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Abstract

Background: Human endogenous retroviruses (HERVs) have received much attention for their implications in the
etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted
associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev
Immunol 29:351–370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326–335, 2010) conditions. Their
repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual
loci (De Parseval et al., J Virol 77:10414–10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:
16–30, 2005; Seifarth et al., J Virol 79:341–352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006).

Methods: To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was
made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of
a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions.

Results: HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-
retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of
1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are
comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of
expression measured on HERV-V3 is consistent with those reported in the literature.

Conclusions: Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple
applications such as enhancers and alternative promoters identification, biomarkers identification as well as the
characterization of genes and HERVs/MaLRs modulation caused by viral infection.
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Background
The recent sequencing of model organisms unveiled
the large proportion of repetitive elements (REs) in
many species. In human, it is estimated that half of the
genome is populated by REs and that retrovirus-like
sequences amount for 8% of its coverage [1]. HERVs
and MaLRs elements are organized into multi-copy
families, for each of which, tens to thousands of distinct
loci are scattered throughout the human genome,
representing a pool of approximately 200,000 individual
HERV loci. While bioinformatics approaches identified
103 HERV families and 1 MaLR family [1], only 40 HERV
families were characterized in wet-lab studies [2–4]. Part
of this genomic heritage is thought to originate from
ancestral and independent retroviral infections within the
germ line, before reinfection, retro-transposition and
error-prone amplification steps during the evolution, lead-
ing to the formation of multi-copy families [5]. To date,
no infectious endogenous virus has been detected in
human, however 30% of the whole retrovirome is esti-
mated to have a transcriptional activity [6]. Multiple func-
tions have been assigned to these elements: HERVs have
been demonstrated to act as canonical and alternative
transcription start sites [7] (up to 30% of human and
mouse TSSs are located in REs [8]), transcription ter-
mination sites [9] as well as splice donor and splice ac-
ceptor sites [10]. REs have further been suggested to be
instrumental in the long intergenic non-coding RNA
(lincRNA) regulatory system, where a majority of lincR-
NAs have been found to contain REs [11]. HERVs are
increasingly associated with distinct physiological and
pathological processes. One notable example is pro-
vided by the two syncytins genes that have been co-
opted in human (and other mammals) to mediate pla-
centation [12]. More recently, HERV-H loci have been
shown to be instrumental in the maintenance of pluripo-
tency [13]. Other investigations have further described as-
sociations between HERVs reactivation and multiple
sclerosis [14–16], solid [17, 18] and hematological [19] tu-
mors. Taken together, these studies show that REs provide
binding sites for mammalian TFs and that they have
rewired a number of developmental regulatory networks.
The central issue in the study of the HERV transcrip-

tome arises from the phylogenetic proximity among the
elements of a given HERV family, making the measure of
each transcript technically challenging. Initially, RT-PCR
techniques combined with degenerate primers [20] and
low-density microarrays [18, 21] were developed to meas-
ure trends within families without, however, providing
locus-specific information. Expressed sequence tags
(ESTs) approaches gave a more comprehensive view of the
HERV transcriptome but failed in many instances to iden-
tify the exact genomic source of expression [22]. Recent
initiatives took advantage of probes targeting repetitive

elements in commercial microarrays to monitor HERV
behavior where, in addition to restricting their analysis
to a small number of probes, the specificity of the
probes was not evaluated [23]. More recently, HERVs
transcription was also measured in various contexts
using next generation sequencing (NGS) [24], which,
while promising, remains difficult due to the ambiguity
in assigning short reads mapping to more than one
genomic location. For instance, in a study of HML-2 el-
ements in teratocarcinoma cell line, Bhardwaj et al.
showed that 47% of their reads had multiple alignments
[25]. Two elegant initiatives sought to address this limi-
tation by either using host surrounding sequences to
anchor HERV copies [26] or by assigning multi-
mapping reads probabilistically to specific locus based
on the local genomic tag context [27]. However, in
addition to assume that HERVs flanking regions are
expressed, these approaches can probably not resolve
multi-mapped reads for more than few hundred bases
at the edges of HERV copies, leaving the ambiguity un-
changed in the central regions.
Because HERV expression is globally low [28], very

deep sequencing is required to capture the diversity
of HERV transcripts among the many other and more
abundant human transcripts, making unbiased NGS
experiments costly and ineffective in this context.
Targeted sequencing could alternatively be considered
to reduce the experimental burden by specifically
amplifying the transcripts of interest, as is typically
applied in 16S metagenomic sequencing. This type of
approach could either be performed at the family or
locus level. The design of family-specific degenerate
primers or locus-specific primers would however
require an elaborate step of primer selection ensuring
both family/locus specificity (as illustrated in Pichon
et al. for PCR amplification of the Pol region [18])
and compatible annealing temperature for unbiased
quantification. To our knowledge, no such systematic
targeted sequencing approach has been proposed so
far. The work presented in this study applies such
methodology on microarray using a probe selection
pipeline that aims to both maximize probe efficiency
and mitigate non-specific reactions, minimizing thus
the analysis step for the end-user. Microarrays plat-
forms and in particular Affymetrix instruments are
now deployed in many research laboratories and the
cost per experiment makes microarrays affordable
compared to NGS, with a reduced time-to-result.
Two custom microarrays were previously designed in

the laboratory based on a unicity criterion and a specifi-
city score. The first meant that only candidate probes
with a single perfect match were selected [29], whereas
the second estimated a cross-hybridization risk using the
nature and position of mispairing (mismatches, MMs
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and gaps) in probe-target hybrids [13]. Training sets
consisting of PM and MM probes were introduced on
both arrays to evaluate and refine these strategies of
cross-hybridization control. Both platforms allowed the
identification of cancer-specific loci (testis [29], prostate
[13, 30], colon [13] subsequently validated by qRT-PCR
on a large cohort [31]) and the assignment of LTR func-
tions [13, 29], but did not prevent cross-reactions to
occur, raising the need for an improved approach.
Building on these two experiences and leveraging the

high-density Affymetrix format (5 micron feature size), we
introduce here a new platform HERV-V3 which, like the
previous versions, aims at measuring HERVs at the locus
level. The two main improvements lie in the almost
complete coverage of HERVs and their ancestors as well
as the introduction of a specificity criterion based on a
new hybridization model, named hereafter, the Pentamer
rEgion-dependent Hybridization Model (PEHM). The aim
of this model is to predict the affinity of any probe-target
hybrid, and therefore, to evaluate the potential of cross-
hybridization by determining whether a probe of interest
hybridizes only with its target. Along HERVs elements,
five additional repertoires were introduced on HERV-V3
that fall in three categories, repetitive elements (MaLRs
and active LINE-1 elements), non-repetitive elements
(lncRNA and a selection of 1559 human genes) and com-
mon infectious viruses. While the array design is primarily
aimed at identifying HERVs and MaLRs implicated in
physiological and pathological processes, broader applica-
tions can be envisioned with these repertoires, such as the
detection of virus replication along with the monitoring of
HERVs/MaLRs and genes modulation. In the following,
we successively (i) describe the main steps of the array
design, (ii) compare our probesets with those of Affy-
metrix on 1559 common genes according to the
MAQC criteria and (iii) demonstrate that for a selec-
tion of loci characterized as tissue/pathology specific,
the pattern of expression observed on HERV-V3 is
consistent, illustrating the relevance of such platform
as research tool.

Methods
The design of the HERV-V3 array followed three
main steps: (i) the genomic detection and the anno-
tation of HERVs/MaLRs elements presented here, (ii)
the development of a hybridization model to prevent
cross-reactions and (iii) the design of the probes.
The hybridization model was fitted on the HERV-V2
training set, made of degenerated Affymetrix probe-
sets (see below).

Database creation
The HERV-V3 array ambitions both to cover the whole
human retrovirome and provides functional annotations

when possible. These annotations are primarily meant
to address hypotheses on LTRs functions (i.e. pro-
moter or polyA) and to support data interpretation at
the level of gag/pol/env regions and their putative
ORFs. A first step of genomic detection and annota-
tion was performed (Fig. 1a), step which is non-trivial
given that HERV classification remains incomplete
[32]. To this end, two different sources of information
were used, a set of prototypes associated with 42
families described in the literature [3, 21, 33, 34] for which
annotations were generated in the laboratory (Additional
file 1: Supplementary Notes, section 1, and Additional
file 2: Table S1), and 331 Repbase consensus for which
no annotation could easily be generated [35]. In the first
case, prototypes were aligned on the human genome
(hg19) using RepeatMasker, leading to a set of annotated
HERVs called hereafter “HERVs prototypes”. In the second
case, fragmented HERV elements were retrieved from
Dfam, a database of repetitive elements detected by
RepBase consensus [36], and subsequently reconstructed
(Cf Additional file 1: Supplementary Notes, section 2).
This two levels strategy was devised to generate accurate
annotations on elements detected by prototypes and to
recover as many HERVs as possible using the representa-
tiveness of Repbase consensus. All the detected and anno-
tated elements were finally stored in a database named
hereafter HERVgDB4.

Hybridization model
Once the database created, a hybridization model, PEHM,
was developed to predict the probe cross-hybridization
potential (see Fig. 1b). This was made possible by an expli-
cit modeling of MMs and gaps, allowing thus a precise
quantification of mispairing. Hybridization models have
been explored in the past decade, where the focus was
more on modeling perfect match hybridization to improve
microarray design, data interpretation [37–39] and to de-
tect cross-reactions [40]. Here, the goal of the model is to
predict the affinity of DNA hybrids with possible MMs
and gaps, from which the cross-reaction potential can be
deduced. The model we introduce, PEHM, is along the
same lines as Li & Wong and Zhang models [40, 41] that
express the probe intensity as a product of the affinity for
its target with the target concentration (otherwise called
expression measure):

Iij ¼ θi:φj þ εij; εij
e

N 0; σ2
� �

;
X

n

θn
2 ¼ N ð1Þ

with Iij the intensity of probe j on array i, φj the affinity of
probe j, θi the expression level of the gene targeted by
probe j on array i and εij, an independent identically dis-
tributed error term centered on 0. Because of the product
between affinity and target concentration, a constraint is
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required to allow parameter identifiability. An important
difference between PEHM and Li & Wong is that the par-
ameter of interest is the affinity in the first case, while it is
the target concentration in the second. Consequently, in-
stead of considering affinity as a nuisance parameter and
imposing the identifiability constraint onto it [41, 42], the
constraint here is imposed on the RNA quantity, where
the sum squares of θn is set to N. Furthermore, PEHM
links the probe-target affinity to the DNA sequence by
modeling the affinity as a sum of k-mers effects, similarly
to Zhang et al. This initial model is then extended in four
ways: (i) given that DNA structural properties (i.e. flexibil-
ity, stability) depend on the interactions between neigh-
boring base pairs, pentamers instead of dimers were used
to improve affinity modeling (data not showed). (ii) While
the spatial effect was previously modeled through position
weights (modulating k-mers in function of their position,

Zhang et al.) or by estimating k-mers at each position of
the probe [37], an approximation of the latter is chosen
here by considering three sub-regions of identical size in
the probes. Although less precise, this approximation
reduce by a factor 7 the number of parameters in com-
parison with Mei et al. approach. (iii) MM and gap 5-mers
are taken into account as well as (iv) interactions between
mismatches, following the idea that the k-mers additivity
breaks down in presence of multiple MMs [43]. Overall,
the affinity is expressed as follows:

φj ¼
X

l

X

k

βlkX
l
jk þ

X

m

δmZjm ð2Þ

With βk
l the coefficient associated with k-mer k in sub-

region l, Xjk
l , the indicator matrix providing the number

of k-mer k in region l of probe j, δm the coefficient

a

b

c

Fig. 1 Mains steps of the HERV-V3 array design. The design involved three steps of (a) database creation, where HERV copies were either detected
by RepeatMasker using 42 prototypes or reconstructed from Dfam predictions; (b) development of a hybridization model, illustrated by
models predictions and observed intensities on Affymetrix probeset associated with CD59 gene; and (c) design of probes and probesets.
The difference of annotation level between consensus and prototypes is shown, where LTR subregions and ORFs are only identified in
prototypes. It can further be noted that the agreement between observed and predicted intensities increases with the k-mers size and
the complexity of spatial information (a more thorough description is provided in the Additional file 3: Figure S1)
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associated with interaction m and Zjm the indicator
matrix providing the presence or absence of interaction
m in probe j. Although conceptually straightforward, the
use of MM and gap 5-mers dramatically increased the
number of parameters from 1024 to 113,664. Model pa-
rameters were estimated using the LASSO shrinkage
method [44] to prevent overfitting and consequently im-
prove the model predictions. The model training was per-
formed in 10-folds cross-validation on the HERV-V2
training set that consists of 20 probesets derived from the
Affymetrix U133 array. Each probeset contains the 10 ori-
ginal U133 PM probes along with 1800 degenerated MM/
Gap probes including single, double MMs and single gaps,
which represent a total of 37,200 probes. The data used in
the model training arose from 36 microarray experiments
performed on healthy and tumor tissues (colon, breast,
ovary, uterus, prostate, testis, lung and placenta) carried
out in a previous study [6]. Once the model defined, an
“hybridization threshold” was determined on the affinity to
distinguish stable from unstable hybrids in the probe de-
sign. This threshold was set such that 90% of the probes
with an affinity under this threshold have intensity under
the background noise. The model performances are illus-
trated on Additional file 3: Figure S1 (enlarged version of
Fig. 1b) using Affymetrix probeset associated with CD59
gene.

Probes and probesets design
PEHM was used in the array design to select probes that
are both specific and thermodynamically efficient. To do
so, the number of hybridizing targets (specific and
cross-hybridizing) was predicted for each candidate
probe by PEHM, and only probes capable of hybridizing
with one to three targets were retained. The array design
involved three steps of tiling, probe selection and probe-
set generation (see Fig. 1c). Each region of interest was
tiled into 25 bp candidate probes with a step size be-
tween 1 and 4 bp depending on the perimeter coverage
and the quality of its annotation. For instance, a step of
1 bp was used for HERVs prototypes to ensure that all
candidate probes were considered in this relatively small
and well annotated perimeter. For each candidate probe,
the affinity with its specific target was then computed to
assess its thermodynamic performance. If the affinity
exceeded the hybridization threshold, the probe was sub-
sequently aligned against a reference library using BWA
[45]. Two libraries were generated covering either the
repetitive fraction of the genome (hg19 regions masked
by RepeatMasker) or its complementary. The advantage
of dividing the genome in two partitions was to reduce
substantially the execution time of BWA whose com-
plexity is in l. n0.628. m (l the number of probes, n the
size of the reference library and m the probe size). Affin-
ities were then calculated with PEHM for each hits, from

which probes were classified into three categories:
“specific”, if only one hit was above the hybridization
threshold, “potentially cross-hybridizing”, if less than
four hits exceeded the hybridization threshold and
“non-specific” otherwise. In this latter case, the candi-
date probes were excluded. This relatively permissive
strategy was designed to include as many loci as pos-
sible on HERV-V3, even those part of the most highly
repetitive families. Also, given that a small proportion
of HERV loci is generally expressed in a given biological
context, the probability that two cross-hybridizing tran-
scripts are simultaneously expressed is reduced.
In Mei et al., the generation of Affymetrix probesets

was based on a score that maximizes probes responsive-
ness (quantity related to affinity), probes uniqueness
(specificity) and inter-probes distance (spreadness) [37].
In HERV-V3 design, the affinity and specificity were
controlled at the probe selection step, while the probeset
size, the spreadness, and cross-reaction criteria were
taken into account in the probeset generation step. More
specifically, a probeset was required to contain between
3 and 6 probes to yield a robust estimation of gene-
expression while keeping the probeset size low due to
the large number of targeted elements. This relatively
small lower bound was motivated by the high level of
homology existing in certain families, preventing the
definition of larger probesets. We therefore preferred
smaller probesets than missing out loci. This point is
further discussed in the evaluation of the platform
performances. A probeset was restricted to a 400 bp
region, in which, a maximum 30% overlap between two
neighboring probes was allowed. This means that if two
probes separated by less than 8 bp pass the specificity
test described above, only one will be kept in the final
probeset. Cross-hybridization was also mitigated at the
probeset level where for a given probeset, cross-
hybridizing probes had to cross-react with distinct loci
and at least one probe had to be specific (with no
cross-reaction). Approximately 2 weeks were necessary
to run this three steps probe definition pipeline on a
server (16 CPU, 128 GB of RAM).

RNA sources and ethical considerations
The technical performances were evaluated on the
MAQC samples, composed of two independent sam-
ples (A, Stratagene Universal RNA, and B, Ambion
Human Brain RNA) from which two titration samples
were generated (C and D, consisting of 3:1 and 1:3
ratios of A to B, respectively). Each sample was
performed in technical triplicate. The biological valid-
ation was, on the other hand, performed on three
different tissues (colon, placenta and prostate) and
two primary human cell lines (OSCAR and EBJ14).
The colon (tumor and adjacent normal tissues in two
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patients) and placenta RNA samples were purchased
from Clinisciences and Ambion.
The prostate samples were isolated from post-surgery

(radical prostatectomy) prostate cancer and prostate nor-
mal tissue, then treated by micro-dissection. Post-surgery
prostate sample were provided by the Tumorothèque du
Centre Hospitalier Lyon-Sud (Pierre Benite, France). The
tissue samples conservation after prostate surgery in
Centre Hospitalier Lyon-Sud was performed with the local
ethics committee approval (Comité de Protection des
Personnes de Lyon). All patients were informed through
an individual notice during the hospital admission and
then gave their verbal consent, as required by the French
Loi de Bioéthique (2004), for the sample conservation and
research use. Prostate RNAs were extracted following
the Trizol protocol (Invitrogen) and purified on Rneasy
columns (Qiagen). The quality of all RNA samples was
assessed with the Bioanalyser 2100 capillary.
RNA extracted from the OSCAR and EBJ14 primary

human cell lines were provided by the Brain Research
Institute (INSERM U846, Université Lyon 1, Lyon, France).
OSCAR cells consist of human embryonic stem cells
(hESCs) cultured through the addition of FGF2 in the
culture medium. EBJ14 (embryoid bodies) cells were ob-
tained by culturing the OSCAR cells in non-adherent cul-
ture dishes without FGF2, environment in which cells form
floating structures that spontaneously differentiate [46].

RNA amplification and labeling
The cDNA synthesis and amplification steps were
performed from 16 ng of RNA using the Ovation Pico
WTA System V2 kit (Nugen). Briefly, a first strand
cDNA was generated from total RNA using a mixture
of random and polydT DNA/RNA chimeric primers,
followed by the synthesis of the complementary strand.
The mRNA strand within the cDNA/mRNA complex
was fragmented in order to create priming site to
permit the DNA polymerase to synthesize the second
cDNA strand. The double-stranded cDNA with a short
DNA/RNA heteroduplex was amplified using the strand
displacement based Single Primer Isothermal Amplifi-
cation (SPIA) method. Schematically, RNase-H re-
moved the RNA portion of the heteroduplex sequence
and revealed a site for binding the DNA/RNA chimeric
SPIA primer. DNA polymerase synthesized a new
cDNA starting at the 3′ end of the primer, displacing
the existing forward strand released as ssDNA. Priming
with the chimeric SPIA primer recapitulated the
heteroduplex creating a new substrate for RNase-H and
the initiation of the next round of cDNA synthesis and
ssDNA release.
The resulting amplified ssDNA was purified using the

QIAquick purification kit (Qiagen), from which, total
DNA concentration was measured using the NanoDrop

1000 spectrophotometer (Thermo Scientific) and the
product quality was checked on the Bioanalyser 2100.
Five micrograms of purified ssDNA were fragmented
and labeled with the Encore Biotin Module kit (Nugen):
the cDNA products were fragmented by enzymatic
process into 50–100 bp fragments and subsequently
labeled via enzymatic attachment of a biotin-labeled
nucleotide to the 3-hydroxyl end of the fragmented
cDNA. The resulting target was mixed with standard
hybridization controls and B2 oligonucleotides follow-
ing the recommendations of the supplier. The
hybridization cocktail was heat-denatured at 95 C for
2 min, incubated at 50 C for 5 min and centrifuged at
16,000 g for 5 min to pellet the residual salts. The
HERV microarrays were pre-hybridized with 200 μL of
hybridization buffer and placed under stirring (60 rpm)
in an oven at 50 C for 10 min. The hybridization buffer
was then replaced by the denatured hybridization
cocktail. Hybridization was performed at 50 °C for 18 h
in the oven under constant stirring (60 rpm). Washing
and staining were carried out according to the protocol
supplied by the manufacturer, using a fluidic station
(GeneChip fluidic station 450, Affymetrix). The arrays
were finally scanned using a fluorometric scanner
(GeneChip scanner 3000 7G, Affymetrix).

Bioinformatics microarray analysis
Quality checks were systematically performed before
microarray data analysis. The indicators examined were (i)
the amplification and hybridization Affymetrix controls,
(ii) the median absolute deviation versus the intensity
median (MAD-Med) representation, (iii) the Normalized
Unscaled Standard Error (NUSE) and (iv) the Relative Log
Expression (RLE) [47].
Four pre-processing (background correction,

normalization and summarization) approaches were com-
pared, RMA [42], two alternatives to RMA and Li &
Wong [41]. The two alternatives differ from RMA by their
background correction step: the background noise is esti-
mated either globally using the 15th percentiles of trypto-
phan probes or at the probe level using the median
intensity of antigenomic probes with identical GC-
content. The antigenomic probes have been introduced
on exon arrays to estimate the non-specific hybridization
effect related to probes GC content [48]. Their design is
such that they do not match any location in the human
genome and cover a wide range of GC content.
Lastly, the search for differentially expressed genes

(DEG) was performed using LIMMA [49]. This method
relies on a moderated t-stastistic, robust for small num-
bers of arrays. Q-value and fold-change thresholds of
0.01 and 2 respectively were used in the technical and
biological validations. To ensure that probesets identified
as differentially expressed were not in the background
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noise, a threshold of 24 was set on the median of the
technical replicates (n = 3), intensity for which CVs
across technical replicates were under 15%.

Results and discussion
Database and microarray contents
A total of 29,859 and 169,821 HERV prototypes and
HERVs Dfam were collected and stored in HERVgDB4
(see Table 1). Six additional repertoires were added to
this database, (i) 228,429 MaLRs (ancestors of HERVs)
retrieved from Dfam and processed in the same way as
the HERVs Dfam; (ii) 192 centromeric HERV elements
(absent from hg19) shown to be reactivated in HIV
infection [50]; (iii) a selection of 1072 putative active
LINE-1 elements arising from the union of L1Base and
dbRIP databases [51, 52]; (iv) 3777 long non-coding
RNAs coming from two studies [53, 54], cleared of re-
petitive sequences with RepeatMasker (total coverage =
366.8 Mb); (v) 289 infectious viruses and (vi) 1559 genes
involved in eight pathways (immunity, inflammation,
cancer, central nervous system affections, differentiation,
telomere maintenance, chromatin structure and gag-like
genes, see Additional file 4: Table S2). Each of those
1559 genes are targeted by three probesets, two originat-
ing from commercial Affymetrix arrays (U133 and HTA
v2), and one from our design. Put another way, the
expression level of any of these 1559 genes is simultan-
eously measured by a U133 and HTA probeset as well as
a probeset designed using the PEHM model. Their rela-
tive performances, presented in the following sections,
provide a simple way to validate our probe design. For
simplicity, we will call these probesets gU133, gHTA,
and gPEHM. To ensure that we can rely on gU133 and
gHTA as internal controls, we checked whether gU133

show a similar behaviour on HERV-V3 and HG-U133
Plus 2.0 array. A large correlation (R2 = 0.811, probeset
level) was found on gU133 probetsets between the two
arrays, supporting thus the use of gU133 and gHTA as
standard for comparison (Additional file 5: Figure S2).
Overall, HERV-V3 contains 372,976 elements, represented
by 2.7 million probes. Probes were synthesized in sense
and antisense (5.3 million in total) to accommodate with
any amplification protocols and retain transcripts strand,
given that some LTRs were shown to exhibit bidirectional
promoter activity [55].

Platform evaluation
Following on the MAQC consortium, the technical per-
formances of the platform were first studied based on re-
peatability and accuracy, which have become standard in
platform evaluation [56]. Accuracy has commonly been
assessed either by comparing the estimated dilution mix-
tures from array intensities to their theoretical values, or
by computing the titration response. The former relies on
the assumption that in a titration sample, the signal of a
given transcript is a linear combination of the signals mea-
sured in the two original samples (C = αCA + βCB and
D = αDA + βDB). If this assumption is satisfied, the
fractions estimated on the array should be centered
on the dilution mixtures βC = 0.25 and βD = 0.75. The
latter measures the coherence between the abun-
dance of the hybridized RNA and the intensity mea-
sured on the array using two samples A and B and
their mixture C (75% A + 25% B) and D (25% A +
75% B). This titration implies that for any gene i, if the
true expression level Ai > Bi, then the average intensities
across triplicates are expected to follow Ai >C i >Di > Bi,
and conversely, if Bi >Ai, then Bi >D i >Ci >Ai.

Table 1 Number of elements and functional sub-regions contained in HERVgDB4 (left) and designed on HERV-V3 (right) where one
probeset is defined by sub-region

Repertoire HERVgDB4 (database) HERV-V3 (array)

Number of elements Number of sub-regions Number of elements Number of probesets Number of elements

HERV prototypes 29,859 90,106 29,807 45,374 29,859

HERV centromeric 192 589 24 29 192

HERV Dfam 169,821 342,482 154,535 283,641 169,821

MaLR Dfam 228,429 45,543 179,323 311,286 22,8429

LINE1 1072 4627 664 1416 1072

lncRNA 3812 3819 3777 3777 3812

Viruses 291 386 289 368 2044

gPEHM 1559 1559 1559 1559 8743

gU133 1559 NA 1559 3884 42,964

gHTA 1559 NA 1559 35,398 344,002

Affymetrix Controls NA NA NA 177 20,895

Total 435,040 898,998 372,976 686,869 2,651,585

The discrepancy between the number of elements in the database and on the array is due to cross-hybridizing elements discarded during the design
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This quantity was first utilized to evaluate normalization
procedures. Four methods were tested, Li-Wong [41],
RMA [42] and two alternatives, RMA-TRPN and
RMA-GCBG, that differed by their background correc-
tion (see the Bioinformatics microarray analysis sec-
tion). The methods gave similar performances except
RMA-GCBG whose titration curve showed a broader
spread (see Fig. 2a). Inter-methods differences were
quantified by measuring the Bi/Ai ratio at which 75% of
the probesets show a monotonic titration. This ratio
was reached at 1.45, 1.53, 1.6, 2.19 in RMA-TRPN,
Li-Wong, RMA and RMA-GCBG, which prompted us
to keep RMA-TRPN in the following. In theory,
PEHM could also be used for data pre-processing.
However, because affinities are likely to be inferred more
accurately by direct data estimation (RMA) than sequence
based prediction (PEHM) and because RMA has received
a large consensus in the community [57], we chose RMA
for normalizing our data in this study.
We then compared our probe design with Affymetrix’s

approach and checked whether the quality of measure
was equivalent across repertoires (genes versus REs). The
repeatability and the titration response were compared
across the HERVs/MaLRs, gPEHM and gU133/gHTA
compartments. Because the first two repertoires target

two different sets of genomic elements while deriving
from the same design method, their comparison reveals
how our design approach performs on cellular genes
and repetitive elements. The last two, on the other
hand, target the same genes while deriving from two
distinct design methods. Their comparison sheds light
on the relative performances between Affymetrix design
method and ours. Since gPEHM and gU133/gHTA gene
repertoires presented higher intensity and larger probe-
set size (10 and 5.8 probes/probeset on average in
gU133/gHTA and gPEHM, respectively) relatively to
HERVs/MaLRs (3.5 probes/probeset on average, Fig. 2b,
c), comparisons were carried out after stratification by
intensity and probeset size. The low intensities ob-
served in HERVs/MaLRs elements (Fig. 2a) are due to
the fact that after embryonic development, a majority
of retroelements are permanently repressed [28]. The
reduced probesets size can, on the other hand, be at-
tributed to the lack of large specific regions in HERVs/
MaLRs loci that could allow the definition of bigger
probesets.
gPEHM probesets were consequently regenerated

such that the probeset size distribution in this new
compartment, named “downsized gPEHM” (dgPEHM),
matches this in HERVs/MaLRs. Repeatability and accuracy

a b c

d e f

Fig. 2 Platform evaluation. a Pre-processing methods were evaluated on the whole array using the titration response as a function of the
fold-change between samples A and B. Probesets were binned according to the fold-change values between A and B. Unlike GCBG-RMA,
the three methods RMA-TPRN, RMA and Li-Wong present narrow titration curves, indicative of good performances. The two confounding
factors (b) intensity and (c, same colour code as in 2b) probeset size distribution are represented in HERVs/MaLRs, gU133/gHTA and
gPEHM compartments: the intensities are lower in HERVs/MaLRs than in genes (gPEHM, gU133/gHTA), reffecting a smaller proportion
of expressed loci in the former. The three compartments, HERVs/MaLRs, gU133/gHTA, gPEHM, and downsized gPEHM (dgPEHM) are

compared on (d) repeatability (CV) and accuracy measured both by (e) the titration response and (f) the estimated dilution mixture (β̂C; β̂D). The grey
horizontal lines in (f) symbolizes the theoretical mixture values βC and βD. Only probesets differentially expressed between samples A and
B (fold-change A/B and B/A > 2, P < 0.01) were used to generate the boxplots in (f). The gene repertoires show similar level of repeatability and accuracy

(similar median CVs, titration curves and β̂C; β̂D distributions), whereas HERVs/MaLRs performances are slightly lower, due to smaller probesets
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statistics were then computed. For a given intensity bin,
the CVs were similar between gPEHM and gU133/
gHTA, and dgPEHM and HERVs/MaLRs (see Fig. 2d),
indicating that, after controlling for the confounding
factors, the repeatability is similar across genomic
elements and design methods. Nevertheless for a given
intensity interval, HERVs/MaLRs and dgPEHM median
CVs were approximately twice as large as gPEHM and
gU133/gHTA due to probeset size heterogeneity. A
similar trend was observed with the titration response
curves (see Fig. 2e) built using probesets in the inten-
sity bin]6; 15] : gPEHM and gU133/gHTA probesets
reached the y = 100% asymptote at lower A/B and B/A
ratios than HERVs/MaLRs and dgPEHM. More pre-
cisely, the ratio at which 75% of the probesets titrate is
attained at Ai/Bi = 1.43 and 1.52 in HERVs/MaLRs and
dgPEHM, whereas the same ratio was reached at 1.23
and 1.24 in gPEHM and gU133/gHTA. The evaluation
of accuracy using the titration mixtures led to a differ-
ent trend, the theoretical values being βC = 0.25 and
βD = 0.75. While βC was better estimated in HERVs/

MaLRs compartments (median β̂C ¼ 0:30) than in genes

compartments (median β̂C ¼ 0:40 ), the opposite was

observed with D (median β̂D ¼ 0:78 as compared to 0.59
in HERVs/MaLRs).
Overall, the observed differences in repeatability and

titration response can essentially be attributed to the
probeset size (restricted in HERVs/MaLRs owing to
their repetitive nature) and not to the design method.

The close examination of these results show that above
a background noise of 26, the performances do not dif-
fer substantially between HERVs/MaLRs and gU133/
gHTA, where the median CV is 4 and 2% respectively.
Relating these performances to the probeset size, we
can conclude that, in comparison with gHTA/gU133
probesets populated by 10 probes on average, (i) gPEHM
show nearly identical performances while having an aver-
age probeset size of 5.8 probes, and (ii) HERVs/MaLRs
have comparable performances with an average probeset
size of 3.5 probes. These results are in line with Lu et al.
[58] who estimated that probesets should contain at least
4 probes for reliable interpretation.

Consistency with Affymetrix design and model validation
Microarrays are generally used to measure the variation
of transcript levels across two or more samples of inter-
est. To assess the differential expression concordance
among the gene repertoires, fold-changes and differen-
tially expressed genes (DEG) were compared across the
three gene repertoires. The log fold-changes between
samples A and B were measured in the three gene com-
partments, leading to large R2 values (see Fig. 3a–c).
Although a higher correlation was obtained between
the two Affymetrix repertoires (R2 = 0.86), gPEHM
showed a good coherence with Affymetrix fold changes
(R2 = 0.75, 0.77). These values are remarkably high
given that gU133 and gPEHM probesets target genes 3′
UTR whereas gHTA covers all exons. Similarly, for a
given repertoire, a large proportion of DEG are shared

a b c

d e f

Fig. 3 Consistency with Affymetrix design and model validation. Gene expression variation is compared across the three gene compartments based
on fold-change correlation (a–c) and intersections of genes differentially expressed in the gene repertoires (d). The hybridization model
PEHM is evaluated by correlating predicted and observed intensities on gU133 probes (e) and HERV-V2 training set (f)
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with the two others, these fractions being of 82.1, 75.4
and 95.9% in gPEHM, gU133 and gHTA respectively
(Fig. 3b). Taken together, these results point toward a
good concordance between Affymetrix and gPEHM
probesets in the measure of gene expression variation,
the smaller correlation with gPEHM being probably
attributable to smaller probesets size in this compartment.
The last step in the platform evaluation consisted in

the validation of PEHM. To this end, predicted inten-
sities were generated from PEHM affinities and com-
pared with those observed on the gU133 repertoire. For
each gU133 probeset, the expression level was first
estimated on two-third of the probes by regressing
intensities onto PEHM affinities. Then, intensities were
predicted on the last third of the probes by taking the
product of PEHM affinities with the estimated expres-
sion level, leading to a R2 = 0.47 between observed and
predicted intensities (Fig. 3e). Although 0.14 lower than
what was obtained on HERV-V2 (R2 = 0.61, Fig. 3f), this
value reflects a good ability of PEHM to model the probe-
target affinity on HERV-V3, the discrepancy being
probably due to the format change between HERV-V2
(11 micron, from which the model is trained), and
HERV-V3 (5 micron) arrays.
When comparing the performances of PEHM (R2 = 0.61)

with the models proposed by Zhang et al. [40] (R2 = 0.98)
and Mei et al. [37] (R2 = 0.82), our model may appears
less predictive. This discrepancy probably reflects the
differences in training set size (e.g. Zhang’s model) and
in whether the RNA abundance is accounted for (e.g.
Mei’s model). More precisely, while PEHM was evalu-
ated on HERV-V2 training set consisting of 37,200
probes using total RNA from 15 different biological
conditions, Zhang’s model was evaluated on 14 probe-
sets whose targets were spiked at 14 varying concentra-
tions, Mei’s model was, on the other hand, evaluated on
all 25-mer probes spanning 90 human transcripts
whose targets were spiked at 16 concentrations. Since
their model was fitted for each concentration at a time,
no abundance term θ was included. Of note, when test-
ing Zhang’s model and Mei’s modified model (with the
RNA abundance term θ added) on HERV-V2 training
set, the performances found were R2 = 0.46 and 0.54,
respectively, that is 0.15 and 0.07 less than PEHM
performance (R2 = 0.61).

Validation on characterized HERV loci
Previous studies have revealed that certain HERV loci
are expressed in a tissue, pathology and developmental
stage specific manner and can potentially be used as
biomarkers. In a perspective of biological validation,
we sought to replicate these results on HERV-V3. We
first evaluated whether HERV loci previously charac-
terized by RT-PCR in placenta [29, 59, 60], prostate

[61], Cheynet et al. unpublished data and colon tumor
[6], showed similar expression patterns on HERV-V3.
The heatmap Fig. 4a indicates that the intensities ob-
served on the array are consistent with the expected
patterns of expression: cancer and tissue specific loci
are transcriptionally active only in their associated sample.
The expression and tissue tropism of those loci were
subsequently confirmed by RT-PCR (Additional file 6:
Figure S3), with the same biological samples used in the
microarray experiments. Cross-reactions were checked on
the same loci by examining probesets targeting their
closest paralogous sequences using blat [62]. For these
probesets at risk of cross-hybridization, the intensity
was under the background noise, pointing toward a
high level of specificity of the array (Additional file 7:
Figure S4).
Other works have shown the involvement of HERV-H

in the maintenance of pluripotency, among which Wang
et al. who found 550 HERV-H copies transcribed at
higher level in human pluripotent stem cells (hPSCs)
compared with embryoid bodies (early stage of hPSCs
differentiation) [13]. To determine whether a similar
enrichment in HERV-H elements was also found on
HERV-V3, we searched for differentially expressed loci
(DELs) between OSCAR and EBJ14, two primary human
cell lines with differentiation levels similar to those in
Wang et al. 563 loci were identified as differentially
expressed, among which 122 belong to HERV-H family
(see Fig. 4b). Given that HERV-H represents only 0.4%
of the probesets on HERV-V3, this high proportion
(21.7%) of HERV-H in the set of DELs argues in favor of
non-random expression of HERV families (binomial test,
p < 2.10-16) and confirms the trend observed in NGS
studies. It can be noted that the majority of the DELs
are MaLRs, which is in line with Fort et al. who also
observed the reactivation of these elements in human
embryonic stem cells, although to a smaller extent than
in mouse [24]. Finally, DELs positions were intersected
with Wang loci, leading to 115 common regions spanning
a total of 195 kb (Fig. 4c). While modest, this intersection
represents 55.7% of the total DELs coverage and cannot
be attributed to chance (binomial test, p < 2.10-16). The
discrepancy with Wang et al. is likely due to differences in
sample (different cell lines) and assay (NGS versus micro-
array). Nevertheless, three HERV-H loci and one MaLR
element identified as OSCAR specific on the microarray
were validated by RT-PCR (Additional file 6: Figure S3),
confirming thus the observed pattern on HERV-V3.

Conclusions
The recent development of high-throughput genomic ap-
proaches has enabled biologists to perform global analysis
of gene expression. These technological advances have
made possible to investigate disease mechanisms, identify
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biomarkers [63], group genes into functional pathways
[64], assign function to previously unannotated genes, and
evaluate the toxicity of candidate drugs [65]. Among those
technologies, microarrays have been widely utilized in
clinical studies for their cost-effectiveness, their rapid and
mature turnaround, and their ability to provide high sensi-
tivity and specificity results from limited biological mate-
rials (nanograms). In this work, we have presented a new
high-density array allowing the examination of the whole
HERVs/MaLRs transcriptome along with a selection of
genes, LINE-1 elements and exogenous viruses. Such
configuration opens the door to multiple applications
such as the identification of enhancers and alternative
promoters, the simultaneous detection of viruses and
monitoring of genes and HERVs/MaLRs modulation,
the identification of new biomarkers, etc. This was
made possible by the careful detection and annotation
of HERVs/MaLRs as well as the development of PEHM,

allowing the optimization of probe performances and
the control of cross-reactions. The evaluation of the
platform showed that, (i) after controlling for con-
founding variables, similar levels of reproducibility and
accuracy were obtained between Affymetrix and HERV-
V3 arrays; (ii) a high consistency was found between
gU133, gHTA and gPEHM probesets in term of GDE
detection; (iii) for a selection of tissue/pathological loci
specific, the pattern of expression reported in the litera-
ture was also observed on HERV-V3. In 2008, Mayer et al.
highlighted the need for a HERV transcriptome project to
study the contribution of HERVs as part of the human
transcriptome [66]. Although previous works measured
individual HERVs expression on a limited scale [6, 23], to
our knowledge no such project has been setup yet, prob-
ably due to the technical difficulties inherent to REs.
Because of its performances and exhaustiveness, HERV-
V3 could benefit such project.

a

b c

Fig. 4 Biological validation. a Intensity heatmap of tissue and pathology specific loci in seven HERV-V3 arrays: the observed intensities correlate
well with the expected loci specificity. For each of the eight locus, the family and the probesets names are indicated (the family name and the
sub-region annotation are abbreviated in the probeset name). b Distribution of differentially expressed loci (DELs) between hPSCs and embryoid
bodies. While most of LDEs are found in MaLR-Dfam, HERV-Dfam and HERV-H, when normalized within family, the proportion of LDEs is higher in
HERV-H and HERV-XA34, consistently with Wang et al. [13]. c Intersection between pluripotent loci identified by HERV-V3 and NGS (Wang et al.):
despite a small number of shared loci (115), 55.7% of HERV-V3 loci coverage is contained in this intersection
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