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Abstract

Background: Metagenomics is the study of the microbial genomes isolated from communities found on our bodies
or in our environment. By correctly determining the relation between human health and the human associated
microbial communities, novel mechanisms of health and disease can be found, thus enabling the development of
novel diagnostics and therapeutics. Due to the diversity of the microbial communities, strategies developed for
aligning human genomes cannot be utilized, and genomes of the microbial species in the community must be
assembled de novo. However, in order to obtain the best metagenomic assemblies, it is important to choose the
proper assembler. Due to the rapidly evolving nature of metagenomics, new assemblers are constantly created, and
the field has not yet agreed on a standardized process. Furthermore, the truth sets used to compare these methods
are either too simple (computationally derived diverse communities) or complex (microbial communities of unknown
composition), yielding results that are hard to interpret. In this analysis, we interrogate the strengths and weaknesses of
five popular assemblers through the use of defined biological samples of known genomic composition and
abundance. We assessed the performance of each assembler on their ability to reassemble genomes, call taxonomic
abundances, and recreate open reading frames (ORFs).

Results: We tested five metagenomic assemblers: Omega, metaSPAdes, IDBA-UD, metaVelvet and MEGAHIT on known
and synthetic metagenomic data sets. MetaSPAdes excelled in diverse sets, IDBA-UD performed well all around,
metaVelvet had high accuracy in high abundance organisms, and MEGAHIT was able to accurately differentiate similar
organisms within a community. At the ORF level, metaSPAdes and MEGAHIT had the least number of missing ORFs
within diverse and similar communities respectively.

Conclusions: Depending on the metagenomics question asked, the correct assembler for the task at hand will differ. It
is important to choose the appropriate assembler, and thus clearly define the biological problem of an experiment, as
different assemblers will give different answers to the same question.

Background
Human microbiomes are the communities of microbial
organisms that exist on and in our bodies, and are known
to interact with our bodies in many ways. Recent studies
have linked features of the microbiome to human health
including brain, heart, liver and gut health [1–4]. It is
thought that identifying and studying these features at
both population and individual levels will provide insight

into disease risk [5]. However, the complexity of the chal-
lenge is not small given that the number of distinct micro-
bial cells are estimated to be about 1.3 times larger than
that of the human host [6], and the gene content is per-
haps an order of magnitude larger than that [7]. The ma-
jority of human microbiome studies have been taxonomic
in nature, focusing on 16S rDNA gene sequencing and
analysis, which has been useful, but fails to get at the func-
tional differences within and between species. The recent
explosion in the NGS space, which has allowed for whole
genome sequencing of microbial communities [5], holds
significant promise in this respect. Unlike single organism
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studies, a comprehensive set of genomes from which to
align is not available, and de novo assembly of sequence
reads into contigs is required for functional level analysis.
In this regards, the field is not yet fully developed - differ-
ent studies researching the microbiome utilize different
analysis pipelines with different assemblers [8–12]. The
assembler chosen has been shown to have an effect on the
results obtained from the study [13].
The assembler used affects the length and quality of the

contigs generated from a NGS run, thus impacting the con-
clusions drawn about a microbial sample. It is therefore im-
portant to make an informed decision when choosing an
assembler for a pipeline. As new assemblers become avail-
able, it is necessary to quantify assembler quality by bench-
marking them against existing tools using a consistent but
relevant set of metrics. Furthermore, the samples used to
benchmark these assemblers need to reflect the true com-
plexity of a biological sample, including being defined
enough to be quantifiable. Different large data sets, such as
the terrestrial sediment metagenomic dataset from Sharon
et al. [14], and those derived from the NIH Roadmap Hu-
man Microbiome Project (HMP) [15], have been used to
benchmark the performance of assemblers. While these
datasets may capture the true complexity of a human
microbiome, measuring the performance and specific
strengths of metagenomic assemblers on these datasets is
still a challenge, as the true genomic content of these sam-
ples is not known [14, 15]. To circumvent this problem and
evaluate the various aspects of assemblers more closely, we
utilized communities of species with known reference ge-
nomes in known abundances. Despite the reduced com-
plexity of these datasets when compared to most human
microbiome samples, the ability to precisely test different
challenges an assembler may face allows for a more in-
depth analysis of each metagenomic assembler, ultimately
allowing for an unbiased selection that is dependent on the
task at hand.
To determine the quality of metagenomic assem-

blies, the microbiome community often looks at 4
(or more) metrics focused on the nucleotide contigs
created by the assembler: the mean size of the con-
tigs in the assembly, the size of the largest contig in
the assembly, the number of misassemblies created
by the assembler, and the length of contig, X, where
the total length of all contigs of length ≥ X is greater
than or equal to half of the total assembly size (N50)
[8–11, 16]. These metrics give a good basis for deter-
mining the assembler’s ability to join low coverage
points of the genome, as well an understanding of the
assembler’s ability to distinguish between similar re-
gions across different genomes within the metage-
nomic set. They fail, however, to address questions of
functionality, such as the number of correctly recon-
structed ORFs versus the number of de novo ORFs.

The tool at the forefront of measuring assembler effi-
cacy against the previous metrics is metaQUAST [16].
However, most metagenomic data sets that assemblers
have been measured against via metaQUAST contain
microbial communities that are either complex and un-
known, such as the HMP [15], or known but contain
only a handful of species [17]. The larger data sets, while
accurately mimicking the human microbiome, convo-
lutes the challenges facing the assembler, and the smaller
data sets do not contain enough diversity to challenge
the assembler. In this study, we utilize the metaQUAST
tool to evaluate assemblies for multiple medium sized,
complex, known real and synthetic communities. Each
community is designed to evaluate a different challenge
a metagenomic assembler may face (Fig. 1).
As metagenomic assembly is still a work in progress,

there are a plethora of metagenomic assemblers to test util-
izing various algorithmic and computational approaches;
the Omega [18] assembler utilizes overlap graphs, whereas
MEGAHIT [10], IDBA-UD [8], metaSPAdes [9], metaVel-
vet [11], SOAPdeNovo2 [19], and RayMeta [20] are de
Bruijn graph based. Furthermore, RayMeta is implemented
using MPI, while other approaches run on standalone
Linux system. In recent years, de Bruijn graph based as-
semblers have been successfully used to assembly next gen-
eration short reads. We picked five of the available
assemblers to compare as follows: MEGAHIT was chosen
as it is the successor to SOAPdeNovo2 (https://github.-
com/aquaskyline/SOAPdenovo2), which is used by the re-
cently developed and popular MOCAT2 pipeline [12];
metaSPAdes as it was released recently and had self-
reported strong performance; IDBA-UD due to its strong
performance as noted by Nurk et. al [9]; metaVelvet, due to
its reported accuracy on low abundance species; and
Omega as it is an overlap graph based assembler.
We utilized the BEI resources microbial mock com-

munity (BEI #HM-783D). This community of microbes
is comprised of 20 different species with known, diverse,
reference genomes. BEI created two separate datasets
using this community; the previously published Mock
Balanced community [21], and the newly presented
Mock Staggered community, which is a community
comprised of the same microbes present in the BEI
mock community, but at different relative abundances
(Additional file 1: Table S1).
We also tested each assembler against a synthetic

community comprised of multiple different strains of 4
different species: Escherichia coli, a highly sequenced or-
ganism with an open pan-genome; Staphylococcus aur-
eus, a highly sequenced organism with a closed pan-
genome; Bacillus fragilis, a largely benign microbe found
in the gut with opportunistic pathogen potential; and
Peptoclostridium difficile, a commonly found gut mi-
crobe with serious pathogenic potential. While it is
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expected that all assemblers will perform much worse
with these communities, it is important to understand
the ability of assemblers to create contigs unique to each
strain. By comparing the efficacy of the assemblers
within both of these frameworks, we are able to deter-
mine the assemblers that are strong at finding accurate
contigs between and within species, as well as those that
can create accurate contigs for low abundance species.
Finally, we evaluate the differences of the functional

predictions from each metagenomic assembler by com-
paring the ORFs found in the assembly against the ORFs
in the reference genome. As the microbes within a meta-
genomic ecosystem interact through the metabolites
they consume and produce, functional abundance pre-
diction has been suggested as an accurate indicator of
health that is modulated by the microbiome [5]. By
examining the effects each assembler has on nucleotide
similarity via ORF similarity and abundance prediction
for each community, we are able to gain a refined under-
standing into the choice of metagenomic assembler.

Methods
Mock community DNA
The following reagent was obtained through BEI Re-
sources, NIAID, NIH as part of the Human Microbiome
Project: Genomic DNA from Microbial Mock Commu-
nity B (Staggered, Low Concentration), v5.2 L, for 16S
rRNA Gene Sequencing, HM-783D.

Mock communities
For the analysis of the BEI balanced mock community, we
utilized the data previously generated as described in our
previous study [21]. Similarly, the DNA for staggered
mock communities were generated as described with in-
put concentrations of DNA per organism are as found in
Additional file 1: Table S2. Library preparation and
sequencing were done utilizing the sample protocol as de-
scribed in the same paper [21].

Synthetic communities
Ten strains of each of Staphylococcus aureus, Bacillus
fragilis and Peptoclostridium difficile, were arbitrarily
chosen and the verified unique reference genome se-
quences for the strain were pooled into a single refer-
ence file per species.

Read simulation
Reads were simulated for the single species communities
via wgsim (https://github.com/lh3/wgsim). The commu-
nity was simulated at a uniform coverage per strain deter-
mined by the length of the strain’s genome. Otherwise, the
−1 100, −2 100 and -d 300 flags were set.

Genomes used in simulations
The full genome sequences for read simulation were
downloaded from NCBI. A full list of strain taxonomy

Fig. 1 NGS reads from three different types of communities—the “balanced” community comprised of 20 unique strains of bacteria on the same order
of abundance, a “staggered” community of the same 20 unique strains of bacteria with highly variable abundances, and single species communities
comprised of 10 unique strains of a single species—were given as input to five different metagenomic assemblers: Omega, metaVelvet, MEGAHIT,
metaSPAdes and IDBA-UD. Each assembler created contigs from the reads. By comparing the contigs generated, the ORFs called from the contigs, and
the abundances of the ORFs and species, three different challenges metagenomic assemblers face were tested specifically. The results from these precise
comparisons allows for a directed selection of assembler when completing a specific research goal
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identifiers and accession numbers for all organisms can
be found in Additional file 1: Table S3.

Assembly
Prior to assembly, raw paired end reads were filtered using
Trimmomatic [22] (option: SLIDINGWINDOW:4:15
LEADING:3 TRAILING:3 MINLEN:90 MAXINFO:80:0.5).
This trims the reads using a sliding window of size of 4
with average quality score <15. After trimming, if either
read R1 or R2 is shorter than 90 bases, the whole read pair
is considered low quality and is removed from further ana-
lysis. After applying sequence quality filters, the balanced
and staggered Mock communities had 15,468,061 and
13,557,702 high quality paired end reads, respectively, that
were used as inputs for all the assemblers. Each dataset was
assembled using: metaSPAdes version 3.8.1 with default pa-
rameters except for –meta and –only-assembler. The
choice of kmer was managed by metaSPAdes program; it
creates graphs with 3 different kmer lengths. IDBA-UD
1.1.2 was run with –mink = 50 –maxk = 80 –step = 10, and
–min_contig = 180. The choice of kmer of 50–80 with step
10 for IDBA-UD is based on our previous analysis that
reached optimal performance. After sequence quality filter-
ing and trimming, reads of at least 90 bases were kept. We
thus did not use a kmer of 90 or longer. Shorter kmers (k
= 30, 40), were not used as they performed much worse
than the longer kmers. MEGAHIT1.0.6 was run via “–pre-
sets meta”, as the program manual suggested. MEGAHIT
also automatically uses multiple kmers in graph construc-
tion. The metaVelvet 1.2.01 pipeline was first running vel-
veth 51 -fasta -shortPaired, then velvetg -exp_cov auto
-ins_length 300; and finally meta-velvetg -ins_length 300 in
standard, non-SL mode, installed with MAXKMER-
LENGTH= 63, as the velvet pipeline suggested this
MAXKMERLENGTH when run with default parameters.
Omega was run with -l 60 as suggested for our insert size
by the Omega manual.

Assembled reads estimation
Not all programs used for analysis reported the number of
assembled reads. We thus estimate the number of assem-
bled reads by aligning the reads to the contigs of each as-
sembler via bwa [23] mem with default parameters.

ORF calling
To find the ORFs present on each contig, the program
Metagene [24] was used with default parameters on the
contig set generated from each assembler.

ORF clustering
To determine reference/aberrant ORFs, cd-hit [25] was
used with -c 0.95 -n 5 -M 1600 -d 0 and -T 8 to cluster
the combined set of ORFs from contigs and ORFs from
reference genomes. Clusters of reference-only ORFs were

called missing, and clusters of contig-only ORFs were
called aberrant. The contig ORFs in the remaining clusters
with reference ORFs are considered correct ORFs.

Aligning reads to contigs
To align the reads to the generated contigs, bwa mem was
used with default settings. The output SAM file was subse-
quently filtered to keep only the top hit (s) for each read.

Abundance prediction
Reads were assembled into contigs as described above
from which ORFs were then predicted using metagene
as described above. Similarly, ORFs were predicted from
the known references for the real samples. The com-
bined set of ORFs were clustered with cd-hit as de-
scribed above. All clusters containing a single reference
ORF were kept. The original reads were aligned to the
contigs and samtools mpileup was then run to find the
number of bases at each position for each contig. The
abundance for each organism is then calculated as the
average coverage for each ORF that was in a cluster con-
taining a reference ORF for that organism.

Results
A majority of microbial communities are heterogeneous
in composition as well as abundance. Failure to accur-
ately reconstruct the genomes of low abundance organ-
isms within the community is of concern as these errors
could miss critical functions that pertain to the disease
and health of the community or host. To assess the abil-
ity of assemblers to recover low abundance species, we
contrast the performance of each assembler on balanced
and staggered communities with the same organisms.
The major performance indicators, including largest
contig, number of misassemblies, fraction of genome
coverage, number of contigs and N50, are highlighted in
Tables 1 and 2 and are discussed in the following
paragraphs.

Balanced community
Within the balanced community, Omega was able to as-
semble the largest contig, followed by metaSPAdes, IDBA-
UD, MEGAHIT and finally metaVelvet (Fig. 2a). The total
length of all assemblies from the balanced community
were within 1 MB of the same size of one another (Fig. 2b),
though metaVelvet assembles more contigs to reach its
total assembly length. Furthermore, the N50 for metaS-
PAdes is noticeably (20-40 kb) larger than those from
Omega, IDBA-UD and MEGAHIT, all of which are also
40–60 kb larger than metaVelvet (Fig. 2b and Table 1).
However, when examining the number of misassemblies
created by each assembler, the pattern is reversed—meta-
Velvet has the least number of misassemblies, followed by
MEGAHIT, IDBA-UD, metaSPAdes and finally Omega
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(Fig. 2c), though Omega makes 5–14 fold more errors
than any of the other assemblers. MetaQUAST reports
the percent of the reference genome (PRG) covered from
the concatenated genomes of all reference organisms in
the mock community. For this metric, we see a third pat-
tern—MEGAHIT covers the most, then metaSPAdes, then
IDBA-UD, then Omega and finally metaVelvet, though all
are within 2 percentage points of one another (Fig. 2d).
All assemblers were estimated to utilize at least 99.0% of
input reads during assembly, in concordance with their
near complete PRG.

Staggered community
When examining the staggered community, the differences
in the largest contig size from metaSPAdes, IDBA-UD and
MEGAHIT remains quite small—Omega has a greater lar-
gest contig size, and metaVelvet has a much smaller largest
contig size (Fig. 2a). The total length of the assemblies,
however, are quite different (Fig. 2b). MetaSPAdes covers
the most number of bases, followed by MEGAHIT, then
IDBA-UD, then Omega and finally metaVelvet. The N50s
of the staggered community are also different from the bal-
anced community, with metaVelvet and Omega almost
10 kb larger than metaSPAdes, followed by MEGAHIT and
finally IDBA-UD (Fig. 2b and Table 2). It is important to
note that while the N50 is much larger for metaVelvet and
Omega, the number of bases in the assemblies are much
smaller than the others. MetaSPAdes, IDBA-UD and
MEGAHIT assembled over 99.0% of the input reads,
Omega assembled 98.1% of the input reads, and metaVelvet
assembled 94.8% of the input reads. As most reads in the
staggered community are from high abundance, and thus
well assembled, organisms, it is anticipated that a high frac-
tion of reads are assembled. It is important to note, how-
ever, that two assemblers can assemble the same number of
reads, yet capture organisms at different abundances, as

one assembler could utilize a large quantity of reads from
high abundance organisms, and another could utilize a
large quantity reads from low abundance organisms. The
difference in assembler performance is thus better
compared through the PRG of each assembly: metaSPAdes
covers the most, followed by MEGAHIT, IDBA-UD,
Omega and finally metaVelvet (Fig. 2d). The differences in
PRG are concordant with with the abundance of the species
within the staggered community. Furthermore, there is a
large difference between the number of misassemblies from
each assembler, perhaps due to the large disparity in the
number of bases covered by metaVelvet versus the other
assemblers, and the difference in assembly graph traversal
approach in Omega: metaVelvet has the least with 5,
followed by metaSPAdes at 66, IDBA-UD at 71, MEGAHIT
at 80 and Omega at 120 (Fig. 2c).

Synthetic communities
To determine the efficacy of each assembler to accurately
reconstruct strains, we simulated four unique balanced
communities of multiple strains from the same species.
We did not include Omega in further analyses due to the
larger error rate in both mock communities, and small
PRG from the staggered community (indicating a loss of
information). For three of the four single species commu-
nities, metaSPAdes has the largest contig (Fig. 3a), and for
the B. fragilis community, metaSPAdes, IDBA-UD and
MEGAHIT all have similar largest contig sizes (Fig. 3a).
MEGAHIT has the largest assembly for each community,
closely followed by metaSPAdes and IDBA-UD (Fig. 3b).
MetaSPAdes has a much larger N50 than the other assem-
blers for the communities (Fig. 3c). The number of misas-
semblies per community is close across assemblers, except
for E. coli reads assembled with IDBA-UD, which has four
fold more misassemblies as the next greatest assembler,
metaSPAdes (Fig. 3d). Finally, the genomic fraction

Table 1 Statistics from assembly of the mock balanced community

Assembly metaSPAdes IDBA-UD metaVelvet MEGAHIT Omega

Largest contig 1072791 886024 453604 566646 1304789

# misassemblies 61 58 21 42 310

Genome fraction (%) 98.724 98.291 97.45 99.033 97.664

Number contigs 1875 3245 6892 2979 3051

N50 109515 60486 23780 66228 87111

Table 2 Statistics from assembly of the mock staggered community

Assembly metaSPAdes IDBA-UD metaVelvet MEGAHIT Omega

Largest contig 413864 413271 244874 376020 381247

# misassemblies 66 71 5 80 120

Genome fraction (%) 62.318 57.563 33.978 60.826 47.344

Number contigs 10577 12499 3787 11305 10198

N50 15191 9903 24705 12028 24944
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covered by each assembly is much smaller than that of the
mock community, which is between 10 and 80% smaller
depending on the assembler and the community. MEGA-
HIT has the most for three of the four communities, and
is on par with metaVelvet for the P. difficile community.
However, metaVelvet either had the lowest PRG, or was
within 3% of the next lowest PRG, for the other three
communities (Fig. 3e).

ORF prediction
The contigs generated by assemblers may not accurately
recapitulate the ORFs from the reference genome, either
by missing ORFs or creating novel incorrect (aberrant)
ORFs. Within the balanced community, all assemblers are
able to recall over 99% of the ORFs from the reference set,
however, the assemblers have differing levels of aberrant
ORF calls, with metaVelvet having the most followed by
IDBA-UD, and MEGAHIT and metaSPAdes having

roughly the same (Fig. 4a). The staggered community,
however, is extremely variable between the different as-
semblers. MetaSPAdes has the least amount of missing
ORFs, and metaVelvet has an extremely high number of
missing ORFs, whereas metaVelvet has the least number
of aberrant ORFs and metaSPAdes has the most (Fig. 4a).
The single species communities cause a high level of

variance in the performance of the various assemblers.
For the E. coli and P. difficile communities, IDBA-UD
and metaVelvet predict a far larger number of aberrant
ORFs than either MEGAHIT or metaSPAdes (Figs. 4b
and 3d). However, MEGAHIT and metaSPAdes both
have a larger number of missing reference ORFs than
metaVelvet or IDBA-UD. In the S. aureus community,
IDBA-UD has over double the number of aberrant ORF
than the other assemblers, whereas other metrics are
close to one another (Fig. 4b). Finally, in the B. fragilis
community, IDBA-UD has the least number of Aberrant

Fig. 2 Assembler performance was measured in both communities by (a) largest contig. Contigs were ranked by length and are plotted against
cumulative length of assembly for balanced (b top) and staggered (b bottom). Furthermore, assembly performance was measured in both
communities by (c) the number of misassemblies and (d) PRG assembled. Dashed lines represent the contig number of the N50, with N50 occurring at
the intersection of the curve and it’s dashed line
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ORFs, but the relative difference between the best and
worst assembler is much less than in the other
communities (Fig. 4b).
It is difficult to examine the accuracy of the

abundance of each ORF in the community due to the
diversity of proteins in the community, and the diffi-
culty of measuring individual protein concentrations.
Thus, as a proxy for accuracy of ORF abundances, we
examined the concordance of species abundances
from reads mapping to the reference with species
abundances from ORF abundances. All assemblers
have similar estimates and the same coefficient of de-
termination (COD, R2 = 0.99) for the abundances of
microbes within the balanced community (Additional
file 2: Figure S1, top). Staggered abundance predic-
tion, however, varies, with metaSPAdes having the
strongest COD (R2 = 0.922) with the true relative
abundances, followed by MEGAHIT (R2 = 0.905),
IDBA-UD (R2 = 0.907), and finally metaVelvet (R2 =
0.856) (Fig. 5b). It is important to note that the num-
ber of ORFs found for some species is much lower in
comparison to metaSPAdes. IDBA-UD and MEGA-
HIT both only found a single ORF from one low
abundance species, whereas metaSPAdes has no
singleton species. Furthermore, IDBA-UD and MEGA-
HIT both miss one species in their abundance

estimates, and metaVelvet misses 4 more in addition
to the aforementioned 1.

Discussion
The quality of a metagenomic assembly is assessed by its
similarity to the reference set at either the nucleotide or
protein level. As metagenomic assemblies often contain
multiple contigs for the same reference, unique sets of nu-
cleotide level contigs do not necessarily contain the same
protein information, as ORF prediction can be disrupted
at the edges of a contig. We thus aim to assess the assem-
blers in both contexts, as different metagenomics experi-
ments may desire accuracy for different information.
The real mock communities were utilized to test the

ability of an assembler to find low abundance species,
while having an equal abundance community present as
a control. Species missing from both communities do
not necessarily indicate a difficulty in estimating the
abundance of scarce organisms, but rather a difficulty in
assembling the sequence for the species.
Within the balanced community, all assemblers covered

a similar number of bases and PRG. However, while
Omega, metaSPAdes and IDBA-UD had much larger lon-
gest contigs, MEGAHIT has the most stable contig size, ev-
idenced by its N50 almost equaling its largest contig, and
large linear range (Fig. 2b). While there is no clear choice

Fig. 3 Assembler performance measured by a largest contig, b total assembly size in megabases, c N50, d number of misassemblies and e PRG
shown for each assembler on simulated microbial communities from 10 strains of B. fragilis, S. aureus, E. Coli and P. difficil
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for the best assembler for nucleotide level information for
the balanced community as metaVelvet had a much lower
number of misassemblies than the other community des-
pite having lower scores in the other metrics (Fig. 2),
Omega makes 5–14 fold more errors than the other assem-
blers, making its output uninformative.

To understand the ability of each assembler to identify
low abundance organisms, we compared the staggered
community performance to the balanced community
performance. When shifting from assembling the bal-
anced community to the staggered community, metaS-
PAdes has a comparable number of misassemblies

Fig. 5 Concordance of species coverage predicted by reads (x-axis, both plots) with species coverage predicted by ORFs (bottom) and concordance of total
missing ORFs with abundance of species (top) for the Staggered community for each assembler. Both sets of graphs are plotted on natural log vs natural log
scales. For regression between coverages, mean values were used—violins of the ORF coverage distributions are shown surrounding each point

Fig. 4 Percent of ORFs present in the joint reference but missing from the assembly (missing) vs percent of ORFs present in the contigs but missing from
the reference set (aberrant) for the BEI mock communities (a) and the single species communities (b). An even trade off would be visualized as a linear shift
across the assemblers. A decrease in missing ORFs is usually paired with an increase in aberrant ORFs, with a larger magnitude of change in the number of
aberrant ORFs. Points in the single species community cluster more closely by species (shape) than by assembler (color), indicating that the similarity in the
sequences being assembled play a larger role in misassemblies than the assemblers themselves—general patterns within assemblers are still present
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(Fig. 2c), a 600 KB shorter longest contig (Fig. 2a), 20 M
less bases in its assembly (Fig. 2b) and 30% less PRG
(Fig. 2d). IDBA-UD also had a performance drop when
used on the staggered community, though it was less of
a drop than metaSPAdes; IDBA-UD’s longest contig fell
by 400 kb (Fig. 2a), but had a larger increase in misas-
semblies than metaSPAdes (Fig. 2c). In comparison to
IDBA-UD, metaSPAdes appears to capture longer and
more accurate nucleotide level information. It is also im-
portant to note that MEGAHIT has a large PRG (on par
with metaSPAdes) despite its short longest contig and
smaller N50 than metaSPAdes.
In the balanced communities, MEGAHIT and metaVel-

vet both have shorter longest contigs than metaSPAdes
and IDBA-UD (Fig. 2a), but cover a comparable number
of nucleotides in their assemblies (Fig. 2b). The shift to as-
sembling a staggered community causes MEGAHIT to
make the second most misassemblies of all assemblers
tested (Fig. 2c). However, MEGAHIT’s PRG is similar to
that of metaSPAdes (Fig. 2d). Despite metaVelvet having
the smallest contigs, its N50 remains unchanged by the
staggered community (Fig. 2b). By examining the correl-
ation of PRG with true species abundance, we are able to
see that metaSPAdes and MEGAHIT are capturing species
across all abundances, while IDBA-UD misses a few at
low abundance.
MetaVelvet, on the other hand, has a lower PRG yet de-

tects species in low abundance well (Figs. 2d and 5), indi-
cating that it is missing information from abundant species.
The number of misassemblies for metaVelvet decreases
when shifting to the staggered community as well. There
are two possible explanations: metaVelvet is skipping lowly
abundant species, thus not capturing their sequence and re-
producing the same errors as in the balanced community;
or metaVelvet is missing the low-abundant species and thus
not incorporating them into chimeric contigs, thereby both
missing some sequence data and skipping chimeric contigs
as compared to the balanced community. Regardless of the
cause, metaVelvet captures the most accurate nucleotide
level information for scarce species, albeit in small chunks.
A tool that combines both metaVelvet and metaSPAdes
may result in the longest and most accurate contigs for
low-abundant species.
In a separate pattern from the other four assemblers,

Omega has the largest longest contig size in both the bal-
anced to the staggered communities (Fig. 2a), yet a PRG
in-between that of metaVelvet and the other assemblers
(Fig. 2d). Furthermore, the number of misassemblies in
Omega remains far above (5–24×) the others in both the
balanced and staggered communities (Fig. 2c). The low
PRG combined with the high number of missassemblies,
large contig size and large size of misassembled contigs
(Additional file 1: Tables S4 and S5) indicates that Omega
is potentially over scaffolding, similar to metaSPAdes, yet

only capturing a small amount of the population, similar
to metaVelvet. This combination indicates that Omega
captures a small, yet highly erroneous, portion of the com-
munity. The high number of errors may be due to the
overlap graph approach of Omega.
To understand how well assemblers can delineate

strains of the same species, synthetic communities of mul-
tiple strains from the same species of microbes in bal-
anced abundance were simulated. Unsurprisingly, the
assemblers did not perform as well on these communities
than the previous mock communities (Fig. 3). While
metaSPAdes continued to have the largest contigs and
N50, MEGAHIT consistently had the largest assembly size
and largest PRG. The number of misassemblies appears to
depend more on the species being assembled than the as-
sembler being used since the number of misassemblies
per community is close across assemblers, except for E.
coli with IDBA-UD, which created 4 times as many misas-
semblies as metaSPAdes. Thus, MEGAHIT is an excellent
choice for recovering the different serotypes within a mi-
crobial community. MEGAHIT, for example, would be
ideal for detecting a particular pathogen in a community
of similar but non-pathogenic species.
To evaluate the effect of the breakpoints between con-

tigs generated by the assemblers on protein abundance
prediction, we used MetaGene to call ORFs from assem-
bled contigs. The only reads used for assembly were
those that came from the reference genome, therefore,
only two types of ORFs can be predicted by MetaGene:
1) ORFs from the reference data set that were assembled
correctly; or 2) aberrant ORFs, which are not present in
the reference. These ORFs are the only possibilities as it
is not possible for an ORF that is absent from the refer-
ence to be a novel and correct ORF since the BEI mock
community is comprised of organisms with known
complete references, and the single species communities
were simulated data sets.
In the balanced community, the assemblers can recap-

itulate over 99% of the reference ORFs, and only vary by
1% for aberrant ORFs; the staggered community, however,
has a larger disparity (Fig. 4a). Overall, as points shift to
the right on the X-axis, they also shift down the Y-axis, in-
dicating a relationship between the number of aberrant
ORFs and the number of missed reference ORFs. The in-
crease in the number of aberrant ORFs, however, is much
larger than the number of missing reference ORFs.
While metaVelvet creates accurate contigs (Fig. 3d),

the number of breakpoints within the contigs causes a
large loss of reference ORFs from the data set. MetaVel-
vet does, however, creates the smallest number of aber-
rant ORFs. MetaSPAdes has the least number of missing
reference ORFs, and the most number of aberrant ORFs.
This relationship is complementary to our previous no-
tion that metaVelvet, while having a much smaller
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amount of the metagenomic data set covered by its con-
tigs, has a much higher quality in the assembly for low-
abundant microbes. Similarly, metaSPAdes, while cap-
turing the most information, is highly prone to making
mistake in low abundance organisms during its scaffold-
ing process.
The trade-off of a larger change in the number of aber-

rant ORFs created than the number of reference ORFs
found is apparent in the single species communities as
well (Fig. 4b), though the ordering of accuracy within as-
semblers is shifted. Notably, the organism being assem-
bled has a much larger role in the capability of an
assembler to accurately assemble ORFs than the assem-
bler itself. Despite the large role species plays in assembler
accuracy across all communities, metaSPAdes consistently
misses the largest number of ORFs from the reference,
and metaVelvet captures the highest number of ORFs
from the reference. IDBA-UD had a large change depend-
ing on the community, having the lowest number of aber-
rant ORFs for B. fragilis, but the largest by a wide margin
for S. aureus. Over all communities, MEGAHIT is consist-
ently in the middle or the lowest, furthering its prowess
for strongly related community assembly.
We also assessed how sensitive each assembler was to

the relative abundance of the organisms present in its abil-
ity to successfully reconstruct the expected ORFs. This
analysis was done by comparing the relative abundance of
each species relative to the absolute number of missing
ORFs from that species for each assembler (Fig. 5, top).
MetaSPAdes is the most linear with its drop in perform-
ance with low abundant species, whereas MEGAHIT and
IDBA-UD both have a large, quick drop at mid abun-
dance. MetaVelvet has a bimodal distribution, with a large
number of missing ORFs at low abundance, and then al-
most no missing ORFs at high abundance. These results
further metaSPAdes as a strong choice for ORF prediction
in diverse communities where important functions might
only be found at low abundances, while also suggesting
that metaVelvet might be appropriate for ORF prediction
in the case where one favors accurate information for the
most prevalent functions in the community.
Finally, some efforts have examined functional capabil-

ities of a community as a whole. It is extremely difficulty
and infeasible, however, to accurately measure a commu-
nity’s protein abundances for ORF abundance compari-
son. We thus used a proxy to measure how each
assembler distorts the true abundances of ORFs. To do
so, we used the concordance of species coverage mea-
sured by mapping reads to the joint reference genomes
with the average coverage of ORFs called by the assem-
bler for each species. All assemblers recapitulate the
mock balanced community to relatively the same abun-
dances, with identical CODs (r2 = 0.99, Additional file 2:
Figure S1, bottom). We expect this similarity due to the

similarity between all previous metrics examined for the
balanced community.
There is a small difference, however, between an as-

sembler’s ability to determine the relative abundances of
species within the staggered community. This difference
mirrors the ability of each assembler to recreate refer-
ence ORFs. MetaSPAdes is able to most accurately re-
produce the relative abundances compared to IDBA-UD,
MEGAHIT or metaVelvet (Fig. 5, top). Though the dif-
ference in the COD is quite small for metaSPAdes,
IDBA-UD and MEGAHIT, metaSPAdes has more nor-
mally distributed ORF coverage profiles at the lower
abundances than IDBA-UD and MEGAHIT, indicating it
is finds a more consistent abundance across the ORFs it
reassembles. Furthermore, it misses no species, while
MEGAHIT and IDBA-UD each miss one, and only call a
single ORF for another (Fig. 5, bottom).

Conclusions
Depending on the metagenomic task, different assem-
blers should be chosen. Prior knowledge about the diver-
sity and relative abundances of the data set allows for an
informed choice of assembler. Within low abundance
environments, metaVelvet makes the smallest assem-
blies, but has a very small number of misassemblies
within those contigs. MetaSPAdes has the highest num-
ber of misassemblies, but creates the longest contigs. Be-
cause of this, metaSPAdes is an excellent choice for
determining ORFs within a metagenomic sample.
Within communities with similar microbes, MEGA-

HIT does an excellent job of reconstructing different
contigs from the set. Furthermore, it does well at
recreating the functional abundance profile of a com-
munity. IDBA-UD, while not leading in any category,
does not preform the worst in any category, lending
itself as a great metagenomic assembler for nucleo-
tide level information when prior information about
the community is not known. Future algorithms that
combine the results from multiple assemblers could
provide higher quality and longer contigs by prefer-
ring sequences generated by metaVelvet, and incorp-
orating them into the calls by metaSPAdes or
MEGAHIT depending on diversity and abundance of
the microbes within the target metagenomic ecosys-
tem. As metaVelvet captures highly accurate informa-
tion, revising the matching contigs or parts of
scaffolds from metaSPAdes and MEGAHIT to match
metaVelvet may help resolve some misassemblies cre-
ated. A simple default to the metaVelvet contigs for
similar sequences may not be complex enough to
capture the diversity and low abundance species that
metaSPAdes, MEGAHIT and IDBA-UD find, how-
ever. A tool which creates a consensus assembly
from the combination of metaVelvet and either
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MEGAHIT or metaSPAdes may prove to find the
most accurate information.

Additional files

Additional file 1: Table S1. Species abundance in mock staggered
community. Table S2. DNA concentration in mock staggered
community. Table S3. Tax ID and Accession Numbers for all organisms
in mock or synthetic communities. Table S4. MetaQUAST output from
mock balanced community. Table S5. metaQUAST output from mock
staggered community. (XLSX 84 kb)

Additional file 2: Figure S1. Concordance of species coverage predicted
by reads (x-axis, both plots) with species coverage predicted by ORFs (y-
axis) (bottom) and concordance of total missing ORFs (y-axis) with
abundance of species (top) for the Balanced community for each assembler.
Both sets of graphs are plotted on natural log vs natural log scales. For
regression between coverages, mean values were used—violins of the ORF
coverage distributions are shown surrounding each point. (PDF 104 kb)
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