SS1G_02870), were up-regulated at
the very early stages of the infection in support of the
previous studies. However, a gene encoding another
aspartyl protease, SS1G_03181, was also detected in the S.
sclerotiorum— P. vulgaris interaction with increased ex-
pression at the spreading necrosis stage [40]. SS1G_03181
was up-regulated at 24-48 hpi in the current study which
is in agreement with these earlier findings.

Most of the genes encoding subtilisin-like serine prote-
ases (SS1G_07655, SS1G_02423, SS1G_03282, SS1G_12210
and SS1G_07168) were up-regulated at the later stages of
the infection (24-48 hpi) (Table 1). Subtilisins were
proposed to play a role in penetration and colonization
because of their ability to degrade plant cell wall glycopro-
teins or pathogenesis-related proteins [65]; however, the
expression profiles of genes encoding these enzymes in the
current study suggest that they are also involved in
events occurring at the necrotic stage. Genes encoding
enzymes with metalloprotease activities (SS1G_05348
and SS1G_05349) were also up-regulated at 48 hpi.
These proteases play a role in degrading plant materials
for nitrogen utilization [66]. In accordance with this no-
tion, the majority of the genes encoding exo-peptidases,
which complete the hydrolysis of peptides generated by
endo-proteases into their component amino acids, were
expressed at the later stages of the infection similar to the
genes encoding serine and metalloproteases (Table 1).

The current study revealed one calpain family cysteine
protease gene (SS1G_00862) that was induced at 1 hpi
and continued to be expressed during the middle stages
of the infection out to 24 hpi. A caspase domain-containing
cysteine protease (SS1G_10992) was also up-regulated at 1
hpi and was detected again at 48 hpi at a higher expression
level (7.1-fold greater than the inoculum). According to
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previous studies, these types of endo-peptidases contribute
to programmed cell death (PCD) processes (reviewed by
[67]). Among these, cysteine proteases, specifically the cas-
pases, have a key role in PCD, more commonly apoptosis
(reviewed by [67]). In addition, cysteine proteases along
with other proteolytic systems such as calpain, 26S prote-
asome, granzyme B, cathepsin D and matrix metallopro-
teinases also have a role during PCD processes [68]. There
is a report suggesting that victorin, a toxin produced by
Cochliobolus victoriae, induces proteolytic cleavage of the
Rubisco large subunit (LSU) through activation of a host
cysteine protease [69]. Considering these previous studies,
understanding the precise role of these genes in the patho-
genesis of S. sclerotiorum warrants further investigation as
they may be involved in processes linked to phase transi-
tions during the infection [11].

Proteases are important for S. sclerotiorum nutrition
as protein forms about 10% of host cell protoplasm
[70]. Numerous proteases were also captured in the S.
homoeocarpa transcriptome, but these were mostly
serine endo-proteases [41]. In the current study, the
up-regulated endo-protease genes encoded enzymes
with a much broader range of catalytic mechanisms.
Several genes encoding putative aspartyl (active at
acidic pH) and cysteine (active at acidic to neutral pH)
proteases were up-regulated very early in the infection,
while most of the serine proteases (active at high pH)
and two genes encoding metalloproteases were up-regulated
at the later stages. It is possible that the coordinated and
systematic deployment of proteolytic enzymes with different
catalytic mechanisms reflects the lesion environment,
the pathogen’s nutritional requirements and interac-
tions with host defense systems at different stages of
the infection.

2. Secondary metabolite biosynthesis

Several genes encoding enzymes involved in the biosyn-
thesis of secondary metabolites were up-regulated in the
current study (Table 2). These included key enzymes asso-
ciated with pathways for production of toxic compounds,
including polyketide synthase (PKS), nonribosomal pep-
tide synthase (NRPS), hybrid PKS/NRPS, and chalcone
synthase (CHS). These fungal toxins interfere with host
cell functions to suppress plant defense and/or enhance
development of disease symptoms [71]. Of the various
types of phytotoxic metabolites produced by B. cinerea,
botrydial has been most intensively studied [72]. BcBOT1
is part of the botrydial biosynthesis pathway and encodes
a cytochrome P450 monooxygenase [73]. Cytochrome
P450 enzymes are also involved in the aflatoxin biosyn-
thetic pathways [74]. SS1G_09638 and SS1G_11247 have
some similarity to StcL gene, which is involved in aflatoxin
biosynthesis in Aspergillus nidulans. These genes were
expressed, but not up-regulated compared to the inoculum
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in the current study, while SS1G_13923 was up-regulated
at 1 to 6 hpi (Table 3). It should be noted that while cyto-
chrome P450 enzymes are involved in the production of
secondary metabolites and mycotoxins, some members are
also involved in the detoxification of host metabolites in
different fungi [75].

Polyketides are a structurally diverse group of secondary
metabolites derived from the decarboxylative condensa-
tion of malonyl-CoA and include many mycotoxins. In B.
cinerea, two genes encoding PKS, BcPKS6 and BcPKS9,
that act in concert to synthesize the phytotoxin botcinic
acid, are up-regulated during infection of tomato leaves
[76]. Transcripts from the S. sclerotiorum ortholog of
PKS6 (SS1G_09237) were detected at 48 hpi, while PKS9
(SS1G_09240) was expressed, but not up-regulated in this
study. This agrees with the findings of Pedras and
Ahiahonu [77] regarding the absence of botcinic acid
in S. sclerotiorum as both enzymes are required for its
synthesis. Both botrydial and botcinic acid toxins con-
tribute to the virulence of B. cinerea [76]. SS1G_02592
encodes a protein similar to ToxD which is involved in
the synthesis of the polyketide lovastatin in Aspergillus
terreus [78]. It was initially up-regulated within 1 hpi
with expression peaking at 48 hpi.

Among the genes similarly induced during the infection
by B. cinerea and S. sclerotiorum are those conserved in
ascomycetes and involved in the biosynthesis of melanin
(PKS13), coprogen (NRPS6) and intracellular siderophores
(NRPS2, NRPS3) [38]. PKSI3 (SS1G_13322) and NRPS6
(SS1G_04250) were expressed, but not up-regulated in
the current study, while homologues of the genes
responsible for siderophore biosynthesis NRPS2 and
NRPS3 (SS1G_03693T0 and SS1G_06185T0) were up-
regulated at 3-48 and 1-24 hpi, respectively. Siderophores
scavenge iron and are important virulence factors for many
pathogens, including phytopathogenic fungi such as
Cochliobolus heterostrophus [79] and Aspergillus fumigatus
[80]. Iron-containing cofactors, such as heme and siroheme
are required for the catalytic activity of enzymes associated
with nitrogen and sulfur assimilation, as well as xenobiotic
detoxification [81]. In the current study, a gene encod-
ing siroheme synthase (SS1G_09177), also known as
S-adenosyl-L-methionine:uroporphyrinogen III meth-
yltransferase, was sharply induced during the earliest
stages of the infection (1-12 hpi) attesting to the
importance of iron sequestration and metabolism.

In addition to key enzymes involved in secondary
metabolite biosynthesis, transporters are also required to
deploy or secrete secondary metabolites (Table 4). For
example, HC-toxin is a virulence factor of Cochliobolus
carbonum on maize and is synthesized by a NRPS
named HTS1 [82]. It is exported from the cell by two
major facilitator superfamily (MES) transporters, TOXA
and TOXB [83]. Three genes encoding transporters with
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Table 2 Description and expression of up-regulated genes involved in secondary metabolite synthesis

Gene ID Description?

1. Polyketides

SS1G_02356 polyketide synthase (PKS1)
SS1G_05681 polyketide synthase (PKS4)
SS1G_09237 polyketide synthase (PKS6)
SS1G_01997 polyketide synthase (PKS8)
SS1G_11789 polyketide synthase (PKS12)
SS1G_11404 polyketide synthase (PKS14)
SS1G_04125 polyketide synthase (PKS16)°
SS1G_05787 polyketide synthase (PKS18)
SS1G_03591 polyketide synthase (PKS21)"
SS1G_04127 polyketide synthase

SS1G_10474 polyketide synthase

SS1G_05788 polyketide synthase

SS1G_11352 DBSA oxidoreductase (FmE)
SS1G_09239 FAD-dependent monooxygenase (similar to BcBOAS8)
SS1G_02592 zinc-binding oxidoreductase (ToxD)
SS1G_02338 chalcone and stilbene synthase (CHS1)

2. Non-ribosomal Peptides

SS1G_08561 non-ribosomal peptide synthase (NRPS1)
SS1G_03693 siderophore peptide synthase (NRPS2)
SS1G_06185 siderophore peptide synthase (NRPS3)"
SS1G_10563 non-ribosomal peptide synthase (NRPS5)
SS1G_12986 NRPS-like enzyme

SS1G_09846 NRPS-like enzyme

SS1G_03440 NRPS-like enzyme

SS1G_00726 NRPS-like enzyme

SS1G_01217 NRPS-like enzyme

3. Other
SS1G_09177 siroheme synthase

Expression level (hpi)b

1 3 6 12 24 48

- - - 5.1 7.5 5

- - 34 2.5 - -

- - - - - 343
3.1 49 6.4 45 - -

- 23 - - - 24
28 2.1 29 4.7 47 9.2
27 3 - - 35 -

- - - - 35 3

- - 25 - 22 -

2.1 - - - 29 -

4 - - - 52 -

- - - 2.5 49 35
44 28 33 - - -

- - - - 109 17.6
4 - - 4.2 58 17.8
- - - - 2.1 -

- - - 4.7 89 325
- 22 23 - 4 3.1
3.6 8.2 8.8 93 47 -

- - - - 23 -

- 6.3 52 43 5.8 7
29 2.2 26 - 2.1 -

- - - 35 4 -

- - - 1838 - -

- - - 54 10.5 7.7
109 87 83 5.7 - -

2Annotation based on the presence of conserved PFAM domains and BLAST reports
PFold change relative to 0 h post inoculation (hpi). (-} No significant change in expression

“Gene abbreviations used by Amselem et al.,, 2011 [38]
More information about the genes can be found in Additional file 3: Table S3

similarity to TOXA proteins were up-regulated in the
current study. The proteins encoded by SS1G_09759,
SS1G_00919 and SS1G_06662 exhibited 51% similarity
to putative HC-toxin efflux carrier TOXA from Aspergil-
lus lentulus, 61% to the HC-toxin efflux carrier TOXA
from Glarea lozoyensis and 84% to the MFS toxin efflux
pump protein of B. cinerea, respectively. It might there-
fore be inferred that these transporters are involved in
the efflux of toxins into the host plant during S. sclero-
tiorum infection, but characterization of their precise
substrate specificities requires further study.

To date, sclerin is the only selective phytotoxin reported
from S. sclerotiorum. It has phytotoxic effects and causes

necrotic and chlorotic tissue formation in B. napus, B. jun-
cea, and Sinapis alba which are susceptible to sclerotinia
stem rot disease, but not on a resistant species Erucastrum
gallicum [77)]. The genes involved in the sclerin synthesis
pathway have not been reported; however, the presence of
various genes encoding enzymes involved in the synthesis
of known secondary metabolites in S. sclerotiorum and the
comparably high levels of expression of these genes during
infection suggests that, similar to B. cinerea, S. sclerotiorum
has the capacity to secrete several different types of secon-
dary metabolites. The transcriptome information reported
in the current study will be useful in characterizing these
secondary metabolite biosynthetic pathways.
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Table 3 Description and expression of up-regulated genes encoding cytochrome p450 enzymes

Gene ID Description® Expression level (hpi)°®

1 3 6 12 24 48
SS1G_02340 cytochrome p450 (pistatin demethylase) 30 54 6.7 5.1 - -
SS1G_04805 CYP51 (eburicol 14 alpha-demethylase) 34 36 24 2.2 - -
SS1G_00406 CYP55a3 (nitric oxide reductase) 2.1 25 2.1 - - -
SS1G_00623 cytochrome p450 23 - - - - 2.5
SS1G_13470 cytochrome P450 (alkane hydroxylase) 22 - - - - -
SS1G_05491 cytochrome p450 - 86 271 495 1067 5372
SS1G_13909 cytochrome P450 - 2.1 22 - - -
SS1G_05384 cytochrome p450 - 26 - 24 - -
SS1G_02363 cytochrome p450 (trichodiene oxygenase) - - - 42 33 39
SS1G_04088 cytochrome p450 (oxidoreductase) - - - 35 75 18.7
SS1G_11553 cytochrome p450 - - - 20 23 29
SS1G_03436 cytochrome p450 (benzoate 4-monooxygenase) - - - 40 26 -
SS1G_05490 cytochrome p450 (benzoate 4-monooxygenase) - - - - 46 86
SS1G_01843 cytochrome p450 (benzoate 4-hydroxylase) - - - - 55 30
SS1G_13957 cytochrome p450 - - - - 149 204
SS1G_02157 cytochrome p450 - - - - 36 99
SS1G_04780 cytochrome p450 - - - - 2.2 28
SS1G_06101 cytochrome p450 - - - - 49 12.7
SS1G_10037 cytochrome p450 - - - - 8.6 9.0
SS1G_11430 cytochrome p450 (alkane hydroxylase) - - - - 2.1 4.7
SS1G_11697 cytochrome p450 - - - - 24 25
SS1G_14168 cytochrome p450 - - - - 2.1 6.0
SS1G_11768 cytochrome p450 - - - - 53 -
SS1G_01006 cytochrome p450 - - - - - 35
SS1G_08136 cytochrome p450 - - - - - 7.0
SS1G_14163 cytochrome p450 - - - - - 3.1
SS1G_08677 cytochrome P450 (monooxygenase) - - - - - 28

@Annotation based on the presence of conserved PFAM domains and BLAST reports
BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3

3. Detoxification

Plant pathogens must contend with various host bio-
chemical defense mechanisms during the infection process.
This can be achieved through avoidance (e.g. intracellular
growth of pathogens to avoid extracellular phytoalexins),
resistance (e.g. mutations that alter sensitivity to antimicro-
bial compounds) or detoxification (e.g. modification or
degradation of host phytoalexins). The energy-dependent
efflux of toxic phytochemicals by membrane-associated
transporters is a general detoxification mechanism that is
common in pathogens with broad host ranges [84]. A total
of 33 genes encoding ATP-binding cassette (ABC) trans-
porters and 218 major facilitator superfamily (MFS) trans-
porters have been identified in the S. sclerotiorum genome
[38]. As a group, the ABC and MFS transporters exhibit a
wide range of specificities (polysaccharides, drugs, sugars,

heavy metals, peptides, amino acids and inorganic ions);
however, some have been implicated in the secretion of
fungal toxins or the efflux of host phytoalexins [85].

In total, genes encoding 91 MEFS transporters and 14
ABC transporters were up-regulated in the current study
(Table 4). The contribution of ABC transporters to the
ability of pathogens to tolerate phytoalexins is well known.
In B. cinerea, the gene encoding the ABC transporter
BcAtrB was induced during the early stages of infection
and in the presence of camalexin. Inactivation of the
BcAtrB gene lead to increased sensitivity to camalexin and
reduced virulence [86]. BcAtrB has also been implicated
in the transport of the phytoalexin resveratrol, certain an-
tibiotics and fungicides, as well as the plant phenylpropa-
noid eugenol [87, 88]. The S. sclerotiorum orthologue of
BcAtrB (SS1G_13659) was also up-regulated at 24-48 hpi
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Table 4 Description and expression of up-regulated genes encoding transporters

Gene ID Description® Expression level (hpi)°®

1 3 6 12 24 48

1. ABC transporter superfamily
1.1 Pleiotropic Drug Resistance

SS1G_06715 Pleiotropic Drug Resistance (PDR) 20 - - - - -
SS1G_13659 pleiotropic drug resistance-like (PDR) - - - - 3.1 135
SS1G_04483 pleiotropic drug resistance-like (PDR) - - - - - 46
1.2 Multi Drug Resistance
SS1G_04756 ABC multidrug transporter 34 79 6.5 3.7 24 -
SS1G_07287 ABC multidrug transporter 35 32 26 - - 22
SS1G_03324 ABC multidrug transporter 35 4.8 44 - - -
SS1G_13112 ABC multidrug transporter - 41 6.2 39 - -
SS1G_02000 ABC multidrug transporter - - 39 32 - -
SS1G_06062 ABC multidrug transporter - - - - 24 28
1.3 Other families
SS1G_04757 mitochondrial ATP-binding cassette protein involved in iron homeostasis - 6.5 5.1 34 - -
SS1G_07963 ABC transporter with iron-containing redox enzyme with death domains - - - - 40 85
SS1G_12070 ABC lipid transporter - - - - - 26
SS1G_10747 ABC peroxysomal fatty Acyl CoA transporter - - - - - 32
SS1G_05904 ABC peroxysomal fatty Acyl CoA transporter - - - - - 20
2. MFS transporter superfamily
2.1 Efflux pumps and drug resistance
SS1G_10155 MFS drug efflux and drug resistance 10.1 55 37 - - -
SS1G_11948 MFS drug efflux and drug resistance 28 6.7 55 - - -
SS1G_00919 MEFS gliotoxin efflux transporter - 27 30 - - -
SS1G_09759 MFS aflatoxin efflux transporter - 80 - - - -
SS1G_05556 MFS drug efflux and drug resistance - - 24 - - -
SS1G_06662 MFS toxin efflux pump - - 30 - - -
SS1G_05572 MFS drug resistance transporter 114 29 - - - -
SS1G_02358 MFS drug resistance transporter - - - 4.1 37 43
SS1G_12101 MFS drug resistance transporter - - - - 24 -
SS1G_02394 MFS drug resistance transporter - - - - - 46
SS1G_05756 MFS drug resistance transporter - - - - - 15.2
SS1G_10566 MFS drug resistance transporter - - - - - 55
SS1G_05556 MFS drug resistance transporter - - - - - 20
SS1G_05095 MFS fungal trichothecene efflux pump (TRI12) - - - - - 7.1
SS1G_05145 MFS fungal trichothecene efflux pump (TRI12) - - - - 5.0 -
SS1G_13024 MFS drug resistance transporter - - - - - 36
SS1G_11919 MFS multidrug transporter - 2.7 23 - - -
SS1G_02623 MFS multidrug transporter - - - - - 47
SS1G_08554 MFS multidrug transporter - - - - - 29
SS1G_10279 MFS multidrug transporter - - - - - 2.1
SS1G_09892 MFS multidrug transporter - - - - - 10.2
SS1G_02931 MFS multidrug transporter - - - - - 28

SS1G_02048 spermidine drug resistance transporter 2.1 - - - - 32
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Table 4 Description and expression of up-regulated genes encoding transporters (Continued)

Page 19 of 37

2.2 Sugar transporters
SS1G_04841
SS1G_13734
SS1G_04273
SS1G_12412
SS1G_09710
SS1G_06023
SS1G_10125
SS1G_06620
SS1G_07618
SS1G_0879%4
SS1G_04208
SS1G_10413
SS1G_06751
SS1G_08117
SS1G_11591
SS1G_01523
SS1G_00928
SS1G_08467
SS1G_07132
SS1G_01759
SS1G_14316
SS1G_06402
SS1G_01302
SS1G_03579
SS1G_05006
SS1G_08982
SS1G_09293
SS1G_08981
SS1G_00139
SS1G_04149
SS1G_07210
SS1G_08328
SS1G_13671
SS1G_14028
SS1G_13819
SS1G_11142
SS1G_01656
SS1G_07861
SS1G_09368
SS1G_09803
SS1G_01055
SS1G_10065
SS1G_11224
SS1G_11609

hexose transporter

hexose transporter HXT13
hexose transporter

hexose transporter

MEFS sugar transporter

MFS monosaccharide transporter
MFS monosaccharide transporter
MFS monosaccharide transporter
MFS monosaccharide transporter
MFS sucrose transporter

MEFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MEFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS sugar transporter

MFS quinate transporter

MFS quinate transporter

MFS quinate transporter

MFS carbohydrate transporter
MFS carbohydrate transporter
MFS carbohydrate transporter
MFS carbohydrate transporter
MFS carbohydrate transporter
MFS carbohydrate transporter
MFS carbohydrate transporter

MFS monocarboxylate transporter

MFS monocarboxylate transporter

MFS galactonate transporter
MFS galactonate transporter
MFS galactonate transporter
MFS galactonate transporter
MFS galactonate transporter
MFS galactonate transporter

MFS galactonate transporter

26
49

40
23

6.1
2.5
4.8

36.7
4.6
20
28

13.1
7.2
29
8.3

189
35
493

2.5
58
24
2.1

36

83
14.9
38
732
33
30

2.1

492
4.8

476
4.1

26.1
29
384

8.2
23
4.1

20
8.1
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Table 4 Description and expression of up-regulated genes encoding transporters (Continued)
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2.3 Oligopeptides

SS1G_12649
SS1G_12698
S51G_05090
S51G_108%
SS1G_13094
S51G_03673
S51G_04849
SS1G_02117
S51G_08398
S51G_07922
SS1G_12954

S51G_02676
SS1G_0929%
S51G_09297
SS1G_10121
SS1G_07522

2.4 others

“w

S51G_08628
S51G_04769
SS1G_13941
SS1G_13194
SS1G_07517
SS1G_04978
SS1G_12690
S51G_02906

MFS galactonate transporter

MFS galactonate transporter

MFS galactonate transporter

MFS alpha glucoside:h + symporter

MFS alpha glucoside:h + symporter
4-hydroxyphenylacetate permease and sugar transporter
MFS-fucose permease

lactose permease

maltose permease

maltose permease

maltose permease

oligopeptide transporter
oligopeptide transporter
oligopeptide transporter
MFS peptide transporter
MFS peptide transporter

MEFS transporter

MFS transporter

MFS general substrate transporter

MFS general substrate transporter

MFS vacuole effluxer Atg22 transporter
MFS sulfate transporter

MEFS nitrite transporter

MFS nicotinic acid transporter

Amino acid transporters

S51G_08387
SS1G_11233
SS1G_01802
S51G_09839
SS1G_14102
SS1G_05293
S51G_06535
S51G_06536
S51G_04884
SS1G_11781
SS1G_11563
SS1G_02549
SS1G_14381
SS1G_13916
SS1G_10633
SS1G_03403
SS1G_11780
SS1G_06841

amino acid transporter

amino acid transporter

amino acid transporter

amino acid transporter

choline, amino acid permease transport
choline, amino acid permease transport
choline, amino acid permease transport
choline, amino acid permease transport
ammonium transporter

arginine permease

amino acid permease

amino acid permease

amino acid permease

amino acid permease

amino acid permease

amino acid permease

amino acid permease

amino acid permease

20

59

59

2.2
32
3.1
26
9.1

74

6.6

30

35

7.0

47
4.2
46

11.5

2.1

5.7
2.1

56

35

12.2

49
39
38
86
2.7

30

30

10.7

30

55
2.2
33
6.9

6.9
4.0
7.2
44
50

23

2.2

40
33

24

22
2.7
2.2

38

104
2.7

23
24

5.2
31
28

4.1

73

49

29
2.7
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Table 4 Description and expression of up-regulated genes encoding transporters (Continued)

Others
SS1G_03654 formate nitrate transporter
SS1G_09621 mitochondrial phosphate carrier protein
SS1G_01720 C4-dicarboxylate transporter
SS1G_02619 C4-dicarboxylate transporter
SS1G_12337 calcium proton exchanger
SS1G_02802 putative Mg2+ transporter
SS1G_02548 UDP-N-acetylglucosamine transporter
SS1G_11564 lysosomal cystine transporter
SS1G_06298 cation efflux family transporter
SS1G_09822 monocarboxylate permease-like protein
SS1G_06910 vacuolar iron transporter
SS1G_03019 carnitine mitochondrial carrier protein
SS1G_08146 AGZA family xanthine/uracil permease
SS1G_10280 polyamine transport protein
SS1G_04686 phosphate/sulfate permease
SS1G_12991 cation, potassium transporter
SS1G_08795 succinate fumarate, mitochondrial transporter
SS1G_06006 purine-cytosine permease
SS1G_03305 solute carrier protein
SS1G_11712 cation, magnesium transporter
SS1G_07645 cation, potassium transporter
SS1G_02434 mitochondrial 2-oxoglutarate malate carrier protein
SS1G_06806 3-oxoacyl-[acyl-carrier protein] reductase
SS1G_10890 acetyl-CoA acetyltransferases
SS1G_04606 arsenite efflux transporter
SS1G_01231 sulfate permease
SS1G_01111 cytosine permease
SS1G_10204 mitochondrial carrier protein
SS1G_06998 peroxisomal, mitochondrial carrier protein
SS1G_04019 mitochondrial carrier protein
SS1G_08663 solute carrier protein
SS1G_05281 fatty acid transporter involves in acyl-CoA synthetase)
SS1G_06664 nucleoside transporter
SS1G_06212 nucleoside transporter
SS1G_04537 nucleoside transporter
SS1G_09667 nucleoside transporter

30 32 3.1 34 4.0 39
38 50 44 33 - 30
20.2 19.0 188 8.5 - -
2.2 2.7 26 - - -
25 3 22 - - 26
26 28 24 - - 3.8
24 28 28 - - -
2.1 30 25 - - -
3.1 4.0 35 - - -
2.1 25 - - - 2.7
2.7 - 23 - 3.1 40
24 - 26 - - 34
3 - - - - -

- 2.7 2.1 - - -

- 42 - - 33 -

- - 24 - - -

- - 54 - - 8.0
- - - 6.4 37 -

- - - 30 - -

- - - - 24 -

- - - - 22 25
- - - - 453 44.7
- - - - 37 53
- - - - 30 34
- - - - - 2.8
- - - - - 57
- - - - - 36
- - - - - 2.2
- - - - - 20
- - - - - 25
- - - - - 2.5
- - - - - 43
37 5.7 5.7 43 28 -
32 - - - - -

- - - - 26 -

- - - - - 23

2Annotation based on the presence of conserved PFAM domains and BLAST reports

BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3

in the current study and is likely to play a similar role in
phytoalexin avoidance. While BcAtrA was not associated
with B. cinerea virulence on bean, it is believed to be a
multidrug transporter based on its ability to reduce the
sensitivity of yeast to cycloheximide and catechol [89]. The
S. sclerotiorum orthologue of BcAtrA (SS1G_06715) was

slightly induced at 1 hpi. The ABC transporter AtrD has
been implicated in resistance to demethylation inhibitor
fungicides in B. cinerea [90] and S. homeocarpa [91], but
the S. sclerotiorum orthologue (SS1G_02407) was not up-
regulated during B. napus infection in the current study.
The S. sclerotiorum orthologue of BMRI (SS1G_04483),
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which is involved in resistance to polyoxin and iprobenfos
toxicants in B. cinerea [92], was up-regulated at 48 hpi in
the current study.

BcMFS1 encodes a MEFS transporter in B. cinerea
which is involved in detoxification of natural toxic
compounds, such as camptothecin and cercosporin,
and provides resistance to some fungicides, such as
demethylation inhibitors (DMI) [93]. SS1G_12842 is
orthologous to BcMFSI and was expressed, but not
up-regulated, in the current study. Some of the MFS
transporters up-regulated in the current study may be
involved in detoxification, but this needs further
investigation.

While transport of phytoalexins from the pathogen
provides a mechanism to avoid the effects of host phyto-
alexins, enzymes may also be employed to permanently
inactivate these compounds or transform them to a less
toxic state. The gene encoding brassinin glucosyltransferase
1 (SsBGT1) (SS1G_09997) was up-regulated during infec-
tion of B. napus cultivar Surpass 400 leaves by S. sclero-
tiorum isolate UQ1280 [94]. SsBGTI was induced by plant
phytoalexins, such as brassinin, and involved in detoxifica-
tion of plant defense compounds via glucosylation [94].
This gene was also up-regulated at 24 and 48 hpi with ex-
pression levels 28 and 223-fold greater than the inoculum,
respectively, in S. sclerotiorum 1980 in the current study.

The plant pathogen Nectria haematococca demethylates
and detoxifies the pea phytoalexin, pisatin, by means of
pisatin demethylase (PDA), a cytochrome P450 enzyme
[95]. As such, PDA contributes to virulence of this fungus
on pea [96]. SS1G_02340 encodes a cytochrome P450
enzyme (Table 3) with similarity to PDA from other plant
pathogens, such as Penicillium chrysogenum and Verticil-
lium dahliae, and was up-regulated at 1 to 12 hpi in the
current study. It may be involved in the detoxification of
structurally similar phytoalexins from B. napus.

Plant pathogens degrade aromatic compounds produced
by plant defense systems, such as benzoic acid derivatives
arising from the PB-ketoadipate pathway [97]. The CYP53
family of cytochrome P450 enzymes play an essential role
in this pathway through the hydroxylation of benzoic acid
to 4-hydroxybenzoate. The first report of CYP53A1 enzyme
function was from Aspergillus niger [98]. The enzyme
encoded by the Cochliobolus lunatus orthologue of this
gene, CYP53A15, was capable of para hydroxylation of
benzoate [99]. The SS1G_01843 gene encodes a benzoate
4-hydroxylase and was up-regulated at 24 and 48 hpi in
the current study and it may have a role in detoxification.

Propiconazole is a type of sterol DMI fungicide which
inhibits the biosynthesis of ergosterol by targeting CYP51
(eburicol 14 alpha-demethylase) [100]. CYP51 is involved
in the biosynthesis of fungal sterols which are required for
membrane stability [101]. It has been speculated that over-
expression of CYP5I or its paralogues in S. homoeocarpa
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and Monilinia fructicola is one of the mechanisms that
decrease sensitivity to DMI [91, 102]. SS1G_04805 is the
paralogue of S. homoeocarpa CYP51 and was up-regulated
at 1 to 12 hpi in the current study. It may play a similar role
in detoxifying phytoalexins.

Glucosinolates, found mainly in the Brassicaceae, and
the more ubiquitous hydroxynitrile glycosides, are im-
portant plant defense compounds. These compounds
undergo enzymatic transformation to release a wide var-
iety of toxic metabolites upon tissue damage, including
hydrogen cyanide, a potent inhibitor of cell respiration
[103]. Cyanide hydratases were reported to have a role
in detoxifying hydrogen cyanide in B. cinerea [104] and
Leptosphaeria maculans [105]. In the current study, four
genes encoded cyanide hydratases or cyanate hydrolases,
SS1G_13754, SS1G_10174, SS1G_01652 and SS1G_11485
(Table 5), were significantly up-regulated during different
infection stages from 1 to 48 hpi. These may be important
for the detoxification of metabolites generated from gluco-
sinolates during infection of B. napus.

Glutathione S-transferases (GST) are best known for
their ability to conjoin the reduced form of glutathione
to xenobiotic chemicals leading to their detoxification.
Several genes encoding GSTs were significantly induced
during different infection from 1 to 48 hpi with the ma-
jority being induced at 24 hpi (Table 5). SS1G_01918
was highly induced from 1 to 48 hpi with a peak expres-
sion level 189-fold greater than the inoculum. GSTs
were first reported in plants because of their ability to
detoxify herbicides [106]. Xenobiotic detoxification by
this group of enzymes has also been reported in other
fungi, such as Phanerochaete chrysosporium [107]. Bcgstl
from B. cinerea was the first GST reported in filamentous
fungi; however, disruption of the Bcgstl gene indicated
that the enzyme did not play a role in virulence [108].
Begstl has been suggested to be a potential virulence
factor as it is involved in tolerance against plant defense
compounds, but the exact mechanism remains to be in-
vestigated. The orthologue of BcgstI in S. sclerotiorum
(SS1G_07195) was up-regulated at 24 and 48 hpi in the
current study.

2-Nitropropane dioxygenase is an enzyme that catalyzes
the oxidation of nitroalkanes, such as 2-nitropropane, into
carbonyl compounds and nitrite. Nitroalkanes are toxic
compounds [109] and 2-nitropropane dioxygenase is in-
volved in detoxification of nitroalkanes in the Trichoderma
harzianum-tomato interaction [110]. 2-Nitropropane diox-
ygenase is also involved in xenobiotic degradation by
Pseudomonas jeseenii [111]. In the current study, four genes
encoded 2-nitropropane dioxygenases, SS1G_10881,
SS1G_14466, SS1G_00355 and SS1G_11235 (Table 5), were
significantly up-regulated at different infection times from
1 to 48 hpi. These may be important for the detoxification
of toxic nitroalkanes during infection of B. napus.
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Table 5 Description and expression of up-regulated genes involved in detoxification

Gene ID Description® Expression level (hpi)b

1 3 6 12 24 48
SS1G_01918 glutathione S-transferase 19.1 248 346 450 189.0 19.1
SS1G_10108 glutathione S-transferase - - - 35 4.1 23
SS1G_08210  glutathione S-transferase - - - 26 -
SS1G_04914 glutathione S-transferase - - - - 2.1 -
SS1G_07195 glutathione S-transferase - - - - 2.7 28
SS1G_14440  glutathione S-transferase - - - - 45 37
SS1G_09479 glutathione S-transferase - - - - - 40.1
SS1G_08258  glutathione S-transferase with glutathionyl-hydroquinone reductase, ECM4 domain - - - - 3.1 24
SS1G_09997  UDP-glucuronosyl and udp-glucosyltransferase (brassinin) - - - - 280 2232
SS1G_03517  UDP-glucoronosyl and udp-glucosyltransferase family protein 4.5 37 - 50 8.2 10.8
SS1G_13524  glucosyltransferase family 6.3 49 4.2 25 - 29
SS1G_13754  nitrilase-cyanide hydratase 32 35 3.1 22 46 44
SS1G_10174  nitrilase-cyanide hydratase - 116 163 197 298 586
SS1G_01652  nitrilase-cyanide hydratase - - - - 34 23
SS1G_11485  cyanate lyase, cyanase superfamily - - - - 24 -
SS1G_10881 2-nitropropane dioxygenase 28 - - - - -
SS1G_14466  2-nitropropane dioxygenase 28 4.0 2.5 - - 30
SS1G_00355  2-nitropropane dioxygenase - - - - 34 54
SS1G_11235  2-nitropropane dioxygenase - - - - 2.7 35

2Annotation based on the presence of conserved PFAM domains and BLAST reports
BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3

4. Oxalic acid production

Oxalic acid (OA) is crucial for S. sclerotiorum infection
and is required for suppression of host defenses [15],
regulation of hydrolytic enzyme synthesis and activity
[112], and the induction of processes leading to host
colonization [113] and tissue necrosis [16, 27]. OA can
be synthesized from a variety of precursors, but in fungi
the most common mechanism is through the hydrolysis
of oxaloacetate to form OA and carbon dioxide. An oxa-
loacetate acetyl hydrolase (OAH) has been characterized
in S. sclerotiorum [114] and disruption of the OAH gene
in Aspergillus niger, B. cinerea [115] and S. sclerotiorum
leads to loss of oxalic acid production and reduced viru-
lence [116]. In the current study, the S. sclerotiorum
OAH gene (SS1G_08218) was expressed from 1 hpi, but
only up-regulated at 48 hpi with 5- fold greater levels
than the inoculum. OAH expression was also detected in
the S. sclerotiorum— P. vulgaris system, but at 6 and 72
hpi, with relatively higher expression levels at the later
time [40]. Interestingly, the gene encoding oxalate de-
carboxylase (SS1G_10796), an enzyme that degrades
OA [117], was also induced at 24 and 48 hpi at 10 and
7-fold greater than the inoculum, respectively. Simul-
taneous expression of these genes with contrasting
roles fits well with the biological functions of OA

which are dependent on a balance between the biosyn-
thesis and decomposition of OA to tightly regulate OA
levels through the course of infection [27]. The results
of the current study showing concurrent expression of
OAH and the gene encoding oxalate decarboxylase are
in agreement with Amselem et al. [38]. The acidic environ-
ment produced by OA has a significant role in virulence/
pathogenesis of S. sclerotiorum. Release of OA causes a re-
duction in ambient pH, which stimulates hydrolytic enzyme
production throughout the course of the infection
[112, 118], as well as sclerotogenesis during its final
stages [7, 119], though OA may not be the sole determin-
ant affecting tissue acidification [120]. Interestingly, fine-
tuning of OA levels through the activity of OA biogenic
[121] and degradative [116] enzymes appears to be crit-
ical for early host-pathogen interactions as well, including
compound appressorium formation and lesion expansion.

5. Generation of reactive oxygen species

Reactive oxygen species (ROS), including superoxide,
hydrogen peroxide (H,O,) and hydroxyl radicals, are
produced by all aerobic organisms [122]. Plants generate
ROS as part of the defense response against pathogen
attack [123], but they may also be involved in cell prolif-
eration and differentiation, signal transduction and ion
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transport [124]. Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases (NOX) are key enzymes
in oxidative burst activation resulting in ROS production
[8, 125]. NOXs produce superoxide, an important pre-
cursor of several ROS, which is then converted to H,O,
by superoxide dismutase [125].

In filamentous fungi, NOX enzymes are involved
in various aspects of differentiation, such as sexual
reproduction and the formation of penetration structures
[126]. In B. cinerea both BE(NOXA and BcNOXB enzymes
are involved in the formation of sclerotia and pathogen-
icity, while BE(NOXB has been specifically implicated in
events leading to penetration and BENOXA in the spread-
ing of lesions [125]. Importantly, NOX enzymes in B.
cinerea do not play a role in ROS production [125].
Two genes encoding S. sclerotiorun NADPH oxidases,
SsNOX1 (SS1G_05661) and SsNOX2 (SS1G_11172), have
been reported [8]. SSNOX1 is important for both virulence
and fungal development and is also connected to oxalate
production [8]. SSNOX1 and SsNOX2 were expressed,
but not up-regulated in the current study. Interestingly,
Kim et al. [8] proposed that the bicupin domain en-
zyme encoded by SS1G_10796 may be an oxalate oxidase.
Oxalate oxidase catalyzes the generation of hydrogen per-
oxide (H,0,) from oxalate [8] suggesting that ROS gen-
erated by S. sclerotiorum during pathogenesis may be
oxalate-mediated. SS1G_10796 was up-regulated at 24
and 48 hpi in the current study which coincided with
the beginning of necrotic stage. This is in agreement
with the previous study that oxalate-induced H,O, in
the host has a role in programmed cell death [16].

6. Signaling

6.1 Transcription factors Transcription factors (TFs)
are essential players in the regulatory networks that
govern developmental processes and the deployment of
pathogenicity factors during infection. In the current
study, many genes encoding diverse putative TFs were
up-regulated at different stages of the infection from 1 to
48 hpi (Table 6). Several of these encoded zinc-binding
TFs from the major families prevalent in fungi, namely,
Cys2 His2, Cys4, and Zn2 Cys6 families [127].

The gene encoding the Pacl zinc finger domain tran-
scription factor (SS1G_07355) was up-regulated 8-fold at
48 hpi in the current study. Pacl is an orthologue of
Aspergillus nidulans PacC and controls pH-sensitive
gene expression. Its activity was required for the control
of a variety of physiological and pathogenesis-related
processes in S. sclerotiorum [7]. In response to increas-
ing ambient pH, Pacl triggers OA biosynthesis leading
a reduction in pH; this in turn causes an increase in
SsPG1 expression and promotes sclerotial development
[119]. By affecting ambient pH, Pacl is thought to play
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a role in OA and PG accumulation and therefore its
activity is critical for S. sclerotiorum pathogenesis.

Biosynthesis of the B. cinerea phytotoxin, botrydial, is
regulated by the Cys2 His2 zinc finger TF BcCRZ1 [128], as
well as upstream signaling components phospholipase C
(BcPLCI) and calcineurin [129]. Four genes encoding
phospholipase C-like enzymes (SS1G_03548, SS1G_05073,
SS1G_08747 and SS1G_13589) were up-regulated at 48 hpi
in the current study, suggesting they might be involved in
secondary metabolite biosynthesis signaling pathways or
events related to the later stages of the infection.

The Penicillium roqueforti Pczl gene encodes Zn2
Cys6 TF which contributes to the regulation of growth,
conidiation, and conidial germination [130]. BcYOHI
from B. cinerea encodes a Cys2 His2 TF which is in-
volved in the regulation of secondary metabolite syn-
thesis [131]. A number of genes encoding zinc cluster
TFs similar to BcYOHI and Pczl were differentially
expressed at various stages of infection in the current study,
including SS1G_10532, SS1G_01109 and SS1G_02054
(Table 6). Several genes encoding other types of TFs in-
volved in fungal development were also up-regulated
and are discussed below.

6.2 Phosphorylation-dependent signaling The S. scler-
otiorum genome contains many different types of kinases
which are involved in signaling pathways, including the
G protein-coupled receptor, MAP kinase, heterotrimeric
G protein, cAMP, and Ca**-related signaling pathways
[38]. A number of genes associated with these pathways
were up-regulated during infection in the current study
(Table 7) and are discussed below. While the induction
of genes encoding signaling pathway components is
not always necessary for activation of their associated
pathways, it does imply that they may be involved in more
critical aspects or regulatory checkpoints during the infec-
tion process.

Two-component histidine kinases are known to be
involved in regulating responses to environmental stim-
uli in fungi and bacteria [132]. The gene encoding the
two-component sensor histidine protein kinase Shkl
(§51G_10091) was up-regulated only at the beginning
of the infection (1 hpi) in the current study. ShkI was
previously shown to have a role in hyphal growth and
sclerotial formation in S. sclerotiorum, but was not re-
quired for pathogenicity on plant leaves [10].

The suite of genes encoding eukaryotic protein kinases in
S. sclerotiorum has been catalogued [11]. Genes encoding
two MAPKKK genes (SS1G_00606 and SS1G_10983) were
up-regulated at 48 and 1-6 hpi, respectively. SS1G_00606 is
an orthologue of STEII in S. cerevisiae and belongs to
the S. sclerotiorum STEI1I-like MAPKKK family, while
S§S1G_10983 is an orthologue of BCKI in the yeast cell
wall integrity pathway. Mutation of the STE7 and
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Table 6 Description and expression of up-regulated genes encoding transcription factors
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Gene ID Description® Expression level (hpi
1 3 6 12 24 48
1. Zn2Cys6 (C6)

SS1G_06255 Zn2 Cysb6 transcription factor 7.0 4.6 39 24 - -
SS1G_14383 Zn2 Cysb6 transcription factor 35 44 35 2.1 - -
SS1G_08819 Zn2 Cys6 transcription factor 36 25 2.1 3.0 - -
SS1G_06907 Zn2 Cysb6 transcription factor 4.1 4.1 33 - - -
SS1G_02793 Zn2 Cys6 transcription factor 6.0 30 - - - -
SS1G_10324 Zn2 Cys6 transcription factor 20 - - - 20 -
SS1G_02851 Zn2 Cysb6 transcription factor 2.2 - - - - -
SS1G_12532 Zn2 Cysb6 transcription factor 22 - - - - -
SS1G_12799 Zn2 Cys6 transcription factor - 25 2.5 - - -
SS1G_11949 Zn2 Cysb6 transcription factor - 2.7 2.5 - - -
SS1G_00732 Zn2 Cysb6 transcription factor - 24 - 50 - -
SS1G_00398 Zn2 Cys6 transcription factor - 4.1 - - - 438
SS1G_01905 Zn2 Cysb6 transcription factor - - - - 27 -
SS1G_06876 Zn2 Cysb6 transcription factor - - - - 23 -
SS1G_00170 Zn2 Cys6 transcription factor - - - - 23 -
SS1G_02339 Zn2 Cysb6 transcription factor - - - - 20 -
SS1G_07143 Zn2 Cysb6 transcription factor - - - - 2.7 -
SS1G_02791 Zn2 Cysb6 transcription factor - - - - 29 3.0
SS1G_00392 Zn2 Cysb6 transcription factor - - - - 22 22
SS1G_13144 Zn2 Cysb6 transcription factor - - - - 2.1 30
SS1G_02054 Zn2 Cysb6 transcription factor - - - - 6.6 36.9
SS1G_05109 Zn2 Cysb6 transcription factor - - - - 6.7 72
SS1G_05755 Zn2 Cys6 transcription factor - - - - 26 38
SS1G_07003 Zn2 Cys6 transcription factor - - - - - 46
SS1G_10447 Zn2 Cysb6 transcription factor - - - - - 25
SS1G_01353 Zn2 Cysb6 transcription factor - - - - - 4.1
SS1G_11367 Zn2 Cysb6 transcription factor - - - - - 33
SS1G_08351 Zn2 Cys6 transcription factor - - - - - 2.1
SS1G_03775 Zn2 Cysb6 transcription factor - - - - - 6.8
SS1G_00787 Zn2 Cysb6 transcription factor - - - - - 2.8
SS1G_01733 Zn2 Cys6 transcription factor - - - - - 26
SS1G_04056 Zn2 Cysb6 transcription factor - - - - - 27
SS1G_11081 Zn2 Cysb6 transcription factor - - - - - 2.8
SS1G_09741 fungal specific transcription factor domain 2.2 37 39 2.7 - -
SS1G_04333 fungal specific transcription factor domain 20 23 20 - - -
SS1G_12561 fungal specific transcription factor domain 23 2.1 - - - -
SS1G_09823 fungal specific transcription factor domain - - 2.1 - 2.2 24
SS1G_04846 fungal specific transcription factor domain - - - - 26 4.0
SS1G_13882 fungal specific transcription factor domain - - - - 20 -
SS1G_13729 fungal specific transcription factor domain - - - - 24 -
SS1G_02758 fungal specific transcription factor domain - - - - 2.5 -
SS1G_08406 fungal specific transcription factor domain - - - - 23 -
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Table 6 Description and expression of up-regulated genes encoding transcription factors (Continued)
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SS1G_05809
SS1G_04057
SS1G_11395
SS1G_06361
Cys2His2

SS1G_01109
SS1G_01684
SS1G_04676
SS1G_07355
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SS1G_00104
SS1G_09588
SS1G_06370
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SS1G_07425
SS1G_06044
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fungal specific transcription factor domain

C2H2 transcription factor
C2H2 transcription factor
C2H2 transcription factor
(C2H2 transcription factor (Pac1)
C2H2 transcription factor
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C2H2 binding site

C2H2 binding site

. basic leucine zipper (bZIP)

bZIP transciption factor
bZIP transciption factor
bZIP transciption factor

bZIP transciption factor

transcription regulator BDF1
CP2 transcription factor

MYB family transcription factor

pex2/pex12 superfamily, zinc finger of C3HC4-type

zinc finger domain

regulator of G protein signaling domain protein (RGS)

(GTPase activating proteins (GAPs)
CBF/Mak21 transcription factor
helix-loop-helix dna-binding protein (HIH)
CHY and ring, zinc finger protein

NF-X1 zinc finger transcription factor

large tegument protein UL36 and similar to TFIIC
transcription initiation factor complex subunits Tfc3

transcription mediator subunit Med12

Bro1-Alix- like domain and pH-response regulator protein

RING-H2 zinc finger protein

mads-box mef2 type transcription factor (SRF type)

homeobox transcription factor
homeobox C2H2 transcription factor

yippee zinc-binding protein

MYB dna-binding containing domain protein

(VWA) transcription factor (Von Willebrand factor type A)

RAP transcription factor

19.8
26
20

2.7
4.9
25
30
30
20

24
24

26.1

3.1

6.5
32
29
24

2.1
30

266
2.7

55
25

2.1

2.2

156
20

23
2.3

24
23
2.1

73
84
20.5
54
44
2.1
3.1
43
23

54
7.7

35
2.2
3.1
24
6.2
2.3
26
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Table 6 Description and expression of up-regulated genes encoding transcription factors (Continued)

SS1G_02756 transcription factor protein - 85
SS1G_10304 tetratricopeptide (TPR) repeat transcriptional corepressor - - - - - 2.3
SS1G_13511 lipopolysaccharide (LPS)-induced transcription factor and - - - - - 2.7

LITAF-like zinc ribbon domain

#Annotation based on the presence of conserved PFAM domains and BLAST reports
BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3

STE11 orthologues in B. cinerea [133] or MST7 and
MSTI11 in M. grisea [134] disrupted the formation of
infection structures leading to loss of pathogenicity.
SS1G_10021 belongs to the CAMKI1 family in S. sclero-
tiorum and is orthologous to the S. cerevisiae CMK1/
CMK?2 kinases. SS1G_10021 was up-regulated at 48 hpi
in the current study. CAMKs were reported to have a
role in the regulation of cell wall integrity and the re-
sponse to oxidative stress [135]. A gene (SS1G_03455)
orthologous to S. cerevisiae SAT4/HAL4 was induced at
24-48 hpi in this study. HAL family kinases play a role
in the regulation of membrane permeases which are
responsible for amino acid and glucose transport [136].
Genes encoding two other protein kinases, SS1G_09511
and SS1G_06542, were both significantly up-regulated at 48
hpi in the current study. The kinase encoded by
SS1G_09511 has some similarity to PHO85 (SS1G_07226),
a cyclin-dependent kinase involved in the regulation of cell
division in response to environmental stresses [137].
SS1G_06542 is an ortholog of SHA3/SKS1, which is in-
volved in integration of the response to glucose with
hyphal development [138]. The FunK1 protein kinases
are similar to eukaryotic protein kinases, but are only
found in multicellular fungi [139]. The S. sclerotiorum
genome contains three members of the FunK1 family
(SS1G_09355, SS1G_12423 and SS1G_14212), all of
which were up-regulated at the earliest stages of the
infection.

SS1G_06571, SS1G_03234 and SS1G_10333 encode
proteins annotated as having GTPase or GTP-binding
activity and were first up-regulated at 1, 1 and 48 hpi,
respectively. In S. sclerotiorum, the small GTPase Rap-1
is involved in mediating the inhibitory actions of cAMP
on the SMK1 MAPK signaling cascade and events lead-
ing to sclerotial development [9]. GTP-binding proteins
belonging to the Ras superfamily also play a role in
MAPK inhibition as effectors acting downstream of
cAMP [9]. Other studies have shown that in addition to
Ras, other small GTPases, such as Rap-1 and Rho/Rac/
Cdc42, also have important roles in transmitting signals
via activation of MAPK cascades [140].

Protein dephosphorylation is also employed to both
activate and attenuate kinase-dependent signaling path-
ways. Calcineurin, a Type 2B serine/threonine phosphatase
is required for proper sclerotial formation and hyphal cell

wall formation [12]. The Type 2A serine/threonine
phosphatase (PP2A) encoded by SS1G_08489 (PPHI)
was shown to play a role in several aspects of S. sclero-
tiorum pathogenesis including hyphal growth, infection
cushion formation, sclerotia development and synthesis
of secondary metabolites such as melanin [13]. The
genes encoding calcineurin and PPH1 were not up-
regulated in the current study; however, a possible PPH1
paralogue (SS1G_08513) which encodes a serine/threonine
phosphatase with a PP2A catalytic subunit was up-
regulated at 48 hpi. It is possible that SS1G_08513
complements the function of PPHlin the S. sclero-
tiorum infection process, but characterization of its
precise roles awaits further study. The SMK1 MAPK
also positively regulates PPH1 activity through a
nitrous oxide-dependent mechanism [13].

7. Development

As is the case in most multi-cellular pathogens, S. sclero-
tiorum undergoes dramatic morphological and biochemical
changes as it passes through the various stages of the infec-
tion process. The S. sclerotiorum genome contains ortholo-
gues of M. oryzae genes that are involved in infection
structure production and penetration [38]. Among them,
SS1G_13339, SS1G_10311 and SS1G_11468 were up-
regulated in the current study (Table 8). SS1G_10311 and
SS1G_11468 are orthologous to mas2 and mas3 in M. ory-
zae, respectively, where they play a role in appressoria
formation during the very early stages of infection [141].
However, in the current study SS1G_10311 was up-
regulated at 3 and 12 hpi and SS1G_11468 was up-
regulated at 6-48 hpi, while SS1G_13339 was induced
only at 48 hpi, suggesting that they may have alternate
roles in this necrotrophic pathogen.

Morphological changes can also be triggered by envir-
onmental cues. The enzyme y-glutamyl transpeptidase
regulates glutathione levels and in turn cellular redox
potential. In S. sclerotiorum, the y-glutamyl transpeptidase
encoded by SS1G_14127 (SsGgtl) plays a role in the
production of compound appressoria during host pene-
tration as well as in the development of sclerotia, but is
not necessary for host colonization and symptom deve-
lopment [24]. In the current study, SS1G_14127 was
up-regulated from 6-48 hpi, while genes encoding two
other y-glutamyl transpeptidases (SS1G_05530 and
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Table 7 Description and expression of up-regulated genes involved in signaling or gene regulation

Gene ID Description? Expression level (hpi)®
1 3 6 12 24 48
1. Protein Kinases
SS1G_10983 MAPKK kinase (SsBCKT) 4.7 54 44 24 - -
SS1G_11525 protein kinase-like protein 25 36 6.9 6.1 - -
SS1G_00606 MAPKK kinase (SsSTE11) 2.1 22 - - - 2.1
SS1G_08085 AGC protein kinase (SsRIM15) - 2.1 2 - - -
SS1G_03455 HAL family protein kinase - - - - 33 37
SS1G_06203 CAMK protein kinase (SsSRCK2) - - - - - 23
SS1G_10021 CAMK protein kinase (SsSCMK2) - - - - - 41
SS1G_06542 ran1-like protein kinase (SsSKST) - - - - - 23
SS1G_09511 protein kinase (Ss-Other-03) - - - - - 58
SS1G_14212 Funk1 serine threonine-protein kinase 2.1 - - - - -
SS1G_12423 Funk1 serine threonine-protein kinase 23 24 - - - -
SS1G_09355 Funk1 serine threonine-protein kinase 2.1 23 - - - -
SS1G_10091 two-component histidine protein kinase (SHK1) 26 - - - - -
2. Phosphatases
SS1G_11340 tyrosine phosphatase 26 2.1 2.2 - - 2
SS1G_01711 protein phosphatase type 1 complex subunit hex2 reg1 33 32 22 - - -
SS1G_04320 tyrosine-protein phosphatase non-receptor type partial 2.1 35 25 - - -
SS1G_06382 protein phosphatase regulator 2.1 - - - - -
SS1G_12383 histidine acid phosphatase - 28 - - - -
SS1G_08513 serine threonine-protein phosphatase PP2A - - - - - 28
SS1G_10466 diketo-5-methylthio-1-phosphopentane phosphatase - - - - - 25
3. GTPase/GTP-binding
SS1G_03234 rho GTPase activator 3.1 5 46 48 - -
SS1G_06571 GTP-binding protein rho2 32 3 2.1 - - -
SS1G_01564 nuclear GTP-binding protein NUG1 29 - - - - -
SS1G_04075 ARF GTPase activator - - - - - 25
SS1G_10333 GTP-binding protein - - - - - 23
SS1G_08371 CLP1 GTPase - - - - - 29
SS1G_13589 phosphatidyl inositol phospholipase C (PL-PLC) - - - - - 2.1
SS1G_03548 phosphatidyl inositol phospholipase C (PL-PLC) - - - - - 2.1
SS1G_05073 phosphatidyl inositol phospholipase C (PL-PLC) - - - - - 5
SS1G_08747 phosphatidyl inositol phospholipase C (PL-PLC) - - - - - 9
4. Other
SS1G_06667 sir2 chromatin regulatory protein 2.1 3 26 2.1 - -
SS1G_06180 Pall morphogenesis-related protein 9.5 8.7 79 45 - -
SS1G_04402 Arrestin (chitin synthesis regulation) - - - - 2.1 -
SS1G_03525 ankaryin repeat protein - - - - 2.7 -
SS1G_04325 SUR7/Pal1 family (pH-response regulator) - - - - - 22
SS1G_10456 SUR7/Pal1 family (pH-response regulator) - - - - - 126
SS1G_09665 inositol-pentakisphosphate 2-kinase - - - - - 28
SS1G_00378 SRP19 signal recognition particle protein - - - - - 3
SS1G_08048 Sok1 cAMP-mediated signaling protein - - - - - 2.7

#Annotation based on the presence of conserved PFAM domains and BLAST reports
PFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression
More information about the genes can be found in Additional file 3: Table S3
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Table 8 Description and expression of up-regulated genes involved in fungal development

Gene ID Description? Expression level (hpi)°
1 3 6 12 24 48
1. Reserve Mobilization
SS1G_05192 acid trehalase - - - - 6.7 58
SS1G_01494 1,3-alpha-glucanase/mutanase - - - - - 30.7
SS1G_09861 1,3-alpha-glucanase/mutanase - - - - - 15
2. Cell Wall
2.1 Turnover
SS1G_05454 chitinase - - 24 - 35 27
SS1G_11700 chitinase - - - - 3.7 69.1
SS1G_05897 chitinase - - - - 3 26
SS1G_11304 chitinase - - - - - 48
SS1G_08695 class Il chitinase - - - 58 82 11.7
SS1G_11212 class Il chitinase - - - - - 93
SS1G_12510 class V chitinase - - - - 1.2 66.9
SS1G_09403 alpha-N-acetylglucosaminidase - - - - 29 -
SS1G_12837 beta-N-acetylglucosaminidase - - - - 23 -
SS1G_10038 beta-N-acetylglucosaminidase - - - - - 3
SS1G_04898 polysaccharide (chitin) deacetylase - - 15.2 - - 12.7
SS1G_01131 polysaccharide (chitin) deacetylase - - - - 3 36
SS1G_00642 polysaccharide (chitin) deacetylase - - - - - 83
SS1G_12836 N-acetylglucosamine-6-phosphate deacetylase - - - - - 6.7
SS1G_01229 exo-beta 1,3 glucanase - - - - 34 228
SS1G_09858 exo-beta 1,3 glucanase - - - - - 28
SS1G_12930 GPl-anchored cell wall beta-1,3-endoglucanase 85 6.4 39 - - 22
SS1G_04852 GPl-anchored cell wall beta-endoglucanase 2.1 - - - - -
2.2 Biosynthesis
SS1G_04969 glycosyl transferase (cell wall synthesis) 22 - - - - -
SS1G_04062 glycosyl transferase (cell wall synthesis) - 36 38 - - -
SS1G_07313 lipopolysaccharide biosynthesis protein - - - - - 24
3. Other
SS1G_02742 heterokaryon incompatibility protein 38 36 3.1 28 - -
SS1G_02744 heterokaryon incompatibility protein (SEC1) 37 55 - 5 3 3
SS1G_02602 heterokaryon incompatibility protein 23 - - - - -
SS1G_03889 heterokaryon incompatibility protein - 32 - - - -
SS1G_11165 heterokaryon incompatibility protein - 33 22 - - -
SS1G_06800 heterokaryon incompatibility protein - 36 - - - -
SS1G_08974 heterokaryon incompatibility protein (WD40 repeat) - - - - 27 -
SS1G_06855 heterokaryon incompatibility protein - - - - 52 24
SS1G_12973 heterokaryon incompatibility protein - - - - - 2
SS1G_09167 heterokaryon incompatibility protein - - - - - 25
SS1G_11315 heterokaryon incompatibility protein - - - - - 4
SS1G_07526 ferritin-like sexual development protein 3 25 2.5 - - 239
SS1G_04316 acyltransferase (hard surface induced) 25 - - - - -

SS1G_10311 DUF cell surface protein (MAS2 orthologue) - 2.1 - 25 - -
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Table 8 Description and expression of up-regulated genes involved in fungal development (Continued)

SS1G_11468 CAS1 appressorium specific protein (MAS3 orthologue) - - 29 73 129 10.5
SS1G_14127 gamma-glutamyltranspeptidase (SsGGT1) 34 6.5 48 2.7
SS1G_05330 gamma-glutamyltranspeptidase 2.1

SS1G_12877 conidiation-specific expression protein 23 23
SS1G_12133 predicted protein (SSP2) 47 9.6
SS1G_07404 predicted protein (Ss-Rh1) 49 38
SS1G_01614 G protein-coupled receptor (SOP1) 17.7 17.1
SS1G_07626 Velvet family 52
SS1G_13339 choline carnitine O-acyltransferase 34
SS1G_02422 UDP-galactopyranose mutase (GLF) 39
SS1G_10940 gamma-glutamyltranspeptidase 4
SS1G_14065 predicted protein (SSP1) 47

2Annotation based on the presence of conserved PFAM domains and BLAST reports
BFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3

SS1G_10940) were up-regulated during the later stages
at 24 and 48 hpi, respectively.

The SSP1 gene (SS1G_14065) was up-regulated 47-
fold at 48 hpi in the current study. The SSP2 gene
(SS1G_12133), a paralogue of SSPI, was also up-
regulated in the later stages of the infection. SSP1 is a
sclerotium-specific protein that is associated with scle-
rotial and apothecial development and is only detected
during sclerotial formation [142]. The up-regulation of
SSP1 and SSP2 at 24-48 hpi is an indication of the on-
set of sclerotia development at these time points in
the current study. SOPI is similar to microbial opsins,
a component of the photosensory system, and is also
required for sclerotial development, as well as growth
and virulence in S. sclerotiorum. SOPI was first in-
duced at early stages of infection in A. thaliana and
then more so at the sclerotial development stage (3 days
post inoculation) [143]. In the current study, the gene
encoding SOP1 (SS1G_01614) was highly up-regulated
(17-fold) at 24 and 48 hpi suggesting that this protein also
contributes to the sclerotial development program in the
S. sclerotiorum - B. napus pathosystem. Members of the
velvet protein family coordinate fungal differentiation pro-
cesses, including the formation of spores, sclerotia and
fruiting bodies [144]. SS1G_07626 encodes a velvet pro-
tein and was induced only at 48 hpi indicating that it may
also be involved in sclerotogenesis in S. sclerotiorum. An-
other gene, SS1G_07404 (Ss-Rhs1, Sclerotinia sclerotiorum
rearrangement hotspot repeat 1), was up-regulated at 24
and 48 hpi in the current study and has been reported to
be involved in sclerotial development and important for
virulence in S. sclerotiorum [145].

MADS-box proteins are a conserved family of TFs and
are involved in the regulation of a wide variety of functions
including primary metabolism, cell cycle and cell identity

[146]. A gene encoding a MADS-box TF (SS1G_06124)
was reported as being a component of the mating process
in S. sclerotiorum [38] and was up-regulated 3-fold at 48
hpi in the current study. The MADS-box TF SsMADS
(SS1G_05588) is required for growth and virulence [146].
Homeobox genes regulate aspects of anatomical develop-
ment and in fungi are involved in hyphal growth, appresso-
rium formation or conidia production [147]. In the current
study, a gene (SS1G_03835) encoding a homeobox C2H2
TF was expressed at 48 hpi, but the precise function of this
gene in S. sclerotiorum needs to be characterized. A homeo-
box TF (BcHOXS) that plays a role in the vegetative growth
and conidiogenesis has been reported in B. cinerea [148].

In fungi, programmed cell death associated with vegeta-
tive incompatibility is determined by the interactions of
proteins containing heterokaryon incompatibility (HET)
domains [149]. In the current study, 11 genes encoding
heterokaryon incompatibility proteins were up-regulated
at some point during the infection with one group in-
duced during the early stages (SS1G_02742, SS1G_02602,
SS1G_03889, SS1G_11165 and SS1G_06855) and a second
group that was induced during the later stages (SS1G_08974,
SS1G_06855, SS1G_12973, SS1G_09167 and SS1G_11315)
(Table 8). Some HET domain-containing protein coding
genes in S. sclerotiorum are paralogues of HET-E-1
family genes of Podospora anserina [38, 150], but these
were not up-regulated in the current study. The role of
HET domain-containing proteins in S. sclerotiorum and
B. cinerea speciation has also been suggested [38].
Some S. sclerotiorum orthologues of A. nidulans genes
involved in mating and fruiting body development, such
as SS1G_09861 and SS1G_07526 [38], were also up-
regulated in the current study. Additionally, SS1G_06124
(transcription factor) and SS1G_00606 (STE 11 kinase),
which are also orthologues of A. nidulans genes involved
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in mating process signaling pathways [38], were signifi-
cantly induced in the current study.

Mobilization of storage reserves, including those
derived from cell wall turnover and reconstruction,
accompanies major morphological phase transitions,
such as sclerotial formation. Trehalose is a common
storage carbohydrate in fungi and a gene encoding an
acid trehalase (SS1G_05192) was induced at the later
stages of the infection. Alpha-1,3-glucan (mutan) is a
component of the fungal cell wall, but is also consid-
ered to be a major energy reserve [151]. Two genes
encoding 1,3-alpha-glucanase/mutanase (SS1G_01494
and SS1G_09861) were sharply induced (15 and 30
fold) at 48 hpi. The expression of these genes closely
coincided with the expression of a wide variety of
genes encoding enzymes capable of degrading fungal
cell walls, including chitinases, chitin deacetylases, N-
acetylglucosaminidases and various endo-glucanases.
In another study, 19% of all S. sclerotiorum genes
encoding fungal cell wall degrading enzymes were up--
regulated during infection [49]. They hypothesized that
these enzymes were involved in cell wall reorganization or
rearrangement as the pathogen progressed through dif-
ferent developmental stages.

8. Secreted effectors

S. sclerotiorum secretes a large repertoire of various
effector proteins that may be involved in aspects of
pathogenesis or virulence [44]. Several of these, and
others, were found to be up-regulated during infection
of B. napus in the current study (Table 9) and are dis-
cussed below.
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One of the hallmarks associated with S. sclertoriorum
infection is the rapid onset of necrosis. Two S. sclerotiorum
necrosis and ethylene-inducing protein (NEP) proteins
(SsNEP1 and SsNEP2) were characterized by Bashi et al.
[30] and their necrosis-inducing activity demonstrated. In
that study, both genes were induced at the mid to later
times in the infection with SsNEP2 being expressed at
much higher levels than SSNEPI. This is in agreement with
the current study, the SSNEP2 gene (SS1G_11912) was in-
duced at 24 and 48 hpi. Orthologues of these genes are also
present in B. cinerea (BcNEPI and BcNEP2) and both pro-
teins are capable of inducing necrosis in the host plants
[152]. Cerato-plantanins are small, hydrophobic, secreted
proteins found in many fungal phyto-pathogens and have
been shown to induce plant defenses leading to systemic
acquired resistance [153]. In B. cinerea, cerato-platanin is
one of the most abundant secreted proteins and elicits a
strong hypersensitive response in the host plant leading to
localized necrotic lesions [154]. An S. sclerotiorum gene en-
coding cerato-platanin (SS1G_10096) was up-regulated at
both the early and later stages of the infection in the
current study. SsSSVP1 (SS1G_02068) encodes a small se-
creted, cysteine-rich protein that induces plant cell death
by interfering with host energy metabolism and, as such,
plays an important role in virulence in S. sclerotiorum
[155]. In the current study, SS1G_02068 was up-regulated
21-fold at 48 hpi. In the S. sclerotiorum- A. thaliana inter-
action, SsSSVP1 showed significant up-regulation starting
from 3 hpi and slowly increased from 6 to 12 hpi [155],
suggesting that the expression pattern of this gene could be
host-dependent. As noted above, several hydrolytic en-
zymes, including certain polygalacturonases [54, 55] and
xylanses [57], are also potent inducers of host necrosis.

Table 9 Description and expression of up-regulated genes encoding putative effector proteins

Gene ID Description® Expression level (hpi)®

1 3 6 12 24 48
SS1G_08557 salicylate hydroxylase 4.1 54 5.1 36 5.1 108
SS1G_00849 22kda glycoprotein (AltA-1 allergen) 74 32 - - - 7.1
SS1G_10096 cerato-platanin (PF07249) 38 3.7 - - - 33
SS1G_07295 cfem domain-containing protein 2 - - - 39 4.8
SS1G_12336 chitin binding protein 33 - - - -
SS1G_12509 LysM domain protein - - - 38 118 354
SS1G_03611 cysteine-rich protein - - - - 85.1 247
SS1G_11912 nppl! domain protein (NEP2) - 58 82
SS1G_03282 serine protease inhibitor - - - - - 22
SS1G_02904 cyanoVirin-N homology (SsCVNH) - - - - - 39
SS1G_00263 protein unique to S. sclerotiorum and B. cinerea (Ssv263) - - 492
SS1G_02068 predicted protein (SsSSVP1) - - - - - 21.5

2Annotation based on the presence of conserved PFAM domains and BLAST reports
PFold change relative to 0 h post inoculation (hpi). (-) No significant change in expression

More information about the genes can be found in Additional file 3: Table S3
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A gene encoding a cysteine-rich protein with a
CFEM (common fungal extracellular membrane) do-
main (SS1G_07295) did not show significant induction
in a previous study conducted on a number of host
plants [44], whereas in the current study it was
induced between 2 and 4.8 fold throughout the course
of the infection supporting the notion that expression
of effector genes in S. sclerotiorum may be host-
dependent. In Magnaporthe grisea, the CFEM protein
Pth1l1 is involved in appressorium development [156],
while in Candida species CFEM proteins were involved in
biofilm formation and iron acquisition [157]. SsCVNH
(SS1G_02904), which encodes a small, cysteine-rich, se-
creted protein with a CyanoVirin-N Homology (CVNH)
domain, was previously predicted to be a candidate
effector of S. sclerotiorum [44], and was shown to be im-
portant for infection, sclerotial development and growth
of S. sclerotiorum [49]. SSCVNH was up-regulated at 48
hpi in the current study. Similarly, Lyu et al. [49] showed
that SSCVNH was significantly up-regulated during the
initial stages of sclerotial development occurring at 3 days
post-inoculation. The induction of SsCVNH coincided
with that of Pacl which is also involved in sclerotial devel-
opment through OA-mediated pH reduction, suggesting
that the expression of SsCVNH might also be pH-
dependent. A gene encoding another cysteine-rich protein
(SS1G_03611) was one of the most highly up-regulated
genes detected in the current study and exhibited a 247-
fold increase in expression at 48 hpi, while a gene encod-
ing a protein unique to S. sclerotiorum and B. cinerea
(SS1G_00263) was induced 49-fold at this time. The pro-
tein encoded by SS1G_00849 had none of the domains
associated with fungal effectors; however, it is an ortholo-
gue of Colletotrichum hingginsianum effector candidate
91 (CHEC91) [158] and analogous to the Alternaria alter-
nate AltA-1 allergen [44]. SS1G_00849 was significantly
induced at 1-3 and 48 hpi in the current study supporting
the view that it may also be a S. sclerotiorum effector.

Some effectors facilitate infection by abrogating the
ability of the host to deploy appropriate defense responses.
Lysin motif (LysM) effectors interfere with host detection
of the pathogen by binding to and masking fungal cell
wall—derived chitin fragments that would normally induce
host defense responses [159]. A gene encoding a LysM
protein (SS1G_12509) was up-regulated during the mid to
later stages of the infection, while a gene encoding another
chitin-binding protein (SS1G_12336) was up-regulated at
3 hpi. Salicylic acid is a signaling molecule required for
the induction of plant defenses in response to many biotic
and abiotic stresses. Enzymes that degrade salicylic acid
are released by some fungal endophytes to suppress the
deployment of such defenses [160]. In the current study, a
gene encoding salicylate hydroxylase (SS1G_08557) was
induced very early in the infection and remained up-
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regulated throughout, although this gene does not have
signal peptide and it might be secreted through an alterna-
tive endoplasmic reticulum/Golgi-independent protein
secretion mechanism.

Conclusions

S. sclerotiorum deploys a wide variety of factors and
complex strategies to establish disease and complete the
infection of the host plant. Soon after encountering the
surface of a suitable host plant, the pathogen releases
enzymes that begin to digest the cuticle. The induction
of SsCuta and genes encoding related cutinases/lipases
at the earliest stages of the infection supports their role
in cuticle penetration. The enzymatic degradation of
other plant surface polymers and polysaccharides is also
required for successful penetration and is carried out by
an armory of hydrolytic enzymes, which were induced
from 1 to 12 hpi in this study. These enzymes are re-
leased from the base of infection cushions which apply
pressure to assist cuticle penetration. Induction of
orthologous genes involved in appressorium formation
in other fungi, such as mas2 and mas3 [38, 141] and
SsGgtl [24] during the early stages of infection in the
current study supports their role in the production of
penetration-associated structures.

During penetration and subsequent proliferation through
the host, the fungus must sequentially breach various layers
of plant barriers. To do so, it releases a cocktail of hydro-
lytic enzymes, detoxification systems and effector proteins.
A plethora of genes encoding hydrolytic enzymes were
induced concurrent with cell wall and host plant tissue
disruption and are required to release nutrients to facilitate
spread of the pathogen. Noxious compounds liberated as a
form of plant defense or through the activities of the patho-
gen itself must also be detoxified. This study revealed that
S. sclerotiorum induces the expression of genes encoding a
wide variety of ABC and MFS transporters, cytochrome
450 enzymes, GSTs., etc, during the infection that may
allow it to contend with various host plant defense mecha-
nisms and toxins.

Recent studies have identified a brief biotrophic
phase within the apoplastic space immediately after
cuticle penetration [3]. During infection of B. napus in
the current study, this biotrophic stage might occur
between 12 and 24 hpi since biotrophy-related effector
genes, such as those encoding the LysM domain pro-
tein and salicylate hydroxylase, were up-regulated
during this period. These proteins may assist with sup-
pression of host-pathogen recognition and defense
systems. However, the genes encoding SSITL [26] and
chorismate mutase (SsCM1) [27], which also help to
suppress plant defense responses during the bio-
trophic phase, were not induced in the current study.
This discrepancy might indicate that S. sclerotiorum is
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armed with alternate, unelucidated, strategies to sup-
press host defenses to establish a biotrophic phase in
different host plants.

The appearance of necrotic lesions at 24 hpi indicated
that initial penetration and the biotrophic phase had
ended by this time. The onset of the necrotrophic stage
requires that a different set of genes be expressed, in-
cluding those encoding hydrolytic enzymes, enzymes in-
volved in secondary metabolite synthesis or toxins to
trigger host programmed cell death. Numerous genes
encoding enzymes involved in the synthesis of polyke-
tides and non-ribosomal peptides were up-regulated
throughout the infection, but more so during the later
stages. Previous studies also suggested that the induction
of genes encoding NEP proteins coincides with the
beginning of the necrotrophic phase [161]. The expres-
sion of SSNEP2 in the current study was induced begin-
ning at 24 hpi, confirming that S. sclerotiorum had
switched to the necrotrophic stage around this time.

The acidic environment resulting from OA accumula-
tion is a critical step during the necrotrophic phase of S.
sclerotiorum. In the present study, the genes encoding
Pacl and subsequently OAH which are indirectly and
directly involved in OA biosynthesis, respectively, were
up-regulated at 48 hpi, supporting the notion that OA ac-
cumulates during the necrotrophic phase of infection. The
acidic environment produced by OA stimulates hydrolytic
enzyme production, specifically SsPG1 [7, 112, 118, 119].
Induction of acpl, whose expression is sensitive to pH, is
also regulated by Pacl [21]. Interestingly, the concurrent
expression of OAH and the gene encoding oxalate decarb-
oxylase suggests that a balance between biosynthesis and
decomposition of OA is required for tight regulation of
OA levels through the course of infection [38]. In addition
to its role in regulating the transition to the necrotrophic
phase, OA also plays a role in suppression of the oxidative
burst in the host plant during the early stages of the infec-
tion [15] and may therefore contribute to the establish-
ment of a biotrophic phase. However, OAH expression
was not induced during the early stages of infection in the
current study suggesting that an alternative pathway for
OA biosynthesis independent of OAH exists or more
likely that a basal amount of OA is sufficient for suppres-
sion of oxidative burst.

In addition to the well-known effectors that have been
mentioned above, a number of genes encoding other S.
sclerotiorum effectors, including SsBil [20], SsCafl [25],
SCat1 [18], SsSodI [19] and SsPemG1 [29] were expressed,
but not significantly induced in the current study. The
discrepancy might be due to host and isolate-
dependent differences in the expression of these genes
or differences in experimental design.

In summary, the current study revealed a vast set of
genes encoding various hydrolytic enzymes, enzymes
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involved in secondary methobolite biosynthesis, proteins
associated with detoxification systems and effector proteins
that collectively facilitate the infection of B. mapus by S.
sclerotiorum. The present investigation gives a global view
of the gene expression of S. sclerotiorum as it infects B.
napus and provides a baseline for further characterization
of important genes involved in the S. sclerotiorum- B. napus
and other host molecular interactions.
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