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Abstract

Background: As crucial markers in identifying biological elements and processes in mammalian genomes, CpG
islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation,
chromosome inactivation and nuclesome retention. The generally accepted criteria of CGl rely on: (a) %G+C content
is > 50%, (b) the ratio of the observed CpG content and the expected CpG content is > 0.6, and (c) the general length
of CGl is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are
programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria.
Experiments indicate that in many cases %G+C is < 50%, CpGops/CpGeyp varies, and the length of CGI ranges from
eight nucleotides to a few thousand of nucleotides. It implies that CGI detection is not just a straightly statistical task

and some unrevealed rules probably are hidden.

Results: A novel Gaussian model, GaussianCpG, is developed for detection of CpG islands on human genome. We
analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from
statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by
balancing both sensitivity and specificity over known human CGl data sets. Compared with other models,
GaussianCpG can achieve better performance in CGl detection.

Conclusions: Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is
computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The
parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological
statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and

artificial data sets.
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Background

DNA genomes are punctuated by CpG islands where
high profiles of CpG sites are densely contained in
some genome regions. However, CpG contents in the
entire human DNA genome are generally suppressed to
only around 1% comparing with other combinations [1].
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Scientists find that it is in CpG islands where many
biological processes occur closely related with high den-
sity of CpG contents [2]. In vertebrate, DNA methylation
usually occurs in CpG islands and adds an additional
methyl to cytosine such that the gene silencing may
be caused by the additional methyl. This subtle pro-
cess can further give rise to gene regulatory differentia-
tion and various epigenetic issues. However, conventional
bisulfite modification-based methods to determine CpG
islands and methylation regions are time-consuming [3].
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Although new sequencing techniques are developed for
whole genome assays, it is reported to be too costly
[4]. Thus, computational methods for detection of CpG
islands are fundamental and effective for many biological
studies [5].

The first article about the computational prediction of
CpG islands for vertebrate genome was published in [6],
which proposed CpG island (CGI) problems and gave the
definition of CGI that has been widely accepted by the
later research. A milestone article [7] further constrained
the CGIs within only gene promoters and excludes Alu
repeat regions. However, recent studies have revealed
that CGIs are not only in the area of gene promoters
but also contained in the regions of both coding and
non-coding [4, 8].

The computational methods for the detection of CpG
island can be primarily classified into four categories in
terms of their main algorithms. The first type is window-
based methods [7, 9, 10] that use a scrolling window
to scan through the genome and detect CGIs by these
established statistical criteria. A canonical algorithm in
[7] shifts a size-adjustable window for 1 nt each time to
calculate the %G+C content and CpGyps/CpGeyp within
the window until encountering the satisfied CpG island.
Subsequently it shifts to next adjacent window and cal-
culates it again until the window does not satisfy the
criteria. At that time, it shifts back each nt until find-
ing the last satisfied boundary window. This algorithm is
widely used because it strictly follows the statistical crite-
ria. Obviously, one of obvious drawbacks of this method
primarily is that the window size determines the success
of prediction. That is, the larger window increases the pre-
dictive granularity and lags the computing speed while
the smaller window decreases the computing complexity
and increases the probability of omitting a potential CGL
Another drawback is that it probably is too sensitive to
predict a whole CGI where a CpG island can be divided
into many trivial segments.

The second type is Hidden-Markov-Model-based
(HMM) methods [1, 3, 11, 12]. These methods use the sta-
tistical transition model to compute transitive probability
within CpG island and between CGIs. The transition
probability between any two adjacent nucleotides are
obtained in the training phase for CGI regions and non-
CGI regions respectively. The probability of CG pair in
CpG-rich region is much higher than that in non-CGI
region. Thus, the log-likelihood ratio of the probabilities
for CpG and non-CpG is calculated to reflect the differ-
ence between two regions for each possible sequence [12].
However, the variant patterns in CpG islands can easily
add some implacable noises to prediction due to insuffi-
cient data training, resulting in that the performance of
the HMM-based method is negatively affected. Moreover,
it is computing-inefficient.
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Third, density-based methods [13, 14] intuitively calcu-
late the density of CpG sites, similar to statistical methods
in window-based methods. The density of CpG island can
be simply computed by taking into account the ratio of
the number of CpG sites in the CpG island and the total
length of the CpG island. Its basic idea is that it sets initial
seeds to iteratively adjust the density variables and expand
the CpG-rich regions. That is, initially it sets a low/loose
threshold of density to find the approximate border of
CpG islands and then use the high/strict thresholds to fur-
ther detect where the borders are as long as the sequence
within the borders meets the density requirement. The
main drawback of this method is that it relies so much on
the thresholds of the density that represents the simply
linear relation between the number of CpG sites and the
length of CpG island while the ground truth of CpG dis-
tribution in CpG islands probably cannot be delineated by
the linear model.

The fourth is the distance-/length- based method [15]
that clusters data by the distance between CpG sites and
provides a fast way to predict CpG islands. Compared with
other methods, this method studies the sequence prop-
erty of primary structure between any two adjacent CpG
sites, which provides a new perspective to understand the
phenomena of CpG island. However, this method is crit-
icized that it mainly depends on the composition of the
sequence, resulting in different outputs for a same CGI
in different contexts, and low predictive sensitivity with
trivial results [13].

The aforementioned methods cannot pursue both the
sensitivity and the specificity simultaneously. Either they
can have high sensitivity with low specificity, or high
specificity can be attained with the loss of the sensitivity.
It also implies that the original definition of CGI perhaps
deviates from the ground truth [16].

Our proposed model aims to fit the niche of previous
work by presuming that each CpG site has the potential
energy [17] that satisfy the Gaussian energy distribution
along its primary structure. To some extent, the term of
energy can be replaced by the term of pseudopotential
[18]. The Gaussian model is proposed to reflect and sim-
plify the principles of microscopical interactions in the
complex human genome. The model is computed not
by the linear statistical method but by the Gassian fil-
ter. Moreover, the parameters of Gaussian function are
not arbitrarily designated but deliberately chosen by opti-
mizing the biological statistics. Thus, it results in that
the proposed method shows the better performance over
other existing methods in detecting CpG islands.

Methods

Assumptions

In order to simplify the microscopical interactions in the
DNA genome and reflect the general principles of the
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complex system, we propose the Gaussian model based
on the following assumptions: (a) Each CpG site pre-
serves the potential energy and the CpG-rich regions
where energy are highly aggregated have more poten-
tial opportunities for epigenetic events. (b) Each CpG
island is regarded as an energy field where only the con-
tained CpG sites can affect mutually. (c) The energy of
each CpG site is closely related to its primary structure
or secondary/ tertiary structures. However, due to the
uncertainty of unknown secondary or tertiary structures,
its primary structure is the main determinant. (d) Since
we consider only the primary structure of CpG islands,
the energy in a certain location is directly relevant to
its neighboring CpG sites [17]. Namely, the energy of
each CpG site is distributed across its nearby regions.
(e) The energy at each nucleotide within the CpG island
is the sum of energy distributed by nearby CpG sites.
(f) Each CpG site has the same magnitude of potential
energy.

Notations

We assume that a DNA genome sequence s with the length
of n nt have m CpG islands each of which is notated as
CGl;,i €{1,2,...,m}. Inany CGI,, its length is /;, in which
k CpG sites lay on. At any CpG site cpgjj, j € {1,2,...,k},
we assume that it preserves the energy E. The energy is
distributed to its nearby nucleotides, which satisfy Gaus-
sian model function g(x) where x is the relative distance to
the corresponding Cp@ site and its directions, + and —,
represent 5" end and 3’ end respectively. The accumu-
lated energy for any nucleotide position x in CGI;(x €
{0,1,...,1; — 1}) is denoted as G;(x), which is the sum of
distributed energy g;;(x) at this location.

Gaussian model
We assume that each CpG site meets the Gaussian model
[17, 18] as shown in Eq. 1.

2

=X

e’ (1)

g = 2no

where x is the relative distance from this nucleotide to the
CpGsite, E is the energy constant each CpG site preserves
and o determines the smoothness of energy distribution.
When o — 0, it converges to an impulse function. From
this formula, we can compute that its energy is distributed
smoothly when o becomes large. Therefore, o determines
the curve of the distribution and further influences the
predictive accuracy of this model.

Further, we can calculate the accumulated energy at any
position x” in the CGI; as Eq. 2. & is the absolute loca-
tion in the CpG island while x is the relative distance to
CpG sites. ' = T'(x) and x = T~ (x) represent the linear
transformation between x and «'.
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where j € 1,2,...,k and k is the number of CpG sites
within this CpG island CGI;. The mean of pseudopotential
energy in CGI; can be expressed in Eq. 3.
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x=0 x=0 j=1
G; is a measure to evaluate the energy in the candidate
area: the higher energy it preserves, the more likely the
region can be a real CpG island.

Parameters

The scarcity of CpG sites in DNA genome determines that
CpG sites can bring larger amount of information com-
pared with other regions. From this aspect, the energy
proposed in GaussianCpG somehow look similar to infor-
mation energy. However, in GaussianCpG model, the
energy of CpG sites are presumed to distribute to sur-
rounding areas in an energy-rich CpG island. The adjacent
CpG sites overlap their energy with each other and keep
the energy saturated in the region. Obviously, the dis-
tances between adjacent CpG sites affect the strength
of energy in CpG islands. Additionally, an important
assumption is that the influence of CpG sites is only lim-
ited to its surrounding area and the far distant CpG sites
can barely affect the current location as our model. Thus,
before setting the parameters of Gaussian model, we need
to cluster the CpG sites so that only nearby CpG sites
are considered. That is, identifying the clustering thresh-
old is indispensable prior to setting the GaussianCpG
parameters.

We use a new term, CpG box, to investigate the dis-
tribution of CpG distances and identify the clustering
threshold. The CpG box is defined as the regions between
two neighboring CpGs sites where nucleotides within the
CpG dinucleotides are encapsulated likely in a box. We
extract all CpG boxes and observe the distribution of all
CpG-box lengths for human genome shown in Fig. 1.
The distribution matches the kernel of exponential dis-
tribution. In [15] the curve was locally modeled as an
approximate geometric distribution from around 20 nt to
100 nt, which did not reflect the ground truth of its distri-
bution. In Eq. 4, f(x) is the distribution kernel and x is the
length of CpG box, or say the distance between CpG sites.

re M x>0

where A = 1/& and & is the mean length of CpG box. In
terms of the exponential distribution in Eq. 4, the mean
length is at * = 95 while at the point of x = 128 the
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Fig. 1 Distribution of CpG-box length. Distribution curve of CpG box in length for human genome

third quarter of coverage is /n4/A. By removing the under-
represented value with large lengths (outlier), for example
the length greater than 1k nt, we compromise and choose
x = 118 with about 73% coverage as the clustering thresh-
old that eliminates the noises/outliers from extra large
lengths and keeps the most reliable elements for further
processing.

By clustering the CpGs, we can minimize the range of
potential CGIs. We extract CpG boxes from these CpG-
rich regions and draw the distribution chart. It is found
that the density estimation of this distribution fits Gaus-
sian kernel as the blue solid line shown in Fig. 2 where
human chromosome 21 is taken as an example. At the
location of x = 26 or x = 27, the Gaussian kernel has
the curve’s peak where the number of CpG-box length
approaches the maximum. Hence, x = 27 is chosen as the
length of digital filter. In terms of Gaussian model in Eq. 1,
the discrete Gaussian filter is created in Fig. 3.

Implementation

The main procedures of GaussianCpG are shown as Fig. 4:
(1) Find all CpG sites for each human chromosome; (2)
Cluster these CpGs in terms of the threshold of CpG-
box length, namely the distance threshold between CpG
sites; (3) Apply Gaussian filter to each cluster and calculate
the magnitude of Gaussian potential energy; (4) Utilize a
binary threshold to filter clusters; (5) Collect the filtered
clusters; (6) Calculate %G+C for the remaining clusters

and pick up those that meet the %G+C content. In the
first step, all CpG sites and CpG boxes are extracted from
genome as well as their properties, such as locations and
lengths of CpG boxes. Note that the repeat regions are
not included in this project following the conventional
methods even if some literature [19] indeed stated that
repeat area may involve more evolutionary force. Namely,
we locate all CpGs’ positions first from annotated chro-
mosome sequences and subsequently we divide a DNA
sequence into sub-sequences by cutting at each CpG. Each
sub-sequence that is also called CpG box has only two
CpGs that are respectively located at its beginning and
its end. Location information for CpG sites and CpG
boxes are all stored. In the second step, using the statis-
tical threshold x = 118 we have acquired in statistics
(described in the subsection of parameters), we cluster
these CpGs into groups that may contain lots of CpG
islands. The basic idea of clustering algorithm is to find
all CpG boxes whose lengths are greater than threshold
and then melt these CpG boxes from the sequence so that
it is divided into segments. Subsequently, we apply Gaus-
sian filter to scroll these clusters and calculate their energy
value for each location. Segments can have the accumu-
lated energy as well. After that, a binary filter is utilized to
the computed loci in order to detect if these loci should be
kept as CGI candidates, resulting in that new clusters are
generated. That is, inside the large segment, it might be
divided into sub-segments depending on the accumulated
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Fig. 2 Gaussian kernel estimation. Distance distribution of CGI candidates in human chromosome 21 as an example and its Gaussian kernel density

energy. The threshold we adopt here is 1.5 times of the
average energy across the digital filter because of 26 con-
taining 95% energy in terms of Gaussian function. At the
end, we count the percentage of %G+C content in these
sub segments with the threshold of 40% and determine
whether they are candidates.

For the computing complexity, the primary computing
difficulty is the calculation of Gaussian filter applied to
clustered CpG sites. To speed up the computation, we
generate a matrix table that stores the computing inter-
mediates to save the computational time. That is, for each
location involved Gaussian filter computation, it takes the
constant time for the calculation. Thus, its time complex-
ity in Gaussian computation is O(n). For the rest comput-
ing tasks, extracting CpG sites takes O(n) and sorting the
CpG distance takes O(mlogm). m is the number of CpG
sites and # is the sequence length, m << n. Therefore, the

time complexity of GaussianCpG is O(n). The program is
implemented in Python and its libraries.

Results

Data set and Evaluation Metrics

In [15], in order to examine the capability of predict-
ing those known CGIs for various methods, an artificial
dataset was generated from the known data set, in which
real CGIs were embedded into fake genome sequences.
By detecting the real CGIs in those artificial sequences,
the specificity and the sensitivity of the software can
be easily validated since the details of true and false
CGIs are exactly known. On the other hand, because the
unknown/hidden CGIs may exist in the real genome data
set, the validation in real data set is not so easy as that
in artificial data. In the same vein as the literature, we
generate an artificial data set to test the specificity of
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Fig. 3 Discrete Gaussian filter. The upper chart shows the value for each location; the lower box is the discrete filter




The Author(s) BMC Genomics 2017, 18(Suppl 4):392

1. Find all CpGs and distances between CpGs.

2. Cluster them in terms of CpG box length threshold.

3. Apply Gaussian Filter to each cluster and calculate
Gaussian energy value.

4. Binary threshold for filtered clusters

5. Calculate new clusters

6. %G+C applied to each cluster

Fig. 4 The main procedures of GaussianCpG

GaussianCpG. However, a little different from [15], the
artificial data set are created by padding the gaps between
known CpG islands using real human DNA sequences
located at the regions between two CpG-rich areas instead
of randomly padding nucleotides. The artificial data set
contains 6,786 known CpG islands from the annotation
database [20] with the nucleotide length of 6,854,696 nt
and 6,786 non-CpG islands with the nucleotide length of
5,919,255 nt. The Lengths of CGIs vary from a hundred
nucleotides to a few thousand of nucleotides.

In addition to artificial data set, in order to cross-
validate our method, we use the real DNA genome
data from UCSC annotation of Human Chromosome 21,
which have been well researched as the benchmark of epi-
genetic data. It contains 348K annotated CGls along with
46M DNA genome sequence.

Four mainstream software are examined in the per-
formance evaluation of CpG-island prediction, including
CpGPlot [10], CpGReport [10], CpGProd [9] and CpG-
Cluster [15]. In the nucleotide level, the performance
of each method is assessed by the observation of True
Positive (TP), False Positive (FP), False Negative (FN),
and True Negative (TN). Furthermore, the comprehen-
sive assessments are defined and calculated, including
sensitivity (Sn), specificity (Sp), accuracy (Acc), mean cor-
relation coefficient (Mcc), positive predictive value (Ppv),
performance coefficient (Pc) and F1 score.

Experimental Results

For the general performance, Table 1 merely manifests the
coverage rate of GaussianCpG for predicting those known
CpG islands from the artificial data, where its average
rate is 99.32%. Furthermore, Table 2 shows the compre-
hensive analysis for method comparison on artificial data
set. The top one in sensitivity is CpGProd while its speci-
ficity is in the last rank, and the top one in specificity is

Page 6 of 55
Table 1 Coverage rate of known human CGls
Chri# Known Predicted Coverage
Chr1 546 541 99.08%
Chr2 430 426 99.07%
Chr3 319 319 100%
Chr4 272 272 100%
Chr5 359 356 99.16%
Chré 293 292 99.66%
Chr7 304 298 98.03%
Chr8 254 253 99.61%
Chr9 359 356 99.16%
Chr10 31 311 100%
Chr 11 346 346 100%
Chr12 363 360 99.17%
Chr13 200 200 100%
Chr14 206 205 99.51%
Chr15 150 150 100%
Chr17 383 380 99.22%
Chr18 43 43 100%
Chr 19 315 314 99.68%
Chr 20 259 257 99.23%
Chr 21 133 131 98.50%
Chr22 215 214 99.53%
ChrX 253 250 98.81%
ChrY 5 5 100%

Known CGls: 6786, & predicted: 6740, & avg. coverage rate: 99.32%

CpGCluster while its sensitivity is near the worst. It means
that those methods can hardly approach the point where
both sensitivity and specificity are excellent. Whereas,
the performance of GaussianCpG in both sensitivity and
specificity are very near the top one, resulting in that its
accuracy, predictive value, performance coefficient and
the harmonic mean of sensitivity and precision are ranked
as the top.

Table 3 shows the results for real data set, similar to
Table 2. The bold values are the top results over others in
corresponding rows. One drawback for real-data bench-
mark is that the sequence may contain some real CpG
islands that probably are not annotated and some undis-
covered ground truth may be involved, it gives rise to the
increased False Positive for all programs. Thus, control-
ling the False Positive is the key to compete. This compar-
ison shows the comprehensive ability of GaussianCpG in
specificity, accuracy, mean correlationcoefficient, positive
predictive value, performance coefficient and F1 score.
The only inferior metric is in the sensitivity where Gaus-
sianCpG is listed in the medium level, close to CpGCluster
but better than CpGPlot.
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Table 2 Comparison in artificial data set
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Table 3 Comparison in real data set

aMethod: | I 1 v v aMethod: | I I v v
T 6854696 6854696 6854696 6854696 6854696 T 348930 348930 348930 348930 348930
P 2101562 3603662 5489738 2531549 5036243 P 255732 348546 333015 300315 292732
FN 4753134 3251034 1364958 4323147 1818453 FN 93198 384 15915 48615 56198
F 5919255 5919255 5919255 5919255 5919255 F 46361053 46361053 46361053 46361053 46361053
FP 20437 220957 1085303 9319 46906 FP 397423 1680731 1034353 583460 363493
™ 5898818 5608298 4833952 5909936 5872349 ™ 46124740 44417698 45331765 45923959 46075369

bMethod: | I I \Y vV bMethod: | I 1] \Y Vv
Sn 3066%  5257%  80.09%  3693%  7347% Sn 7329%  99.88%  9543%  8606%  83.89%
Sp 9965%  9627%  8166%  99.84%  99.21% Sp 99.14%  9635%  97.76%  9874%  99.21%
Acc 6263%  7282%  8082%  6608%  85.40% Acc 9895%  9638%  97.75%  9865%  99.10%
Mcc 99.04%  9422%  8349%  99.63%  99.08% Mcc 5311%  4065%  4761%  5360%  60.80%
Ppv 3057%  5093%  69.14%  3688%  72.97% Ppv 39.15%  17.17%  2435%  3398%  44.60%
Pc 4061%  5318%  6161%  4594%  74.04% Pc 3426%  17.17%  2407%  3220%  41.08%
F1 4682%  6749%  8175%  5389%  84.37% F1 5103%  2931%  3880%  4872%  58.24%

I:CpGPlot, I:CpGReport, II:CpGProd, IV:.CpGCluster, V:GaussianCpG
For Panel @: The unit of measurement is necleotide
True, T: the length of known CpG islands
False, F: the length of non-CpG islands
True positive, TP: the length of predicted known CGls
False positive, FP: the length of predicted CGls not in known CGls
False negative, FN: the length of not predicted known CGls
True negative, TN: the length of predicted non-CGls
For Panel P:
Sensitivity, Sn = TP/(TP + FN)
Specificity, Sp = TN/ (TN + FP)
Accuracy, Acc = (TP + TN) /(TP 4 FP 4+ FN + TN)
Mean correlation coefficient,

Mcc = TPXTN—FNxFP

TPFEN) X (TNFFP)x (TP~ FP) x (TN-FFN)

Positive predictive value, Pov = TP/ (TP + FP)
Performance coefficient, Pc = TP/(TP + FN + FP)
F1 score, the harmonic mean of precision and sensitivity,

F1 =2 x TP/(2 x TP+ FP + FN)
For Panel 2&°: Default parameters for all software are set

Note that the parameters of methods used in the com-
parison are from the default setting of their systems while
GaussianCpG adopts the default parameters described in
aforementioned sections.

From the validation experiments, we can observe that
the GaussianCpG model is a comprehensive method that
can balance both sensitivity and specificity and mani-
fest the excellent performance in predicting CpG islands
in human DNA genome. The main reasons that Gaus-
sianCp@ can achieve better performance than other mod-
els probably lie on three factors: (1) GaussianCpG is
designed on the fine-grained statistic analysis through-
out the whole human genome rather than coarse-grained
threshold-based criteria, which drives the generation
of the Gaussian model. (2) The established Gaussian
model probably coincides with some statistics of hidden
bio-chemical patterns that are still not discovered and
unknown so far. (3) GaussianCpG measures the struc-
tural properties of CpG box such as distance and energy

[:.CpGPlot, I:CpGReport, lI:CpGProd, IV:.CpGCluster, V:GaussianCpG
For Panel 2&P: The setting and metrics are same as those in Table 2

distribution, rather than arbitrary thresholds, that are
probably related to some undiscovered DNA structures.

As for the running time, Gaussian filter takes a lin-
ear time to filter all CpGs throughout sequences. Namely,
there are a constant number of calculations for each base
position, which we have discussed in Section 3. For large
scale human chromosomes (totally 3 GBytes), a sequential
program, written in python running on an Intel i7 CPU
with 8G RAM, takes less than 20 minutes for the entire
analysis, and hence is prompt enough to handle large-scale
genome input.

Discussion

A novel Gaussian model, GaussianCpG, is developed for
detection of CpG islands on human genome. We analyze
the energy distribution over genomic primary structure
for each CpG site and adopt the parameters from statis-
tics of Human genome. It exposes that GaussianCpQG is
a species-specific method. GaussianCpG currently is only
designed for human genome. That is, the parameters
should be different between species such as mouse and
human.

Therefore, some work are remained to the future. First
of all, it needs to be further tested on other species for
its generality and applicability, especially on vertebrates,
although GaussianCpG initially was designed for human
genome. It is because CpG clustering is often regarded as
a species-specific issue [21]. Second, the pattern of CpG
structure is still undiscovered. Statistical data can only
give an observation to the phenomena but cannot give
the reason. In [22], statistics were given while underlying



The Author(s) BMC Genomics 2017, 18(Suppl 4):392

bio-chemical or bio-physical analysis were needed. From
this perspective, energy analysis based on bio-chemical
or bio-physical data [23] probably is a right direction
to unveil the CpG sparsity that may further determine
the structure of CpG island. That is, integrating statis-
tics and molecule chemistry/dynamics might be a good
combination to reveal those non-conserved patterns and
hidden rules.

Conclusion

In summary, GaussianCpG is a novel Gaussian model
applied to human genome for epigenetic studies. The
design of GaussianCpG simplifies the interaction of
molecules and delineates the substantial procedure that
may affect epigenetic issues in the complex human DNA
genome. The comparative results show that GaussianCpG
can provide a reliable way for prediction of CpG island and
benefit the research on methylation and epigenetics. In
addition, GaussianCpG examines the CpG islands from an
unique perspective different from other existing methods.
It analyzes the statistics of CpG islands and constructs
an elaborate Gaussian filter. By using the pseudopotential
analysis on CpQG islands, the novel GaussianCpG model
can promote the performance on the real and artificial
data sets and it is validated as a more effective model
for computationally detecting the CpG islands on Human
genome sequences.
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