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Abstract

Background: Post-translational modification (PTM) of proteins is central tomany cellular processes across all domains
of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many
PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been
recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range
of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of
modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects.

Results: We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the
Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all
PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal
patterns for N-terminal Nα acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we
identify a possible relationship between N-terminal Nα acetylation and regulation of protein degradation in stationary
phase, pointing to a previously unrecognized biological function for this poorly-understood PTM.

Conclusions: Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification
types and previously unobserved dynamic changes in modification across growth timepoints.
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Background
Post-translational modification of proteins (PTM) is a
ubiquitous paradigm for dynamic cellular response and
information transfer across all kingdoms of life [1].
Although historically PTM has been studied in the con-
text of discrete and tightly-regulated signal transduction
systems such as eukaryotic histone proteins [2], kinase
cascades [3, 4], and prokaryotic two-component systems
[5], it is only relatively recently, with the development
of tandem-mass-spectrometry-based proteomics, that the
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abundance and complexity of PTM has become apparent
[6]. A surprising result from many of these investiga-
tions has been that the phylogenetic distribution of many
PTMs is much wider than had been assumed. A num-
ber of PTM types previously thought to be restricted to
eukaryotic and metazoan species, such as lysine acety-
lation [7], serine/threonine phosphorylation [8], tyrosine
phosphorylation [9, 10], and ubiquitination-like protein
ligation [11], are now known to be relatively common in
prokaryotic proteomes as well. This realization, in com-
bination with the recognition that PTM plays a critical
role in growth and virulence of important prokaryotic
pathogens (e.g. [9, 12–16]), has highlighted the need for
a better understanding of prokaryotic PTM and partic-
ularly the need for deeper, proteome-scale analysis of
prokaryotic PTMs.
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In response to these needs, much progress in recent
years has been made in the mapping of important PTMs
across a wide range of prokaryotes [1, 7, 17]. However,
the vast majority of these studies are limited by only
examining a handful of easily-achieved culture condi-
tions and timepoints, and by only examining a single
PTM type in isolation. The former limitation is espe-
cially important, as batch cultures grown for short time
periods in rich media, as is most common for bacterial
proteomics experiments, may be a poor reflection of the
high-stress, nutrient-starved conditions in which bacteria
spendmost of their time in the wild [18, 19].While collect-
ing bacterial samples directly from their natural habitat
is generally infeasible for proteomics experiments given
the requirements for large cell numbers and pure sam-
ples, the starvation conditions commonly encountered
in a bacterium’s native habitat are thought to be largely
recapitulated in long-term batch culture [18, 19]. As an
exponentially-growing batch culture exhausts the read-
ily available nutrients in the growth medium, the cells
undergo a regulated transition into stasis by activating a
stereotypic stress response. This response usually involves
a decrease of or complete stop to cell division, steep
dropoffs in oxidative metabolism [20] and protein synthe-
sis [21], sequestration of ribosomes [22, 23], activation of
oxidative damage response systems [24, 25], and increased
protease-mediated protein turnover [26]. Eventually, even
this inactive state becomes unsustainable for the major-
ity of cells in the culture, and a large-scale die-off takes
place until the culture reaches an equilibrium where the
remaining cells are able to survive on the nutrients liber-
ated from their less fortunate culture-mates. This “deep
stationary” phase of batch culture is poorly understood,
but is characterized by a gradual loss of culturability (the
Viable But Non Culturable state [27]), likely related to
accumulated cell damage, and a dynamic equilibrium of
genetic changes as mutations advantageous for stationary
phase growth (Growth Advantage in Stationary Phase, or
GASP mutations [19]) are fixed by selection in the popu-
lation. The low rate of protein synthesis and the potential
importance of nonenzymatic protein-damage modifica-
tions in stationary phase makes an understanding of PTM
chemistry and dynamics during this portion of the growth
cycle especially important.
With a few very recent exceptions [28, 29], studies of

PTMs at different growth phases in E. coli have been
restricted to either a single modification or a handful of
pre-specified modifications (e.g. [10, 30–32]). This limi-
tation is largely due to both the relatively low abundance
of the PTMs examined, necessitating the enrichment of
modified peptides using PTM-specific antibodies [6] or
chromatographic separations [33], and data analysis tools
that are only useful for examining a small number of
pre-specified PTMs. While enrichment is necessary for

relatively transient modifications such as phosphoryla-
tion, particularly where a broad survey of targets rather
than PTM dynamics is the experimental goal, it has a
critical shortcoming in that it makes quantitative compar-
isons among PTM types, and perhaps more importantly
between modified and unmodified copies of an individual
protein, impossible. Adding to this problem is the fact that
many of the most commonly-used software packages for
MS/MS spectrum–peptide sequence matching (e.g. Mas-
cot [34], Sequest [35], OMSSA [36], or TANDEM [37])
are limited by the need to create an in silico database of
theoretical spectra using an existing peptide library; while
this approach facilitates rapid searching, it makes searches
involving more than a few PTM types computationally
unwieldy. The spectrum of PTMs beyond a handful of
well-studied examples is therefore largely unexplored.
In this work we utilize a recently developed com-

putational tool for unrestricted analysis of PTMs in
MS/MS proteomics data, MODa [38], to examine a
unique proteomic dataset [39] covering 9 timepoints of
the E. coli REL606 growth curve in minimal glucose
media from early exponential growth (3 hours post-
innoculation) to deep stationary phase (336h, or 2 weeks
post-innoculation). MODa uses a combination of de novo
sequence-tag matching and spectral alignment to make
assigning PTM-containing spectra across a wide range
of mass shifts computationally tractable, and this allows
us to construct an unbiased PTM spectrum across all
phases of growth for all modifications from −200 Da to
+200 Da. The fine temporal resolution of our dataset then
allows us to identify novel temporal trends in a number of
PTMs, including N-terminal Nα acetylation, C-terminal
glutamylation, and asparagine deamidation. In addition,
the lack of bias or enrichment for specific PTMs allows
us to track behavior of modified and unmodified pro-
teins across the growth cycle, and to identify a potential
functional relationship between N-terminal acetylation,
protein oxidative damage, and stationary-phase protein
degradation.

Results
We took advantage of a previously existing LC-MS/MS
proteomics dataset [39] isolated from 3 biological repli-
cate cultures of E. coli B REL606 sampled across 9
timepoints, from early exponential phase (3h post-
innoculation) to extended late stationary phase (336h, or
2 weeks post-innoculation). The raw spectra from this
dataset were used for simultaneous spectrum-sequence
matching and PTM identification using the hybrid frag-
ment matching/spectral alignment software MODa [38].
To reduce computation time and limit the occurrence of
false positives, we restricted the MODa search to single-
peptide mass shifts of +/− 200 Daltons, with one PTM
allowed per peptide spectral match (PSM). To further
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limit the occurrence of false positive matches, we used
the MODa “correct match” probability [38] to calculate
the false discovery rate (FDR) and construct subsets of
the highest-probability PSMs with 5 and 1% FDR (here-
after referred to as FDR5 and FDR1, respectively). The
samples in our analysis were treated with iodoacetamide
(IAA) to modify cysteines with a 57 Da carbamidomethyl
group; during MODa analysis, this was treated as a static
modification to cysteine (i.e. all modifications were rel-
ative to the molecular weight of Cys + 57Da). How-
ever, this results in an incorrect mass shift for any Cys
PTMs that prevent carbamidomethylation (e.g. oxida-
tion), so we added 57 Da to all Cys modifications to
ensure that mass shifts for these modifications matched
those for non-Cys residues. Note that this also results
in a small number of mass shifts falling outside the +/-
200 Da window specified in the initial MODa analysis,
e.g. the +209 Da mass shift due to combined dithio-
threitol (DTT) and carbamidomethyl modification of
cysteine [40].
Localization of modifications within peptides was per-

formed by MODa during the spectral alignment phase
[38]. To most effectively combine modifications among
overlapping peptides, we transformed these MODa pep-
tide position calls into protein coordinates and used them
to generate vectors of counts for all observedmass shifts at
every amino acid position across the proteome. A match-
ing set of unmodified counts was generated for all amino
acid positions by counting all observations of an unmodi-
fied residue across all peptides overlapping a given amino
acid position.
We identified a total of 2,527,135 PSMs across all 27

samples, corresponding to a total of 32,755 peptides that
occur in at least one sample; these peptides represent 3544
individual proteins when all timepoints are considered
(Table 1). FDR filtering lowers these numbers substan-
tially, yielding 1,980,884 PSMs and 22,776 unique peptides

across 2,445 proteins in the FDR5 set, and 1,473,636 PSMs
and 19,265 unique peptides across 2121 proteins in the
FDR1 set (Table 1). These filtered numbers are in agree-
ment with previous proteomic experiments in E. coli [31,
39, 41], with the slightly lower number of proteins in our
analysis, likely a result of the reduced sensitivity inherent
in the larger search space used by MODa.
We chose to focus on the FDR1 dataset for all subse-

quent analysis for two primary reasons. First, this was
the more conservative cutoff, and by our analysis did
not result in the exclusion of an excessive number of
PSMs. In addition, because PSM error rates can differ
significantly between modified and unmodified peptides
[42, 43] we wanted to select the dataset thatminimized the
differences in error rates between modified and unmodi-
fied PSMs. We did observe that the distribution of MODa
probabilities was in general higher for modified compared
to unmodified PSMs, (Table 1, column "FDR"), but this
difference was minimal in the FDR1 dataset (effective
error rates of 1.6% and 0.9% for modified and unmodified,
respectively).

A large fraction of the E. coli proteome undergoes PTM
during growth and starvation in glucose
Of the 1,473,636 PSMs identified across all timepoints in
the FDR1 dataset, a remarkably large fraction, 198,277
(13.5%), are predicted by MODa as having a putative
PTM. These modified PSMs corresponded to 8,369 out
of 19,265 unique peptides (42%) having at least one
modification in any sample, and 1,690 out of 2121 pro-
teins (79.7%) having at least one modification on any
constituent peptide. Interestingly, the proportion of the
proteome predicted to have at least one PTM remains
relatively constant across time points and biological repli-
cates. PSMs, unique peptides, and proteins all show very
little change in the proportion of overall PTM across all 9
time points (Fig. 1).

Table 1 Counts of PSMs, unique peptides, and proteins for unfiltered, 1% FDR, and 5% FDR datasets

Total PSMs Error Sum FDR Unique Proteins

Peptides

Unfiltered 2,527,135 44,4225.241 0.176 32,755 3544

Modified 608,357 19,0915.030 0.314 25,362 3478

Unmodified 1,918,778 253,310.212 0.132 7393 66

1% FDR 1,473,636 14,736.377 0.010 19,265 2121

Modified 198,277 3,224.088 0.016 8369 1690

Unmodified 1,275,359 11,512.288 0.009 10,896 431

5% FDR 1,980,884 99,044.212 0.050 22,776 2445

Modified 362,291 31,912.966 0.088 13,299 2188

Unmodified 1,618,593 67,131.246 0.041 9477 257
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Fig. 1 Global abundance of all modifications across growth
timepoints. Shown are the fraction of total counts of PSMs (a), unique
peptides (b), and proteins (c) containing at least one mass shift
passing the 1% FDR threshold at the timepoint indicated on the x-axis
for biological replicates 1, 2 and 3 (solid, dashed, and dotted lines,
respectively)

Composition of the E. coli PTM spectrum
A unique feature of our analysis strategy is the ability to
conduct an unbiased search for spectra matching post-
translationally modified peptides across a wide range of
possible mass shifts. We used MODa to search our raw
spectral data for 400 potential peptidemass shifts, ranging
from −200 Da to +200 Da; counts of PSMs for this range
of mass shifts are shown in Fig. 2 and Additional file 1.
The overall abundance of individual mass shifts varies

widely, with the most abundant mass shifts correspond-
ing to small functional group modifications. The most
abundant mass shift is a neutral gain of 1 Da (84,357
PSMs, 45% of all modified PSMs). In addition to simple
protonation, this mass change can result from a num-
ber of more complicated modifications and MS artifacts;
see Discussion. Other abundant mass shifts include oxi-
dations (+16 Da, 46,244 PSMs, 24% of all modified PSMs;
+32 Da, 1,563, 0.8% of all modified PSMs), metal ion
adducts such as sodium (+22 Da, 8,882 PSMs, 4.7% of
all modified PSMs) and potassium (+38 Da, 1,490 PSMs
0.79% of all modified PSMs), and neutral losses such as
deamidation (−17 Da, 9,780 PSMs, 5.2% of all modified
PSMs) and dehydration (−18 Da, 7,169 PSMs, 3.8% of all
modified PSMs).
Commonly studied regulatory PTMs are relatively rare

in our data, most likely due to their low abundance in
the proteome and the fact that our samples did not
undergo enrichment for specific modifications prior to
analysis. Although a large number of apparent acetylations
(+42 Da) were identified, only a handful of these map
to known acetylated lysine residues [30, 32, 44]. A small
number of phosphorylations (+80 Da) were identified,
although the majority of these are modifications to an
active-site serine that acts as a phosphoryl group donor
during catalysis in the metabolic enzyme phosphoglu-
comutase (see Table 2). We also recovered a number
of previously identified lysine methylation modifications
for the ribosomal proteins L7/L12 (encoded by the rplL
gene), L11 (encoded by rplK), and Elongation Factor
Tu (encoded by tufB), although the last two were only
observed in the first and third biological replicates,
respectively. A table of counts for all mass shifts recovered
by MODa is included in Additional file 2.

Distribution of target amino-acid residues varies widely
amongmass shifts
The most commonly modified amino acid across all
timepoints is methionine—nearly all of these modifica-
tions are a +16 Da shift corresponding to oxidation (see
Discussion)—followed by the hydrophobic amino acids
Ala, Val, Leu, Ile; amide-containing amino acids Asn
and Gln; and their carboxyl counterparts Asp and Glu
(Table 3). The observation of a large number of modi-
fications on amino acids with hydrocarbon side-chains,
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Fig. 2Mass-shift counts across all timepoints and datasets. Shown are the PSM counts for all mass shifts identified by MODa [38] between −200 Da
and +200 Da, summed across all nine timepoints and all three biological replicates; labeled peaks are the top 5 most abundant (by raw count) mass
shifts in the dataset

which are generally not expected to undergo PTM, can
likely be explained by a combination of incorrect assign-
ment of a mass shift to the amino acid (AA) by MODa,
modification of the backbone NH or CO groups, or selec-
tion of peaks with isotopically shifted masses during MS2.
The bulk of modifications to Ala, Val, Leu, and Ile are +1
Da modifications, consistent with most of these modifica-
tions being due to selection of 13C-containing peaks (see
file “DATA_TABLE_2_mass_shifts_by_AA.tsv” provided
as part of the data tables in Additional file 2). This effect
is expected to occur randomly across the proteome, so the
higher numbers for these particular amino acids are most

likely due to their higher abundance relative to other AAs
in E. coli proteins [45].
We constructed the distribution of targeted amino acids

for each mass shift by counting occurrences of each mass
shift–AA pair across all nine time points. We observed
significant differences among mass shifts in preference for
a single type (or, in some cases, groups) of amino acid
residues; the +22 Da and +38 Da modifications, for exam-
ple, show a broad distribution across AA types, while +16
Da and −2 Da show strong (though not exclusive) prefer-
ence for methionine. To quantify these differences in AA
distribution, we ranked mass shifts by the ratio: PSMs for

Table 2 Previously identified post-translational modifications recovered in our analysis

Locus Position AA Mass Shift PTM Biol. Repl. 1 Biol. Repl. 2 Biol. Repl. 3 Ref.

rplL 82 K +14 Da Monomethylation 38 / 56 (71%) 13 / 18 (72%) 71 / 87 (81%) [96]

tufB 57 K +14 Da Monomethylation 0 / 3 (0%) 0 / 6 (0%) 97 / 192 (50%) [54, 97]

+28 Da Dimethylation 0 / 3 (0%) 0 / 6 (0%) 41 / 95 (43%)

pgm 146 S +81 Da Phosphorylation 1/25 (4%) 0 / 11 (0%) 0 / 34 (0%) UniProt version 2015–08
released on 2015-07-22
(UniProt consortium)

gapA 124 K +42 Da Acetylation 0 / 39 (0%) 1 / 71 (1.4%) 0 / 239 (0%) [98]

213 K +42 Da Acetylation 0 / 0 (0%) 0 / 3 (0%) 7 / 25 (28%) [98]

icdA 242 K +42 Da Acetylation 1/198 (0.5%) 2 / 164 (1.2%) 0 / 184 (0%) [98]

glyA 346 K +42 Da Acetylation 0 / 0 (0%) 1 / 1 (100%) 0 / 17 (0%) [98]

fbaA 326 K +42 Da Acetylation 0 / 9 (0%) 1 / 17 (5.9%) 0 / 40 (0%) [98]

rplK 40 K +42 Da Trimethylation 1 / 16 (6.3%) 0 / 1 (0%) 0 / 16 (0%) [99]

rpsF 131 E +129 Glutamylation 122 / 219 (55.7%) 152 / 415 (37%) 64 / 169 (38%) [47]

secB 2 S +42 Acetylation 184 / 221 (83%) 169 / 215 (78%) 115 / 135 (85%) [55]

rpsE 2 A +42 Acetylation 0 / 0 (0%) 0 / 0 (0%) 5 / 5 (100%) [53]
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Table 3 Most commonly modified amino-acid residues

Residue Modified PSMs Percentage

M 42457 21.41

Q 13990 7.06

A 13682 6.90

N 13500 6.81

L 12581 6.35

V 11309 5.70

E 10872 5.48

G 10623 5.36

S 9528 4.81

T 8396 4.23

I 8267 4.17

P 8139 4.10

D 7859 3.96

K 5325 2.69

W 4964 2.50

Y 4274 2.16

C 4211 2.12

H 4084 2.06

F 3261 1.64

R 955 0.48

most common AA / mean(PSMs for all other AAs). AA
distributions for the the top ranked (most biased towards
one AA across multiple biological replicates) mass shifts
are shown in Fig. 3.
A large number of modifications with a strong pref-

erence for cysteine residues were identified in all three
biological replicates; most of these are likely artifacts of
IAA treatment during sample preparation, and corre-
spond to common modifications co-occuring with car-
bamidomethylation (+57 Da), e.g. +58 Da (57 + 1 Da),
+59 Da (57 + 2 Da), and +40 Da (57 - 17 Da). The +209
Da mass shift, corresponding to a carbamidomethylated
dithiothreitol modification of the cysteine thiol group, is a
minor artifact of the reduction and alkylation of cysteine
during sample preparation [40]. The +48 Da mass shift
was almost exclusively found at catalytic cysteine residues
in a handful of proteins, and corresponds to the hyperox-
idation of the cysteine thiol group (Cys-SH) into cysteic
acid (Cys-SO3H). This modification is likely to be inac-
tivating and irreversible, resulting in the increased accu-
mulation of the modified form throughout the stationary
phase. Among modifications targeting non-Cys residues,
putative oxidative modifications show the strongest bias
towards a single AA, with the +32 Da and +16/+17
Da modifications showing strong preferences for tryp-
tophan and methionine, respectively. The eighth-ranked

Fig. 3 Distribution of selected mass shifts across amino acids. The
height of bars within each row represents the fraction of total AA
positions for the mass shift (indicated on the y axis) that were
identified on each amino acid residue type (columns). Individual bars
within each column represent fractions for each biological replicate
(replicates 1, 2 and 3 from left to right within each column). Mass
shifts are ordered by the single-AA bias score (the ratio of counts for
the most commonly modified AA type to the mean of the counts for
all other types; see Methods) with the highest score (most biased for
a single AA) at the top; only the top 20 mass shifts are shown. Note
that a constant mass shift of +57 Da was added to all cysteine
modifications to correct for the presence of carbamidomethylation,
meaning that a small number of cysteine modifications (e.g. +209
Da) fall outside of the mass range scanned by MODa (+/ − 200 Da)

−48 Da modification is likely also a result of oxidation
via dethiomethylation of methionine residues [46]. The
strong preference of the acetylationmass shift (+42Da) for
serine is largely due tomodifications on protein N-termini
(see Section “N-terminal and C-terminal modifications”).
A table of counts for each mass shift-amino acid pair is
included in Additional file 2.

N-terminal and C-terminal modifications
To search for modifications that preferentially occur at
protein N and C termini, we used Fisher’s exact test (FET)
to compare the ratio of modified : unmodified counts of
each mass shift occurring at the N or C terminus of a pro-
tein to the same ratio for mass shifts occurring at all other
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positions. FET p-values for N-terminal and C-terminal
enrichment were calculated for all mass shifts within each
biological replicate and filtered for consistency by requir-
ing all three replicates to have p < 0.05. Nt- and Ct-biased
mass shifts are shown in Tables 4 and 5.We also examined
the distribution of unique modified positions for these
Nt- and Ct-biased mass shifts as a function of normalized
protein length, to determine whether the observed posi-
tional bias was a general feature of the mass shift or due
to a small number of highly abundant modified positions
(Figs. 4 and 5).
Eight mass shifts were identified as Nt-biased after fil-

tering (Table 4 and Fig. 4). The strongest Nt preference
is displayed by the +42 Da mass shift, corresponding to

N-terminal acetylation, with modified N termini repre-
senting 35–42% of total observed counts for positions
with at least one +42 Da count. The remaining Nt-
biased mass shifts fall into two broad categories. The first
are rare modifications that occur at a small number of
positions at high frequency, such as the +28 Da mass
shift (possible retention of formylation on an Nt-terminal
fMet, 12–32%), the +64 Da mass shift (possible modi-
fication by acetate, 8–22%) and the +172 Da mass shift
(100% in all replicates). The second category is comprised
of common modifications that occur at low frequency
across a larger number of positions; this includes oxi-
dation (+16 Da, 10–14%), most commonly of a retained
Nt methionine, and protonation (+1 Da, 2–3%). A ben-

Table 4 Mass shifts occurring more frequently on N-terminal ends of proteins

Mass Shift Biol. Replicate N-terminal Non-N-Terminal p-value

+42 Da 1 759 / 1869 (40.61%) 132 / 7860 (1.68%) 0.0

2 657 / 1561 (42.09%) 111 / 6814 (1.63%) 0.0

3 682 / 1930 (35.34%) 147 / 7681 (1.91%) 0.0

+16 Da 1 1187 / 8016 (14.81%) 13633 / 510869 (2.67%) 0.0

2 972 / 6971 (13.94%) 9350 / 385682 (2.42%) 0.0

3 531 / 5216 (10.18%) 20571 / 423856 (4.85%) 7.36 × 10−55

+28 Da 1 16 / 128 (12.50%) 54 / 31261 (0.17%) 4.56 × 10−24

2 27 / 136 (19.85%) 11 / 28221 (0.04%) 1.78 × 10−55

3 45 / 140 (32.14%) 305 / 33420 (0.91%) 1.65 × 10−54

+156 Da 1 20 / 1051 (1.90%) 277 / 54832 (0.51%) 1.17 × 10−6

2 14 / 832 (1.68%) 154 / 58376 (0.26%) 1.34 × 10−7

3 26 / 674 (3.86%) 313 / 43231 (0.72%) 2.73 × 10−11

+17 Da 1 60 / 3107 (1.93%) 585 / 178417 (0.33%) 8.94 × 10−26

2 45 / 2730 (1.65%) 512 / 116280 (0.44%) 6.38 × 10−13

3 54 / 2070 (2.61%) 1960 / 147203 (1.33%) 7.64 × 10−6

+1 Da 1 138 / 6868 (2.01%) 27945 / 2042671 (1.37%) 1.88 × 10−5

2 151 / 5934 (2.54%) 25111 / 1455121 (1.73%) 5.28 × 10−6

3 204 / 6226 (3.28%) 30808 / 1810086 (1.70%) 1.52 × 10−17

+172 Da 1 15 / 15 (100.00%) 0 / 9431 (0.00%) 3.11 × 10−48

2 1 / 1 (100.00%) 1 / 11114 (0.01%) 1.8 × 10−4

3 14 / 14 (100.00%) 11 / 7365 (0.15%) 2.77 × 10−37

+64 Da 1 13 / 58 (22.41%) 13 / 1620 (0.80%) 1.84 × 10−13

2 4 / 48 (8.33%) 6 / 1340 (0.45%) 2.27 × 10−4

3 13 / 103 (12.62%) 19 / 2119 (0.90%) 3.58 × 10−10
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Table 5 Mass shifts occurring more frequently on C-terminal ends of proteins

Mass Shift Biol. Replicate C-terminal Non-C-terminal p-value

+129 Da 1 165 / 703 (23.47%) 78 / 10189 (0.77%) 2.00 × 10−142

2 212 / 886 (23.93%) 49 / 8541 (0.57%) 1.98 × 10−177

3 82 / 502 (16.33%) 59 / 8478 (0.70%) 4.36 × 10−67

+16 Da 1 39 / 205 (19.02%) 14781 / 518680 (2.85%) 7.88 × 10−21

2 42 / 245 (17.14%) 10280 / 392408 (2.62%) 7.76 × 10−22

3 22 / 103 (21.36%) 21080 / 428969 (4.91%) 5.13 × 10−09

+130 Da 1 56 / 427 (13.11%) 2 / 366 (0.55%) 1.18 × 10−14

2 75 / 542 (13.84%) 0 / 549 (0.00%) 1.02 × 10−24

3 18 / 276 (6.52%) 0 / 196 (0.00%) 8.29 × 10−05

eficial feature of our analysis is the ability of MODa to
identify modified N-terminal residues even in the pres-
ence of un-annotated N-terminal methionine cleavages.
For the protein SecB, for example, we recovered abun-
dant N-terminal peptides which had both undergone
N-terminal Met cleavage and putative acetylation at the
penultimate N-terminal Ser residue (see Additional file 3),
despite the fact that this protein had not been anno-
tated as having its N-terminal Met cleaved in the UniProt
database.
Only three mass shifts were identified as Ct-biased

after consistency filtering (Table 5 and Fig. 5). Two of
these, +129 Da (16–24% of counts at C-terminal posi-
tions across the three replicates modified, compared to
< 1% of counts at all other positions) and +130 Da
(6.5–14% of counts at C-terminal positions across the
three replicates modified, compared to < 1% of counts
at all other positions), most likely correspond to the
same modification, C-terminal addition of a glutamate
residue. Interestingly, the third C-terminal mass shift is
oxidation (+16 Da), which is observed to occur at high
frequency (17–20% modified counts across replicates at
C-terminal residues with at least one +16 Da modifica-
tion, compared to 2.6–5% at all other modified positions)
on C-terminal residues as well as N-terminal residues,
although the C-terminal modification is observed for a
smaller set of proteins.
The C-terminal glutamylation modification is especially

interesting. The most frequent target for this modifi-
cation is the C terminus of the 30S ribosomal protein
S6 (RpsF), which is known to undergo post-translational
modification with 1–4 glutamate residues (mass = 129
Da) [47]. The enzymatic addition of these Glu residues
to S6 proceeds in a stepwise fashion, and any modifica-
tion of two or more Glu residues would fall outside the
range of mass shifts that were considered in our analysis,
so it is likely that the mono-glutamylated S6 we observed

only represents a subset of the total modified S6 present
in our samples.
We also identified a previously unreported C-terminal

+129 Da modification of the stationary phase ribosomal
stability factor RaiA / YfiA [22]. YfiA binds within the
mRNA tunnel of the 30S subunit [48, 49], where it inhibits
translation [48, 50] and prevents subunit dissociation and
100S dimer formation for a subset of ribosomes in station-
ary phase [51]. YfiA and S6 lie near one another within the
30S subunit, and both proteins’ C termini extend towards
the same region of the 16S rRNA on the subunit surface
(Additional file 4), although the modified C-terminal tails
themselves are not resolved in the crystal structure. The
temporal modification patterns of S6 and YfiA differ dra-
matically (Additional file 5). S6 levels of both total PSM
counts and Ct +129-Da modified counts peak in mid-
exponential phase, followed by a steep drop to a lower
number of counts that is maintained through late station-
ary phase; the relative proportion of +129 Da modified
counts remains nearly unchanged across all time points.
In contrast, YfiA shows low or no counts of either mod-
ified or unmodified PSMs until the onset of stationary
phase, when overall counts increase dramatically, accom-
panied by a low but constant level of C-terminal +129
Da modification through late stationary phase. The expo-
nential phase enrichment we observed for the +129 Da
mass shift is therefore due largely to changes in overall
expression of its target proteins rather than differential
modification.

Temporal patterns
The glucose starvation dataset used in our analysis is
unique in the wide range of timepoints (3h–336h) that
were sampled. Changes in abundance during different
phases of the growth cycle in liquid culture have been
observed for individual PTMs, but an unbiased exami-
nation of temporal variation in the global PTM profile
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Fig. 4 Distribution of Nt-biased mass shifts across positions in protein
sequence. The widths of traces within each row represent the density
of unique positions identified for the mass shift indicated to the left
along target proteins, normalized by protein length (x-axis). Traces are
plotted symmetrically about the x-axis. Mass shifts are ranked from
top to bottom by combined p-value from the Fisher’s exact test for
N-terminal modification enrichment across all three replicates (see
section “N-terminal and C-terminal Modifications” and Table 4), with
mass shifts having the strongest N-terminal enrichment at the top

has not been performed in E. coli. To identify mass shifts
with significant frequency changes over the growth cycle,
we first pooled four of our nine time-point samples into
exponential-phase samples (3h, 4h, 5h, and 6h, EXP) and
four into stationary-phase samples (24h, 48h, 168h, 336h,
STA). (We did not include the 8h sample in this analy-
sis.) We then grouped counts across modified amino-acid
positions by mass shift–AA pairs and compared the ratio
of modified:unmodified counts at all modified positions in
the EXP and STA pools using Fisher’s exact test (FET) [52].
Mass shift–AA pairs were called as significant if their FET
p-values passed a false-discovery rate filter (< 5% FDR
by the Benjamini-Hochberg step-down procedure) in all

three biological replicates. Because we used a two-tailed
test that was unable to determine the direction of enrich-
ment (i.e., EXP > STA or EXP < STA), we subsequently
divided significant mass shift-AA pairs into EXP > STA
or EXP < STA groups using the FET log-odds score.
We identified only a single mass shift that consis-

tently shows significantly higher levels of modification
in exponential phase across all three biological repli-
cates, a +16 Da modification of tryptophan (3.78–4.33%
of total counts at modified positions across the three
biological replicates have the mass shift in exponen-
tial phase, 1.60–1.69% in stationary phase, Table 6).
The behavior of this mass shift differs slightly across the
three biological replicates: in biological replicates 1 and 2,
the +16 Da Trp modification shows a spike in abundance
near the Exponential-Stationary phase transition (8h), fol-
lowed by a drop to near zero by mid-stationary phase
(48h), while replicate 3 shows a spike of enrichment ear-
lier in exponential phase (4h) followed by a steep drop off
at the 5h timepoint (Fig. 6).
We identified five mass shifts that consistently show

significantly higher levels of modification in stationary
phase across all three biological replicates: a +1 Da mod-
ification of asparagine (1.90–3.06% of total counts at
modified positions have the mass shift in exponential
phase, 2.95–4.60% in stationary phase); +42 Da modifica-
tions of serine, alanine, and threonine (29.78–31.71% EXP,
46.30–60.07% STA; 18.33–22.45% EXP, 34.81–46.46%
STA; and 0.0–3.37% EXP, 9.46–15.70%, respectively), and
a +48 Da modification of cysteine (0.94–1.09% EXP,
3.11–4.19% STA) (Table 7). As with the exponential-
phase-biased mass shifts, we observed different tempo-
ral patterns when timepoints are considered individually
(Fig. 7). For example, the +1 Da asparagine modifica-
tion and the +48 Da cysteine modification show steady
increases across stationary phase, reaching their high-
est value at the latest stationary phase timepoint (336h),
while the +42 Da modification to serine shows a more
step-like increase in abundance near the onset of sta-
tionary phase, with abundance remaining fairly constant
through the latest timepoints.

Preferential persistence of N-terminally acetylated
proteins in stationary phase
The N-terminal bias and preference for serine, alanine,
and threonine residues observed for the +42 Da mass
shift strongly suggests that this modification corresponds
to N-terminal Nα-acetylation. Although cotranslational
N-terminal Nα acetylation (NtAc) is widespread in
eukaryotic proteins, the prevalence and physiological sig-
nificance of this modification in prokaryotes is poorly
understood. In E. coli, only five native proteins are known
to possess an NtAc modification: the ribosomal proteins
S5 (encoded by the rpsE gene), S18 (encoded by the rpsR
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Fig. 5 Distribution of Ct-biased mass shifts across positions in protein sequence. The widths of traces within each row represent the density of
unique modified positions (i.e. positions with more than one modified PSM; each position is counted once per protein) identified for each mass shift
(indicated to the left) along target proteins, normalized by protein length (x-axis). Traces are plotted symmetrically about the x-axis. Mass shifts are
ranked from top to bottom by combined p-value from the Fisher’s exact test for N-terminal modification enrichment across all three replicates (see
section “N-terminal and C-terminal Modifications” and Table 5), with mass shifts having the strongest C-terminal enrichment at the top

gene), and L12/7 (encoded by the rplL gene)[53]; elonga-
tion factor Tu (EFTu, encoded by the tufB gene) [54]; and
the chaperone SecB [55]. In addition, a number of het-
erologous eukaryotic proteins are modified with an NtAc
when overexpressed in E. coli [56–59].
We identified 44 Nt-acetylated proteins (Additional

files 2, 3, 6, and 7) and were able to recover modi-
fied peptides from known Nt-acetylation target SecB
(Additional file 3) and a small number of peptides match-
ing Nt-acetylated ribosomal protein S5 (Additional file 7)
in our initial MODa dataset. The low peptide counts
for S5, as well as the absence of modified PSMs for
the other known (and highly abundant) targets riboso-
mal proteins S18 and L7/12, as well as EFTu, are likely
due to the presence of tryptic cleavage sites within a few
residues of the N-terminus in all three of these proteins
(Nt-AHIEKQAGE for S5, Nt-ARYFRRRKF for S18, Nt-
SITKDQIEE for L7/12, and Nt-SKEKFERTK for EFTu).
This means that most copies of the protein present in
our samples will produce N-terminal peptides too short
to recover during subsequent liquid chromatography and
MS/MS steps. Consistent with this interpretation, we

were able to recover abundant peptides from non-N-
terminal regions of all four of these proteins, and the small
number of S5 N-terminal peptides that were recovered
were all the result of missed cleavage events at the N-
terminal-most cleavage site. Among the NtAC peptides
that were recovered in our modA dataset, the Nt fragment
from SecB is by far the most frequently observed, repre-
senting 15–41% of the total Nt-Acetylated peptides across
the nine time points. In addition, six other proteins
from our dataset were previously identified as Nt-
acetylation targets in an enrichment-based analysis of N-
terminal modifications in Pseudomonas aeruginosa [13]
(see Table 8).
We observed that NtAc modified proteins are propor-

tionally more heavily modified in stationary phase (Fig. 7).
This pattern could be explained by (i) an increase in acety-
lation activity in stationary phase and/or (ii) a proportion-
ally larger decrease in non-acetylated copies of a protein
relative to acetylated copies in stationary phase. To dif-
ferentiate between these scenarios, we plotted total PSM
counts and NtAc-modified PSM counts for pooled NtAc-
targeted proteins across all nine time points (Fig. 8).When

Table 6 Mass-shift–amino-acid pairs with elevated frequency in exponential phase

Mass Amino Biol. Exponential Stationary p-value
Shift Acid Replicate

+16 Da W 1 285/6836 (4.17%) 248/8775 (2.83%) 5.55 × 10−06

2 238/6182 (3.85%) 141/7242 (1.95%) 4.31 × 10−11

3 282/6182 (4.56%) 113/6414 (1.76%) 9.13 × 10−20
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Fig. 6 Abundance across all growth timepoints of tryptophan monooxidation, the sole mass shift with stronger modification in exponential phase.
The plot shows the fractional modification Nmod/(Nmod + Nunmod) across all nine time points, for positions having at least one W +16 Da
modification at any time point. Individual traces show results for individual biological replicates 1 (solid lines), 2 (dashed lines), and 3 (dotted lines)

all NtAc-targeted proteins are considered (Fig. 8, top left
panel), the total number of PSMs stays appoximately con-
stant, while the number of NtAc-modified PSMs increases
by nearly twofold in early stationary phase, consistent
with scenario (i). However, NtAc-targeted proteins pooled
by penultimate amino acid (Fig. 8) or individual NtAc-
targeted proteins (Additional files 3, 6 and 7) show a
mixture of both scenarios. NtAc-targeted proteins with
a penultimate serine or threonine residue, for example,
exhibit a pattern consistent with scenario (i), similar to the
pattern for all targets (Fig. 8, top right and bottom left pan-
els). Proteins with a penultimate alanine, however, show
a slight increase in modified peptides at the onset of sta-
tionary phase, accompanied by a large drop in unmodified
peptides (Fig. 8, top right panel). Many of the the most

heavily NtAc-modified proteins also show this pattern,
such as LysS, SpeA, PdxH, and SecB (Additional file 3),
and IlvA and KdgR (Additional file 7). This preferential
retention of NtAc-modified peptides in stationary phase
suggests that NtAcmay play role in protein stability by act-
ing as an anti-degradation signal (see Discussion). A table
of all Nt-acetylation sites recovered by MODa is included
in Additional file 2.

Asparagine deamidation is strongly enriched in very late
stationary phase
An interesting temporal pattern was also identified for the
+1DamodificationofAsparagine residues, which increases
in frequency throughout stationary phase andpeaks at the last
timepoint (336h) (Fig. 7 and Additional file 8). A +1 Da

Table 7 Mass-shift–amino-acid pairs with elevated frequency in stationary phase

Mass shift Amino acid Biol. replicate Exponential Stationary p-value

+1 Da N 1 1273/45738 (2.78%) 2260/52371 (4.32%) 2.49 × 10−38

2 1133/31975 (3.54%) 1663/36568 (4.55%) 3.02 × 10−11

3 988/40658 (2.43%) 1313/43285 (3.03%) 8.55 × 108

+42 Da S 1 176/585 (30.09%) 322/534 (60.30%) 2.08 × 10−24

2 143/461 (31.02%) 287/509 (56.39%) 2.02 × 10−15

3 195/597 (32.66%) 269/570 (47.19%) 4.77 × 10−07

+42 Da A 1 55/261 (21.07%) 59/135 (43.70%) 4.15 × 10−06

2 55/202 (27.23%) 68/125 (54.40%) 1.22 × 10−06

3 38/210 (18.10%) 63/165 (38.18%) 2.08 × 10−05

+48 Da C 1 15/1604 (0.94%) 51/1217 (4.19%) 1.18 × 10−08

2 14/1285 (1.09%) 30/770 (3.90%) 4.80 × 10−05

3 1/964 (0.10%) 22/707 (3.11%) 6.93 × 10−08

+42 Da T 1 0/244 (0.00%) 57/363 (15.70%) 3.54 × 10−14

2 5/263 (1.90%) 51/321 (15.89%) 1.31 × 10−9

3 11/326 (3.37%) 40/423 (9.46%) 1.11 × 10−3
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Fig. 7 Abundance across all growth timepoints of mass shifts with stronger modification in stationary phase. Each plot shows the fractional
modification Nmod/(Nmod + Nunmod) across all nine time points, for positions having at least one modification of the indicated type at any time
point. Individual traces within each plot show results for individual biological replicates 1 (solid lines), 2 (dashed lines), and 3 (dotted lines). Mass shift
are ranked from top to bottom by p-value from the Fisher’s exact test for modification enrichment in exponential phase (STA > EXP; see Section
“Temporal patterns” and Table 7), averaged across all three replicates, with the most stationary-phase-enriched (lowest p-values) at the top

modification occurring on an asparagine residue is known
to be a signature of nonenzymatic asparagine deamida-
tion, in which a backbone nitrogen initiates a nucleophilic
attack on the amide carbon of the asparagine side chain
(or the asparagine amide nitrogen on the backbone car-
bonyl carbon) to form a cyclic succinimide intermediate
[60–62]. This intermediate can then resolve by hydrolysis
to either convert the original asparagine to an aspar-
tate residue, or rearrange to form an isopeptide linkage
through isoaspartate; both of these events result in a +1
Da mass shift.
We found that +1 Da modifications were the most

frequently observed modification in our dataset.
They likely result from a variety of sources, most impor-
tantly isotopic mass shifts from 13C-containing peptides.
While our dataset certainly contains peptides with +1

Da modifications resulting from isotopic peak shifts, two
observations support our hypothesis that a significant
fraction of +1 Da modifications to Asp are due to deami-
dation. First, +1 Da modifications from isotopic mass
shifts are expected to be more prevalent on peptides with
higher m/z values. There is indeed a general correlation
between peptides with high m/z values and peptides
called by MODa as having a +1 Da mass shift; while the
medianm/z value for all peptides is 808.04, that for +1 Da
modified peptides is 1001. However, while median m/z
values for peptides with +1 Da modifications to all AAs
except cysteine vary between 980 and 1065, the Asn +1
Da peptides stand out as having a lower median of 931.4,
and have anm/z distribution that is significantly different
from the overall +1 Da m/z distribution (Kolmogorov-
Smirnov test, p = 2.48 × 10−251). This finding is
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Table 8 Overlapping N-terminal Nα-acetylation targets between current data and P. aeruginosa [13]

E. coli Locus E. coli Peptide P. aeruginosa P. aeruginosa Peptide Description
Locus Tag Locus Tag

ECB_00686 sucB SSVDILVPDLPESVADATVATWHKK PA14_44000 MAIEIK Dihydrolipoamide
Succinyltransferase

ECB_03391 dppF STQEATLQQPLLQAIDLKK PA14_58490 METVLTAR Dipeptide transporter
ATP-binding subunit

ECB_00915 rpsA TESFAQLFEESLKE PA14_23330 SESFAELFEESLK 30S ribosomal protein
S1

ECB_00155 yadR SDDVALPLEFTDAAANKV PA14_08510 SIETFTPTPLLFTPGAANK Iron-sulfur cluster inser-
tion protein ErpA

ECB_00183 accA SLNFLDFEQPIAELEAKI PA14_23860 SNWLVDKLIPSIMR Acetyl-CoA carboxylase
carboxyltransferase
subunit alpha

ECB_03467 secB SEQNNTEMTFQIQRI PA14_67720 TEQATNGAADEQQPQFSLQR Preprotein translocase
subunit SecB

consistent with Asn +1 Da peptides being a mixture of
13C-peak selection artifacts and genuine Asn deamidation
modifications. In addition, high-PSM-count Asn +1 Da
modifications, but not +1 Da modifications to other AA
types, are enriched for Glycine, Serine, and Asparagine
residues at the amino acid position following the modified
Asn (Additional file 9), a pattern that is consistent with
known sequence preferences for Asn deamidation [63].
Although asparagine deamidation can occur sponta-

neously as an experimental artifact during preparation

of proteomic samples [64], a number of lines of reason-
ing suggest that at least a subset of the modifications we
observe were present in the samples prior to processing.
First, we observe a nearly identical pattern of increasing
Asp +1 Da modification across all three of our biologi-
cal replicates (Fig. 7). All timepoints were collected from
a single set of cultures started on the same day, each
biological replicate was grown independently (on a dif-
ferent day) from the others, and all timepoints from a
single replicate were processed for proteomic analysis in

Fig. 8 N-terminal +42 Da modified proteins are preferentially retained in stationary phase. Plots show unmodified (green) and +42 Da modified
(blue) PSM counts for all N-terminal positions possessing at least one +42 Da modification at any time point, averaged across the three biological
replicates. Shown are total counts (a), counts for peptides with a penultimate (i.e. following a cleaved N-terminal methionine) serine residue (b), a
penultimate threonine residue (c), and a penultimate alanine residue (d)
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parallel. The bulk of nonenzymatic deamidation during
proteomic sample prep has been shown to occur during
tryptic digest [64], with both longer incubation time and
basic pH increasing the occurrence of deamidated pep-
tides. The samples used to generate our data were treated
with a short tryptic digest (5h) in the presence of near-
neutral buffer (50mMTris, pH 8.0), conditions that should
limit spontaneous asparagine deamidation. In addition,
both pH and incubation time should be identical across
all timepoints (because samples were processed together),
and any nonenzymatic deamidation should therefore also
be constant across timepoints. The pattern does not
appear to be explained simply by increased expression
of modified proteins during stationary phase, as the pat-
tern is observed even for individual modifications that
have high abundance in both exponential and stationary
phases (Additional file 8). A table of all putative asparagine
deamidation sites recovered by MODa is included in
Additional file 2.

Oxidative modifications of methionine and tryptophan are
variable across biological replicates
Oxidation (+16 Da) modifications, particularly of methio-
nine, are very common in our data, but with the exception
of +16 Da modification of tryptophan residues (Fig. 6),
oxidations in general are not identified as having a sig-
nificant bias for either exponential or stationary phase.
Both Met +16 Da and Trp +16 Da show significant vari-
ability among the three biological replicates, with repli-
cates one and two showing a similar pattern of relative
modification enrichment over time, while replicate three
has a different pattern (Additional files 10 and 11). In
addition, for both modifications replicates one and two
show a peak of modified peptide counts centered at or
near the 8 h time point (the exponential-stationary phase
transition; this timepoint was excluded from our initial
comparisons of stationary vs. exponential enrichment),
with the proportion of modified PSMs then decreasing to
early-exponential-phase levels or below by 24 h.
The reason for the discrepancy between the third repli-

cate and the two others is unclear; the third replicate was
prepared at a later date than the first two replicates, so it
is likely that much of this variability is due to batch effects.
This observation in combination with the common occur-
rence of oxidative modifications as experimental artifacts
[65] makes it difficult to draw any biological conclusions
from the temporal patterns of oxidative modifications.
Because all samples within each replicate were prepared
in parallel, we would expect any artifactual modifications
to covary across samples in a replicate; our observation
of within-replicate variance correlated across at least two
samples is therefore difficult to explain unless some sam-
ples have a higher intrinsic rate of artifactual oxidation, or
some amount of genuine biological variation is present.

We observe the discrepancy among replicates only for
oxidative modifications and not for other modified pep-
tide counts or overall peptide levels, so one possibility is
that a difference in redox conditions in sample process-
ing influenced the number of oxidized peptides that were
recovered. Differential modification in the third repli-
cate is apparent in the temporal modification patterns
of individual target sites (Additional files 12 and 13),
but does not display a consistent pattern across sites.
Tables of all methionine and tryptophan oxidation sites
are included in Additional file 2.

Discussion
We have leveraged a large proteomics dataset [39] and
the fast multi-blind spectral alignment algorithm MODa
[38] to construct a comprehensive, unbiased map of all
protein post-translational modifications between −200
and +200 Da at 9 timepoints, spanning early exponen-
tial phase (3h post-innoculation) through late stationary
/ starvation phase (336h, or 2 weeks post-innoculation).
From this map, we have identified post-translational mass
shifts with statistically significant differences in modifi-
cation stoichiometry between N- and C-terminal ends of
proteins and between exponential and stationary phases.
This analysis has enabled us to identify previously unob-
served temporal patterns and novel target proteins for
known modifications, and to identify possible novel mod-
ifications. Finally, by comparing temporal patterns of
modified and unmodified PSM counts for individual AA
positions, we have been able to identify a possible relation-
ship between post-translational modification and protein
degradation rate in stationary phase.
Although decades of work have been dedicated to

studying the biochemical and physiological function of
post-translational modifications, much of this work has
focused on a handful of modification chemistries such
as Ser/Thr phosphorylation and Lys acetylation. Techni-
cal limitations in instrument sensitivity, sample prepa-
ration, and data analysis have meant that even these
well-studied PTMs are often studied in isolation, and
their place in the overall context of the cell, in terms
of the overall set of pathways and proteins that uti-
lize them, their interaction with other modifications,
and their abundance relative to other modifications, is
lost. An intriguing feature of our dataset is the relative
scarcity of the most commonly studied regulatory modi-
fications, such as phosphorylation and acetylation; in the
few cases where such modifications are identified, they
tend to occur at low frequency, even on very abundant
proteins (Table 2).
The overall shape of the E. coli modification spectrum

is very similar to that recently determined for Human
HEK293 cells [66] and a large collection of human pro-
teomics data from the PRIDE database [67]. Both of these
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studies found high counts of +1 Da modfications, ammo-
nia loss (−17 Da), dehydration (−18 Da), and mono-
and dioxidation (+16 and +32 Da); in contrast with
our results, these studies also identified high levels of
carbamylation (+43 Da) and phosphorylation (+80 Da).
Whether these differences are due to genuine variability in
proteome-wide modification levels or to differences in
experimental procedures is unclear.
We have identified examples of abundant modification

for N-terminal acetylation and C-terminal glutamylation.
While further work is necessary to establish that the
orders-of-magnitude differences in abundance between
these modifications and more well-known regulatory
modifications reflects their actual abundance in the cell,
our findings do suggest that these modifications may
play a more important physiological role than previously
thought. Both of these modifications are known to be
installed in a regulated and specific pattern on ribosomal
proteins, but their function either in the ribosomal con-
text or on other targets is largely unknown. In eukaryotic
cells, N-terminal (Nt) acetylation has a variety of func-
tions, including regulating protein stability, ER trafficking,
protein complex formation, and membrane attachment
[68], but there is no evidence for a similar role in prokary-
otic cells. Nt acetylation of E. coli 30S ribosomal subunits
S5 and S18 is thought to affect 30S ribosomal assem-
bly by governing direct contacts with the rRNA [69],
but no function for prokaryotic Nt acetylation outside
of the ribosome has been proposed. While Nt acety-
lation of eukaryotic proteins can either inhibit [70] or
enhance [71] degradation rates, our evidence suggests that
Nt-acetylated proteins in E. coli are subject to lower lev-
els of degradation than their unmodified counterparts.
The viability of mutants in the three known E. coli Nt-
acetyltransferase enzymes, RimI, RimJ, and RimL [53],
should make experimental investigation of this hypothesis
a tractable and interesting avenue for future research.
Similarly, the physiological role of C-terminal (Ct) glu-

tamylation has only recently begun to be uncovered. Early
investigations identified a Ct glutamyltransferase enzyme,
RimK, that installs poly-E tails on ribosomal protein S6
in vivo and in vitro [72], but the only phenotypic effect
observed in E. coli rimK mutant strains (other than
loss of S6 glutamylation) is increased resistance to the
aminoglycoside antibiotics streptomycin, neomycin, and
kanamycin [73, 74]. Nonetheless, RimK, and presumably
S6 Ct glutamylation, are conserved across a wide range
of bacterial species [75], and recent work in Pseudomonas
found profound changes in proteome composition and
compromised colonization and virulence phenotypes in
�rimK strains [76]. Our novel finding of an additional
target of C-terminal glutamylation, the ribosomal hiber-
nation factor YfiA, offers an additional experimental han-
dle with which to examine the biological and molecular

functions of this modification. The association of both
Ct-glutamylation target proteins with the ribosome is
especially interesting, because some evidence suggests
that RimK modifies S6 C-termini specifically on intact
ribosomes [75, 77], and RimK is known to catalyze poly-
L-glutamine formation in the absence of S6 [78]. The C-
terminal amino-acid residues of YfiA resemble those of S6
only in the presence of two glutamate residues in the last
two positions (DDAEAGDSEE for S6 and ANFVEEVEEE
for YfiA), indicating that targeting may largely be a func-
tion of YfiA’s structural association with the ribosome
rather than due to a specific sequence signal.
The presence of a gradual increase in asparagine

deamidation throughout our stationary phase sam-
ples is an intriguing observation. Asparagine deami-
dation/isomerization events occur spontaneously at a
low frequency at specific protein residues with favor-
able local structure and sequence context [61, 63],
and they are often observed in proteins that undergo
a low frequency of turnover such as muscle fiber
proteins [79] and lens crystallins [80]. This clock-like
behavior of Asp deamidation is consistent with our
observation of a steady accumulation of the Asp +1
Da mark through very late stationary phase (336h),
and it suggests that proteins having this modification
have been retained with little or no turnover through-
out stationary phase. Remarkably, many of the most
heavily modified target proteins are part of large supra-
molecular complexes, including six on ribosomal pro-
teins (N113 and N544 of ribosomal protein S1, encoded
by the rpsA gene, N77 and N146 of ribosomal protein
S5, encoded by the rpsE gene, and N89 of ribosomal
protein L14, encoded by the rplN gene), N64 of EFTu,
N77 of the genomic DNA structural protein H-NS [81],
and two positions (N110 and N111) on SucB, the E2 sub-
unit of the 2-oxoglutarate dehydrogenase multienzyme
complex (OGDHC) [82]. Although retention of intact
ribosomes through stationary phase is a well-documented
phenomenon [22, 23], and H-NS has been shown to
be involved in late-stationary-phase survival [83], reten-
tion of the OGDHC complexes has not been previously
observed.
Our work has several limitations. First, although the

consistent temporal signal across multiple replicates
strongly indicates that the major modifications dis-
cussed above are of biological origin, we cannot rule
out the possibility that a subset of these modifications
are experimental artifacts; the oxidative modifications
and asparagine deamidation in particular are known
to occur as artifacts of downstream sample processing
in MS/MS [65, 84], so further experimental verifica-
tion will be needed to confirm their biological origin.
Future studies applying our approach to datasets gener-
ated from PTM-installing enzyme mutant strains would
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be especially informative, as would applying targetedmass
spectrometry methods such as Parallel Reaction Monitor-
ing (PRM) [85] for precise quantitation of modification
levels and stoichiometry.
Our study is also limited by the need to exam-

ine a relatively small window of mass shifts
(−200 Da to +200 Da); many known modifications fall
outside of this window, such as glycosylation, longer
chain acylations, and lipidations [86]. In addition,
while the lack of bias for particular modifications
offers a number of advantages in our analysis strat-
egy, it also means that our results are more limited by
the inherent sensitivity of both shotgun MS/MS and
computational identification of PTMs. Consequently,
our data are biased towards highly abundant proteins and
mass shifts, a factor that likely explains the scarcity of
well-known PTMs such as lysine acetylation and phos-
phorylation in our data. Equipment improvements and/or
novel experimental procedures (e.g. [87]) will likely be
needed to enable detection of low-abundance or short-
lived PTM and other rare effects such as translational
mutations [88].
While our primary focus in this work was on dis-

covering novel PTM biology, we anticipate that our
findings will be of value to the mass spectrometry
community more generally. Our results highlight the
utility of unbiased, mass-shift-aware search strategies
for database mapping of spectra containing unexpected
PTMs that may otherwise have remained unassigned [67].
Furthermore, our results demonstrate that the pres-
ence of unexpected PTM can strongly influence the
accuracy of spectral-counting-based estimates of peptide
abundance, particularly when the goal is to determine
expression patterns over time. For example, we identi-
fied a number of proteins where the temporal pattern
of the Nt-acetylated peptide differs markedly from the
unmodified peptide (see Fig. 14), and from the com-
bined peptide total. If only the unmodified spectra were
assigned for a protein such as YadR (Fig. 14, left column,
second plot from top), abundance of this peptide would
appear to decrease at later timepoints in stationary
growth; if both modified and modified peptides are exam-
ined, it becomes clear that abundance remains constant
across the growth cycle.

Conclusions
In summary, the work presented here highlights the holis-
tic perspective and novel biological insights that can be
generated by combining unbiased PTM detection and
deep temporal sampling of bacterial growth. Station-
ary phase biology and post-translational modification in
prokaryotic systems are both still areas of active research
with many open questions, and we hope that the analy-
sis paradigm presented here can be applied to additional

organisms and growth conditions to gain broader insight
into prokaryotic physiology and evolution.

Methods
Origin of the analyzed data
All data were taken from a previously published E. coli
time course [39]. In that study, E. coliwas grown in glucose
minimal media and samples were collected at 8 different
time points: 3, 4, 5, 8, 24, 48, 168 and 336 hours past inocu-
lation. The entire experiment was carried out in triplicate,
with cultures in each time course grown at different times.
Mass-spectrometry on these samples was carried out as
follows [39]: Protein samples were prepared by trypsin
digest and each sample was then analyzed using liquid
chromatography mass spectrometry (LC/MS) on a LTQ-
Orbitrap (Thermo Fisher). The resulting data are avail-
able from the ProteomeXchange Consortium (accession
PXD002140) [89].

Post-translational modification identification and analysis
We analyzed the raw mass-spectrometry data via MODa
[38]. MODa is a naive Bayes spectral alignment algo-
rithm that identifies peptides and their associated PTMs
from the input mzXML spectral files. The program
needs a few additional parameters, such as enzyme
used, instrument used to capture the mass-spec data,
precursor and product ion mass tolerances, fixed mod-
ifications, any rules to apply on the digest, such as
semi-tryptic or fully-tryptic, number of modifications per
peptide, and the mass-range to search for PTMs. We ran
separate MODa searches for each of the 9 time points.
Since there were 3 biological replicates, this resulted
in a total of 27 MODa searches. We set the enzyme
used in the searches to trypsin, with fully-tryptic and
no-proline rules. We allowed for 2 missed cleavages.
We used a mass-tolerance for the precursor ion of 10
ppm, and the mass-tolerance used for the product ion
was set to 0.5 Da. Finally, we set carbamidomethylation
(+57 Da) of cysteine as a static or fixed modification.
As mentioned earlier, MODa requires a mass range
to search for variable modifications, so we ran MODa
searches for the mass range between −200 and
+200 Da. We used the E. coli B REL606 genome
sequence (GenBank:NC_012967.1 [90]) to create the
reference proteome.

FDR calculations using MODa probabilities
For each PSM assigned to a spectrum by MODa, the algo-
rithm calculates a probability PMODa using a logistic
regression model that uses a variety of spectral features
as parameters, trained on a standard set of correct and
incorrect spectral matches [38]. To restrict our dataset to
only high-quality PSMs, we used this probability to esti-
mate the False-Discovery Rate (FDR) of incorrect matches
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in our dataset by (i) ranking all PSMs by their PMODa
values, and then (ii) iteratively adding PSMs, starting
from the highest-probability matches, and calculating the
FDR as

FDR = 1
k

k∑

i=1
(1 − Pi),

where k is the rank index of the last added PSM and Pi is
the PMODa of the ith ranked PSM, until adding any addi-
tional PSMs would result in an FDR above the chosen
cutoff value.

Metrics and statistical tests for single amino-acid bias,
N-terminal/C-terminal bias, and growth-phase bias
To test the preference of each mass shift for modifi-
cation of a single type of amino acid, we calculated a
single-AA bias score Bs(A) for mass shift s and length
20 vector A of counts of unique positions bearing
at least one modification matching s for each amino
acid type:

Bs(A) = Um(A) + 1
Ūnm(A) + 1

where Um(A) = max(Ua∈A) and Ūnm(A) = 1
19

∑
a �=m Ua.

Note that “unique position” means that a given position in
a protein is counted at most once regardless of total PSM
counts at that position; this choice was intended to reduce
bias from modifications with high abundance at a small
number of positions.
To simplify our analysis, we constructed an intermediate

dataset of PSM counts calculated by amino-acid position
across all proteins in the REL606 annotated proteome.
Unmodified counts np,unmod for each position p (having at
least one modified or unmodified PSM) were calculated
by summing PSM counts for any peptides that overlap p
but do not have a modification (of any mass shift) at p.
Modified counts np,s were calculated by summing PSM
counts for any peptides with a modification of mass shift s
at protein position p.
To test for higher fractional modification by specific

mass shifts at the protein termini, we constructed 2 ×
2 contingency tables of the form shown in Table 9 for
each mass shift s in each of the three biological repli-
cates, where NXt(s) is the sum

∑
p=Xt(np,s + np,unmod)

Table 9 2 × 2 contingency table for Fisher’s Exact Test for
N-terminal- and C-terminal-enriched mass shifts

Nmod(s) Nunmod(s)

NXt(s) NXt,mod(s) NXt, unmod(s)

Nnon−Xt(s) Nnon−Xt,mod(s) Nnon−Xt, unmod(s)

for positions having at least one PSM with mass shift s
occuring at the terminus Xt (either C- or N-terminus of
a protein); Nnon-Xt(s) is the sum

∑
p�=Xt(np,s + np,unmod)

for positions p having at least one PSM with mass shift
s, occuring at all other positions (including the opposite
terminus); Nmod(s) is the sum

∑
np,s for positions hav-

ing at least one PSM with mass shift s; and Nunmod(s)
is the sum

∑
np,unmod for positions having at least one

PSM with mass shift s. We used these tables to perform
Fisher’s exact tests using a two-sided alternative hypothe-
sis, implemented in Python using the statistics module of
NumPy [91].
Similarly, to test for higher fractional modification by

specific mass shift × amino acid pairs in either exponen-
tial or stationary phases of growth, we constructed 2 × 2
contingency tables of the form shown in Table 10 for each
mass-shift–amino-acid pair in the three biological repli-
cates, where Nmod(s, a) and Nunmod(s, a) are as above and
NEXP(s, a) is the sum

∑
t=3,4,5,6(np,s,t + np,unmod,t), where

np,s,t is the count of PSMs modified by mass shift s at
position p in timepoint t for positions p of amino acid
type a having at least one PSM with mass shift s; and
NSTA(s, a) is the sum

∑
t=24,48,168,336(np,s,t + np,unmod,t)

for positions p of amino acid type a having at least one
PSM with mass shift s. We used these tables to perform
Fisher’s exact tests using a two-sided alternative hypothe-
sis, implemented in Python using the statistics module of
NumPy [91].
Analysis of sequence composition for +1 Da modifica-

tions was performed by first splitting all +1 Da modi-
fied positions into modifications localized by MODa to
asparagine residues and modifications localized to non-
asparagine residues. Each of these groups was ranked by
total PSM counts, and a +/− 5 amino acid sequence win-
dow centered at themodified residue was extracted for the
top 50 modified positions in each group. Sequences were
then submitted to WebLogo [92] to construct sequence
logos using default settings.

Additional software used for analysis
The analysis was performed in iPython [93] notebooks
using the NumPy and SciPy libraries [91] for numerical
calculations, the Pandas library [94] for data processing,
and the MatPlotLib library [95] for plotting. Macromolec-
ular structures in Additional file 4 were assembled in
MacPyMOL (version v1.7.4.4; Schrödinger, LLC).

Table 10 2 × 2 contingency table for the Fisher’s Exact Test for
exponential- or stationary-phase enriched mass shifts

Nmod(s, a) Nunmod(s, a)

NSTA(s, a) NSTA,mod(s, a) NSTA, unmod(s, a)

NEXP(s, a) NEXP,mod(s, a) NEXP, unmod(s, a)
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Additional files

Additional file 1: Abundance of all observed mass shifts across all 9
timepoints and 3 biological replicates. Color of heatmap corresponds to
the log2-transformed count of MODa-called modified PSMs in the 1% FDR
set bearing the mass shift indicated on the y-axis for each of the nine
timepoints (x-axis), for biological replicates 1, 2, and 3 (left, center, and right
panels respectively). Although the MODa analysis was conducted for the
mass window from −200 to +200 Da, no modifications were identified
with mass shifts below −130 Da or above +196 Da. (PNG 258 kb)

Additional file 2: Zip file containing several data tables in tab-separated
format, as well as a readme file that explains the contents of each data file.
(ZIP 175 kb)

Additional file 3: Temporally variable modification for individual proteins
with an N-terminal serine possessing a +42 Da modification. The plots
show unmodified (green) and +42 Da Modified (blue) PSM counts across
all nine timepoints (x-axis) for the N-terminal position of all proteins that
have both (i) at least one PSM identified by MODa as containing an
N-terminal +42 Da modification and (ii) having a penultimate serine (AA
position 2; i.e. the N-terminal residue following N-terminal methionine
cleavage). Counts represent the average of the three biological replicates.
Plots are ordered from top to bottom by the mean p value of the Fisher’s
exact test for preferential modification (see text) from left-to-right within
each row, and top-to-bottom across rows, with the most significant
protein at the top left. (PDF 24 kb)

Additional file 4: Relative locations of YfiA (blue) and native T.
thermophilus S6 (magenta) proteins in crystal structure of E. coli YfiA bound
to the T. thermophilus 70S ribosome (PDB ID 4V8I [49]). YfiA is positioned
within the 30S subunit mRNA tunnel, and S6 on the outer surface of the
30S subunit; the C-terminal tails of both proteins (black arrows) point
toward the same region of the 16S rRNA (light blue). The 17 C-terminal
residues for YfiA, including the terminal glutamate residues, were not
resolved in the crystal structure; the T. thermophilus S6 protein coding
sequence ends at residue 101, lacking the 30-AA unstructured C-terminal
domain present in E. coli S6. 16S rRNA is shown in light blue; 30S ribosomal
proteins (other than S6) are shown in light yellow; 50S ribosomal proteins
are shown in green; and 23S rRNA is shown in pink. (PNG 3630 kb)

Additional file 5: Modified and unmodified PSM counts for each AA
position with a C-terminal +129 Da modification across all timepoints. The
plots show unmodified (green) and +129 Da modified (purple) PSM counts
across all nine timepoints (x-axis) for the C-terminal position of the two
proteins that have at least one PSM identified by MODa as containing a
C-terminal +129 Da modification. Counts represent the average of the
three biologcial replicates. (PDF 14 kb)

Additional file 6: Temporally variable modification for individual proteins
with an N-terminal threonine possessing a +42 Da modification. The plots
show unmodified (green) and +42 Da Modified (blue) PSM counts across
all nine timepoints (x-axis) for the N-terminal position of all proteins that
have both (i) at least one PSM identified by MODa as containing an
N-terminal +42 Da modification and (ii) having a penultimate threonine
(AA position 2; i.e. the N-terminal residue following N-terminal methionine
cleavage). Counts represent the average of the three biological replicates.
Plots are ordered from top to bottom by the mean p value of the Fisher’s
exact test for preferential modification (see text) from top to bottom, with
the most significant protein at the top. (PDF 17 kb)

Additional file 7: Fraction of total peptides across timepoints with an
N-terminal alanine possessing a +42 Da modification. The plots show
unmodified (green) and +42 Da modified (blue) PSM counts across all nine
timepoints (x-axis) for the N-terminal position of all proteins that have both
(i) at least one PSM identified by MODa as containing an N-terminal +42 Da
modification and (ii) having a penultimate Alanine (AA position 2; i.e. the
N-terminal residue following N-terminal methionine cleavage). Counts
represent the average of the three biologcial replicates. Plots are ordered
from top to bottom by the mean p value of the Fisher’s exact test for
preferential modification (see text) from top to bottom, with the most
significant protein at the top. (PDF 17 kb)

Additional file 8: Modified and unmodified PSM counts for each AA
position with a significantly stationary-phase biased +1 Da modification to

asparagine. The plots show unmodified (green) and +1 Da modified
(brown) PSM counts across all nine timepoints (x-axis) for the 10
asparagine residues with the most significant p-values across all three
biological replicates. Counts represent the average of the three biologcial
replicates. Plots are ordered by the mean p value of the Fisher’s exact test
for preferential modification from left-to-right within each row, and from
top-to-bottom across rows, with the most significant position at the top
left. (PDF 20 kb)

Additional file 9: Amino Acid sequence logos generated using WebLogo
[92] for a +/- 5 AA window around the MODa-called site of modification for
the top 50 most abundant +1Da modifications localized at Asparagine
residues (A) and at all other residue types combined (B). Asparagine
residues show a preferential enrichment of Glycine, Serine, and Asparagine
AAs at the +1 position not observed for non-Asnmodifications. (PDF 347 kb)

Additional file 10: Modified and unmodified counts across timepoints for
all AA positions with a +16 Da modification to methionine, pooled by
biological replicate. The plots show the total unmodified (green) and +16
Da modified (magenta) PSM counts across all nine timepoints (x-axis) for
methionine residues that have at least one +16 Da modification at any
time point in any replicate. The three panels show counts for each of the
three biological replicates, replicate 1 (A), replicate 2 (B) and replicate 3 (C).
Note that the y-axis is plotted on a logarithmic (base 10) scale due to the
high number of total counts relative to modified counts. (PDF 16 kb)

Additional file 11: Modified and unmodified counts across timepoints for
all AA positions with a +16 Da modification to tryptophan, pooled by
biological replicate. The plots show the total unmodified (green) and +16
Da modified (orange) PSM counts across all nine timepoints (x-axis) for
tryptophan residues that have at least one +16 Da modification at any time
point in any replicate. The three panels show counts for each of the three
biological replicates 1 (A), 2 (B) and 3 (C). Note that the y-axis is plotted on a
logarithmic (base 10) scale due to the high number of total counts relative
to modified counts. (PDF 16 kb)

Additional file 12: Modified and unmodified counts across timepoints for
the top 10 exponential-enriched AA positions with a +16 Da modification
to methionine. The plots show unmodified (green) and +16 Da modified
(magenta) methionine PSM counts across all nine timepoints (x-axis) for
the protein and position indicated. Plots in columns correspond to the
three biological replicates 1 (left column), 2 (center column), and 3 (right
column). Counts represent the average of the three biologcial replicates.
Plots are ordered from top to bottom by the mean p value of the Fisher’s
exact test for preferential modification (see text), with the most significant
protein at the top. (PDF 25 kb)

Additional file 13: Modified and unmodified counts across timepoints for
the top 15 exponential-enriched AA positions with a +16 Da modification
to tryptophan. The plots show unmodified (green) and +16 Da modified
(orange) tryptophan PSM counts across all nine timepoints (x-axis) for the
protein and position indicated. Plots in columns correspond to the three
biological replicates 1 (left column), 2 (center column), and 3 (right
column). Counts represent the average of the three biologcial replicates.
Plots are ordered from top to bottom by the mean p value of the Fisher’s
exact test for preferential modification (see text), with the most significant
protein at the top. (PDF 25 kb)
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