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Abstract

Background: Disulfide bonds are traditionally considered to play only structural roles. In recent years, increasing
evidence suggests that the disulfide proteome is made up of structural disulfides and reversible disulfides. Unlike
structural disulfides, reversible disulfides are usually of important functional roles and may serve as redox switches.
Interestingly, only specific disulfide bonds are reversible while others are not. However, whether reversible disulfides
can be predicted based on structural information remains largely unknown.

Methods: In this study, two datasets with both types of disulfides were compiled using independent approaches.
By comparison of various features extracted from the local structural signatures, we identified several features that
differ significantly between reversible and structural disulfides, including disulfide bond length, along with the
number, amino acid composition, secondary structure and physical-chemical properties of surrounding amino acids.
A SVM-based classifier was developed for predicting reversible disulfides.

Results: By 10-fold cross-validation, the model achieved accuracy of 0.750, sensitivity of 0.352, specificity of 0.953,
MCC of 0405 and AUC of 0.751 using the RevSS_PDB dataset. The robustness was further validated by using
RevSS_RedoxDB as independent testing dataset. This model was applied to proteins with known structures in
the PDB database. The results show that one third of the predicted reversible disulfide containing proteins
are well-known redox enzymes, while the remaining are non-enzyme proteins. Given that reversible disulfides are
frequently reported from functionally important non-enzyme proteins such as transcription factors, the predictions may
provide valuable candidates of novel reversible disulfides for further experimental investigation.

Conclusions: This study provides the first comparative analysis between the reversible and the structural disulfides.
Distinct features remarkably different between these two groups of disulfides were identified, and a SVM-based
classifier for predicting reversible disulfides was developed accordingly. A web server named RevssPred can be
accessed freely from: http://biocomputer.bio.cuhk.edu.hk/RevssPred.
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Background

Disulfide bonds are formed between the sulfur atoms of
pairs of cysteine residues within or across proteins. With
the exception of peptide bonds, disulfide bonds are the
most common covalent linkages of amino acids in pro-
teins. For example, about 10% of proteins made by
mammalian cells contain disulfide bonds [1]. Disulfide
bonds play critical roles in protein stability and function,
and they are generally considered to be highly conserved
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during evolution. Moreover, the rate of disulfide bond
acquisition shows a strong positive correlation with the
complexity of living organism [2].

Disulfide bonds have been generally considered as of
pure structural roles. Those structural disulfides can
help stabilize the tertiary or quaternary structure of pro-
teins, and they cannot be easily opened once formed [3].
Later on, it was found that some disulfides may contrib-
ute little to protein stabilization, and others may actually
destabilize their resident protein [4, 5]. Interestingly,
some disulfide bonds can even be reversibly oxidized
and reduced under different conditions. Thus, the
current view is that disulfide proteome consists of two
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sub-groups: a structural group and a reversible (redox-
sensitive) group [6].

Unlike structural disulfides which are inert and inactive,
reversible disulfides are usually of important functional
roles, and may serve as redox switches [3, 7-9]. One well
studied example is the Escherichia coli OxyR transcription
factor, which senses the H,O, and can be activated
through the formation of an intramolecular disulfide bond
[10, 11]. Some reversible disulfides, such as those at the
active sites of well studied thiol-disulfide oxidoreductases,
are of catalytic function. Other reversible disulfides may
also control protein function by triggering a conform-
ational change when formed or broken [1]. According to
previous studies, formation of reversible disulfide seems
to be one major type of protein cysteine oxidative modifi-
cation [3, 12]. Due to their functional importance, revers-
ible disulfides have caught much attention in the past
decade (5, 8, 9, 13-16].

A few studies analyzed the redox potentials of the ac-
tive disulfides in protein disulfide isomerase (DsbA) and
thioredoxin [17-19], which are well known redox pro-
teins. One other study attempted to detect the catalytic
redox-active cysteine residues from thiol oxidoreduc-
tases [20]. However, these studies were focused only on
reversible disulfides in specific types of well-known
redox enzymes such as oxidoreductases, and utilized ra-
ther small datasets for analysis. Nevertheless, it has been
reported that many reversible disulfides were also de-
tected from functionally important non-enzyme proteins
such as transcription factors [10, 21-23]. The study of
reversible disulfides in these non-enzyme proteins may
be of particular importance and yet more challenging.
Until now, the determinants of the redox potential of
disulfides are still poorly understood.

Although computational models have been developed
for the prediction of structural disulfides [24-29] and
various types of cysteine redox modifications such as S-
sulfenylation [30], S-nitrosylation [31-35] and S-
glutathionylation [36, 37], to our knowledge, there is still
no study focusing on direct comparative analysis and in
silico prediction of structural and reversible disulfides.
So far, the most relevant computational work about re-
versible disulfide is carried out by Sanchez et al. [38],
who analyzed twelve structural features and identified
three features useful for the prediction of redox-sensitive
cysteines. The three features are: distance to the nearest
cysteine sulfur atom, solvent accessibility and pKa. Using
these features, they trained a decision-tree based classi-
fier for predicting redox-susceptible cysteines. However,
that study is designed for general analysis of various re-
versibly oxidized cysteines, and no particular analysis
was conducted for reversible disulfides. Furthermore,
probably due to the limited amount of experimentally
verified redox susceptible cysteines, the dataset used by
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Sanchez et al. [38] is rather small and biased towards
several protein families in particular oxidoreductases.
Thus, until now the differences between reversible and
structural disulfides have never been comprehensively
investigated. With the accumulation of known reversible
disulfides, comparative analysis between reversible and
structural disulfide is highly desirable because it has
promising potential in revealing distinct characteristics
for reversible disulfides, some of which may be useful
for in silico prediction of reversible disulfide.

In this study, we compiled two independent datasets
with both types of disulfides (named RevSS_PDB and
RevSS_RedoxDB) from independent sources, respect-
ively. After extensive analysis of various properties for
the disulfide-bonded cysteines and the surrounding
structural microenvironment, several remarkable fea-
tures that differ significantly between reversible and
structural disulfides were identified. We demonstrated
that these features are efficient for reversible disulfides
prediction. A SVM-based classifier named RevssPred
were further developed for in silico prediction of revers-
ible disulfides from protein structure obtained from the
PDB database.

Methods

Generation of RevSS_PDB and RevSS_RedoxDB datasets
To generate the RevSS_PDB dataset, 46,944 X-ray crystal
structures with resolution better than 2.0 A were re-
trieved from the PDB database [39] on December 1,
2015 (Additional file 1: Figure S1). PDB files were first
assigned to each species, then those for the same protein
were grouped together according to the annotation from
the Uniprot database [40]. After excluding proteins with
less than two PDB files, we obtained 6,414 proteins with
35,290 PDB files in total. For one protein, each Cys-Cys
pair was scanned among different structures. Those
form disulfide (intra- or inter-chain disulfide bonds, as
indicated by SSBOND parameter) in certain structures
and meanwhile remain reduced in other structures were
annotated as reversible disulfides. Accordingly, others
forming disulfide in all the structures were defined as
structural disulfide. When multiple structures were
found associated with the same disulfide, only the one
with the best resolution were kept for further analysis.
After removing redundant proteins with more than 30%
similarity using BlastClust [41], followed by manual cur-
ation to remove those with similar flanking sequences
(10 residues at both sides), the RevSS_PDB dataset con-
sists of 230 reversible disulfides and 450 structural disul-
fides (Additional file 2: Table S1).

To generate RevSS_RedoxDB dataset, we first re-
trieved 235 known reversible disulfides from the
RedoxDB [42] which is a manually curated database for
various types of experimentally validated redox-sensitve
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cysteines. We made further screening for each reversible
disulfide to ascertain that at least one associated X-ray
crystal structure with resolution better than 3.0 A are
available in PDB database. The structure with the best
resolution was used when multiple sources of structural
data are available for the same disulfide. After removing
redundant data with more than 30% similarity by using
BlastClust, finally we obtained fifty reversible disulfides
(Additional file 3: Table S2). To generate a control data-
set with putative structural disulfides, we first retrieved
all the X-ray crystal structures with resolution better
than 3.0 A (as annotated by SSBOND parameter) from
the PDB database. After excluding PDB files with se-
quences of more than 30% similarity to the RedoxDB ,
followed by redundant sequences removal (>30% similar-
ity) using BlastClust, finally we obtained a non-
redundant control dataset containing 3,016 putative
structural disulfides for comparative analysis.

Electrostatic properties of disulfide-bonded Cys

Cysteine thiol pKa values were calculated using
PROPKA [43]. Since most disulfide-bonded Cys are not
ionizable before reduction, PROPKA assigns a disulfide-
bonded Cys (with S-S distance <2.5 A) with a trivial
values of 99.99 without further calculation. However, for
Cys located in the CXXC motifs, PROPKA always calcu-
lates their pKa values even when they are oxidized
(bonded). Because we aim to compare the pKa values for
the reversible-SS Cys and the structural-SS Cys, we let
PROPKA calculate the pKa values for all the cysteines.
The Naccess software program (Version 2.1.1) [44] with
default settings was used to calculate the cysteine solv-
ent accessibility with the PDB data.

Structural signatures surrounding disulfides

Based on the coordinates of each amino acid as anno-
tated in the PDB files, the structural signature cen-
tered on each cysteine residues for a disulfide was
extracted using home-made PERL scripts (Additional
file 4: Figure S2). The default radius of 10 A was
used according to previous studies [45], and the two
disulfide-bonded cysteines were excluded from the
structural signature.

Secondary structure of structural signature

Secondary structures for each protein were calculated
using STRIDE [46] with default settings. Different types
of secondary structure are represented as single letters
("B" for bridge, "C" for coil, "E" for strand, G for 310-
helix, "H" for a-helix, "I'" for pi-helix and "T" for turn).
The predicted secondary structure for each amino acid
for the structural signatures was then extracted.
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Physical-chemical property

Four types of physical-chemical properties of amino
acids were considered, including hydrophobicity [47],
net charge index of side chains of amino acids (NCI)
[48], propensity and side chain pKa value. The physical-
chemical property values for each amino acid can be
found in Additional file 2: Table S1.

Support vector machines implementation and parameter
optimization

Support vector machine (SVM) [49] is a widely used
machine-learning method based on statistical learning
theory. It has been successfully applied in many aspects
of bioinformatics studies. In this work, SVM technique
was implemented using LIBSVM 3.12 [50]. The radial
basis function (RBF kernel) is used, which is defined as:

K(xi; x) = exp(=y[lxi—x]))

where x and x; are two data vectors and y is a training
parameter. The regularization parameter C and the ker-
nel parameter y were optimized by a grid search ap-
proach using 10-fold cross-validation.

Performance assessment

The model’s performance is evaluated using various cri-
teria including sensitivity (SN), specificity (SP), accuracy
(ACC) and Matthews correlation coefficient (MCC).
They are defined as below:

N—_ P
TP 1 EN

TN

SP =
TN + FP

TP+ TN
TP+ TN+ FP+ FN

ACC =

(TP x TN) + (FP x FN)

MCC =
/(TP +FP) x (TP + EN) x (TN + FP) x (TN + EN)

where TP, TN, FP, and FN denotes the numbers of true
positives, true negatives, false positives, and false nega-
tives, respectively.

The model’s performance was evaluated using 10-fold
cross-validation. The receiver operating characteristic
(ROC) curve, which is one of the most robust ap-
proaches for classifier evaluation, was obtained by plot-
ting true positive rate (sensitivity) against the false
positive rate (1-specificity). The area under the ROC
curve (AUC) was also calculated.

Web server implementation

The web server named RevssPred is implemented using
Perl, PHP, MySQL and Apache. To speed up the predic-
tion process, we have pre-computed the result for X-ray
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crystal structures with resolution better than 2.5 A from
the PDB database. According to the PDB_IDs provided
by users, the server will first try to retrieve pre-
computed results from the MySQL database. If failed, it
then downloads the structural files from the PDB data-
base automatically, extract the required features, and
perform de novo prediction.

Results

Generation of RevSS_PDB and RevSS_RedoxDB datasets
Two datasets, named RevSS_PDB and RevSS_RedoxDB,
were generated using independent approaches, respect-
ively. Inspired by one previous study [51], the
RevSS_PDB dataset, which consists of 230 reversible
disulfides and 450 putative structural disulfides
(Additional file 2: Table S1), was generated by detecting
disulfides with alternative redox states among different
proteins structures (Additional file 4: Figure S2). How-
ever, RevSS_RedoxDB dataset which contains 50 revers-
ible disulfides and 3,016 putative structural disulfides
(Additional file 5: Table S3), was constructed from
RedoxDB database [42]. These two datasets were gener-
ated using different procedure and are highly independ-
ent from each other, with only six redox proteins
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commonly exist in both datasets. Further inspection
showed that even though both datasets include a
large number of well known redox proteins such as
oxidoreductases and hydrolases, their protein family
compositions are remarkably different (Additional file 6:
Figure S3). Both datasets were used for comparative
analysis.

Reversible disulfides are of longer S-S distance

As the disulfide-bonded Cys from these two groups of
disulfides are with different reversible potential, it is pos-
sible that they may have different properties. Thus, we
first focused the analysis on the pairs of disulfide-
bonded Cys. One important property of a disulfide is the
disulfide bond length, which is denoted as the distance
between the two thiol groups (S-S distance). Disulfide
bonds are usually about 2.05 A in length, and 3.0 A is
taken as the cutoff for disulfides in the PDB database.
We extracted the S-S distance as annotated by the
SSBOND parameters in the RevSS_PDB dataset, and
made comparison between the reversible and the struc-
tural disulfides. To our surprise, reversible disulfides
seem to be significantly longer (p=8.6e-7, Wilcoxon
rank sum test) than structural disulfides (Fig. 1a). The

Fig. 1 Reversible disulfides have longer S-S distance compared with structural disulfides. This figure shows the comparison of S-S distance
between reversible and structural disulfides. a, b Box-plots showing reversible disulfides have relatively longer S-S distance. ¢, d Fraction
of disulfides above each specified threshold for reversible and structural disulfides. Result from both RevSS_PDB and RevSS_RedoxDB were
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average S-S distance was calculated as 2.18 A for revers-
ible disulfides, and 2.05 A for structural ones. Using
thresholds ranging from 2.0 A to 3.0 A, we calculated
the proportion of both groups of disulfides above the
threshold. Compared with structural disulfides, much
higher proportion of reversible disulfides are with longer
S-S distance. For example, 28.7% of reversible disulfides
are of S-S distance > =2.10 A. In contrast, only 9.3% of
structural disulfides are longer than 2.10 A (Fig. 1b). The
same observation was found when using the RevSS_Re-
doxDB dataset (Fig. 1c,d), indicating this is likely a
general difference between these two groups of disul-
fides. We further analyzed the electrostatic characteris-
tics of the disulfide-bonded cysteines. However, no
significant difference was found between reversible and
structural disulfides in terms of acid dissociation con-
stant (pKa) and solvent accessibility (Additional file 7:
Figure S4).

To our knowledge, this is the first time showing the
remarkable difference of S-S distance between reversible
and structural disulfides. It is possible that the relatively
longer S-S distance is a unique characteristic for revers-
ible disulfides. The other possibility is that maybe some
of those reversible disulfides are under the intermediate
state between oxidized and reduced form, given the fact
that reversible disulfides can be reduced back under
certain condition. The underlying mechanisms for this
observation still need further investigation.

General characteristics of structural signatures

We hypothesized that the surrounding structural micro-
environment, in addition to the properties of disulfide-
bonded Cys, may also contribute remarkably to the
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redox potential of reversible disulfides. Some previous
studies have linked the spatial microenviroment to the
active sites in proteins [45] and cysteines modifiable to
cysteine sulfinic acid [52]. Inspired by these studies, we
adopted a similar strategy to extract the structural signa-
tures (defined as the amino acids occur within 10 A
from the two disulfide-bonded Cys. See Methods sec-
tion) for reversible and structural disulfides (Additional
file 4: Figure S2), and conducted comparison regarding
their amino acid composition, secondary structure and
physical-chemical properties.

Initially, we asked if the length of the structural signa-
ture (which represents the number of amino acids sur-
rounding the disulfide) is different between the two
types of disulfides. Using the RevSS_PDB dataset, we
found that the structural signatures are significantly
shorter in reversible disulfides (Fig. 2a; p=8.7e-6 by
Two-tailed Student’s t-test). The same result was ob-
tained when the RevSS RedoxDB dataset was tested
(Fig. 2b). This implies that the densities of the surround-
ing amino acids may affect the reversible potential of a
disulfide.

Amino acid composition and secondary structure of the
structural signatures

We also examined the amino acid composition of struc-
tural signatures, and found that several amino acids
show different frequency surrounding reversible and
structural disulfides. The disulfide-bonded Cys were
excluded from further analysis. From the RevSS_PDB
dataset, we found that cysteines are significantly under-
represented whereas serines were over-represented sur-
rounding reversible disulfides (Additional file 8: Figure
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S5; Bonferroni-adjusted p = 0.036, Two-tailed Student’s
t-test). The RevSS_RedoxDB dataset shows similar result
(Fig. 5b), with the exception that phenylalanines are
over-represented instead.

We further examined the secondary structure for resi-
dues involved in the structural signatures. Most of these
residues for both types of disulfide-bonded Cys form coil,
strand, a-helix and turn. The frequencies for three types
of secondary structure, including bridge, strand and o-
helix, are remarkably different between reversible and
structural disulfides in both datasets (Fig. 3). Among
them, bridge and strand are over-represented surrounding
reversible disulfides, while a-helix is under-represented.
This result is in accordance with one previous research,
which reported a marked preference for a-helix and
disfavor of B-strand around the redox-active Cys in thiol
oxidoreductases [20].

Physical-chemical properties of structural signatures

To understand how physical-chemical properties of the
surrounding amino acids may affect the reversible
potential of a disulfide, we further examined the hydro-
phobicity, net charged index (NCI), propensity and side
chain pKa for the extracted structural signatures. We
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(hydrophobicity, NCI and propensity) are significantly
higher for structural signatures from reversible disulfides
(Fig. 4a-f). However, the side chain pKa shows no sig-
nificant difference between the structural signature of
these two types of disulfides (Fig. 4g,h).

Prediction of reversible disulfide using identified features

We identified several features that are significantly dif-
ferent between reversible and structural disulfides, in-
cluding the S-S distance (DST), along with the length
(LEN), amino acid composition (AAC), secondary struc-
ture (SST) and physical-chemical properties (PCP) of the
structural signatures. It is desirable to further examine if
these features can be used for in silico prediction of
reversible disulfides.

Various combinations of these features were used to
train different SVM models. The performance was first
evaluated by 10-fold cross-validation using RevSS_PDB
dataset (Table 1; Fig. 5). When all of these features were
utilized, the model achieved accuracy of 0.750, sensitivity
of 0.352, specificity of 0.953, MCC of 0.405 and AUC of
0.751 (Table 1). Removing any of these features will
reduce the AUC value and also negatively affect other
parameters. Thus, the combination of AAC + DST +

found that the values for three of the properties LEN+PCP+SST (as 32-dimentional vector) was
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When further evaluated by 10-fold cross-validation
using a balanced RevSS_RedoxDB (structural disulfides
were randomly down-sampled to 100) dataset, similar
result with accuracy of 0.755, sensitivity of 0.560, specifi-
city of 0.852, MCC of 0.429 and AUC of 0.780 was
obtained (Additional file 9: Figure S6). To further valid-
ate the robustness of the method, we applied the SVM-

Table 1 Performance evaluation for different combinations of
features by 10-fold cross-validation using RevSS_PDB dataset

Feature sets ACC SN SP MCC  AUC
AAC+DST+LEN+PCP+SST 0750 0352 0953 0405 0.751
AAC + DST + PCP + SST 0743 0339 0949 0383 0.749
AAC + DST + LEN + PCP 0738 0291 0967 0375 0740
AAC + DST + LEN + SST 0728 0283 0956 0341 0.726
AAC+ LEN + PCP +SST 0729 0339 0929 0344 0719
DST + LEN + PCP + SST 0729 0265 0967 0348 0698

The results were ordered by AUC values
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classifier trained using the RevSS_PDB dataset to the
non-redundant balanced RevSS_RedoxDB dataset (see
Methods section). The accuracy, sensitivity, specificity,
and MCC reach 0.726, 0.250, 0.964 and 0.327 respect-
ively. Taken together, these results indicate that the
features identified in this study are efficient and robust
for predicting reversible disulfides.

Application and web server implement

A SVM-classifier named RevssPred was trained with
the AAC+DST + LEN + PCP + SST feature set using
the RevSS_PDB dataset, and applied to all the X-ray
crystal structures with resolution better than 2.5 A
(around 20,000 in total) in the PDB database. Among
these protein structures, 7.8% (6,792 out of 87,608) of
disulfides are predicted as putative reversible disul-
fides. A careful examination of the 97 non-redundant
(with less than 30% similarity to each other; se-
quences with >30% similarity to any of RevSS_PDB
sequences discarded) representative human proteins
with predicted reversible disulfide revealed that 32.0%
(31 out of 97) of them are well studied redox proteins
such as hydrolases, transferases and oxidoreductases,
while the remaining 68.0% are non-enzyme proteins
(Additional file 10: Table S4, Additional file 11: Figure S7).
The percentage of non-enzyme proteins is two times
higher than that predicted from the Revss_PDB
dataset (68.0% vs. 36.0%), probably due to the fact
that previous studies are biased toward several fam-
ilies of redox enzymes. Given that reversible disul-
fides are frequently reported from functionally
important non-enzyme proteins such as transcription
factors, the prediction may provide valuable candi-
dates of novel reversible disulfides for further experi-
mental analysis.

These pre-computed results, all the datasets used in
this study, together with the SVM classifier trained as
abovementioned, were incorporated in a web server
named RevssPred which can be accessed freely. The web
server takes a list of PDB_IDs as input. It first tries to re-
trieve pre-computed result from the MySQL database. If
failed, it will then download the structural files from the
PDB database automatically and initiate the de novo
prediction.

Discussion

In this study, an extensive comparison for features
extracted from local structural signatures was made
between reversible and structural disulfides. Several
features were found to be remarkably different be-
tween these two groups, including the S-S distance,
along with the length, amino acid composition, sec-
ondary structure and physical-chemical properties of
the structural signatures. By combining these feature
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sets, we further developed RevssPred which is effi-
cient for the prediction of reversible disulfides. Many
of these distinctive features identified in this study
were reported for the first time. Our results indicate
that the local structural microenvironment is of vital
importance for determining the reversible potential of
disulfide.

To date, reversible disulfides have mostly been
studied in well-known redox enzymes such as thiol
oxidoreductases. However, reversible disulfide could
also serve as redox switches for many non-enzyme
proteins such as transcription factors [53]. The re-
versible disulfides in these non-enzyme proteins may
be of particular functional importance. Unlike previ-
ous studies which only focused on specific types of
well-known redox enzymes, our study covered the re-
versible disulfides from a broad range of proteins.
Interestingly, when RevssPred was applied to known
structures in the PDB database, more than half of
the predicted reversible disulfide containing proteins
are non-enzyme proteins. The prediction may provide
valuable candidates of novel reversible disulfides for
further experimental analysis.

As the first comparative and predictive analyses
made directly between reversible and structural disul-
fide, our study also has its limitations. Firstly, even
though we tried to compile the most extensive train-
ing datasets using two independent approaches from
all available resources, the two datasets utilized here
are still relatively small. This is due to the difficulties
in experimental identification of reversible disulfides
and the fact that the protein structures are only avail-
able for a small fraction of proteins in the proteome.
Secondly, the method proposed in this study requires
structure data from the PDB database, which is not
available for many proteins. Even so, we have illus-
trated its feasibility and efficiency in accurate predic-
tion of reversible disulfides. A valuable list of putative
reversible disulfides were provided to the research
community for further experimental validation. With
the accumulation of data for verified reversible disul-
fides, we expect that predictive models based on se-
quences or predicted structures will find wide
application in the future.

Conclusions

To the best of our knowledge, this study represents by
far the most extensive comparison made between revers-
ible and structural disulfides. It is also the first attempt
in de novo prediction of reversible disulfides. This study
not only opens the possibility of deriving mechanistic in-
sights into the determinants of disulfide redox potential,
but also guides further experimental discovery and valid-
ation of reversible disulfides.
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