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Abstract

Background: Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus
bivittatus) have identified thousands of genes that are significantly differentially regulated during this process.
However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways
that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by
comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and
post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed
analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems.

Results: Identified enriched canonical pathways and upstream regulators indicate that while downstream
transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are
shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated
oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and
proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify
multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across
separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues.

Conclusions: These results suggest that largely divergent patterns of post-feeding gene regulation across tissues
are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated
oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during
such extreme regenerative growth.
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Background
The ability to massively downregulate metabolic and
physiological functions during extended periods of fast-
ing has evolved in multiple species of snakes. This
downregulation of physiological form includes the atro-
phy of organs such as the heart, kidney, liver, and small
intestine. Upon feeding, the size and function of these
organs, along with oxidative metabolism, is massively
upregulated to accommodate digestion [1–4]. Of the

snake species that experience these large fluctuations in
physiology, the Burmese python (Python molurus bivit-
tatus) is the most well-studied [5]. Within 48 h of feed-
ing, Burmese pythons can undergo up to a 44-fold
increase in metabolic rate and >100-fold increases in
plasma triglyceride content [3, 6]. Major organs also ex-
perience dramatic shifts in physiological form, including
40–100% increases in the mass of the heart, liver, pan-
creas, kidneys, and small intestine [2, 7–10]. This
extreme organ regenerative growth and atrophy is
unparalleled across vertebrates, and studies indicate that
this organ growth is driven by multiple cellular pro-
cesses, including cellular hypertrophy in the heart and

* Correspondence: todd.castoe@uta.edu
†Equal contributors
1Department of Biology, The University of Texas Arlington, 501 S.
Nedderman Dr, Arlington, TX 76019, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Andrew et al. BMC Genomics  (2017) 18:338 
DOI 10.1186/s12864-017-3743-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3743-1&domain=pdf
mailto:todd.castoe@uta.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


mixtures of hypertrophy and hyperplasia in the kidney,
liver, and small intestine [3, 5, 11, 12]. Organ growth
peaks around 1–2 days post-feeding (DPF), and by 10–
14DPF, organ form and function, as well as gene expres-
sion patterns, have completely reversed back to fasted
levels [1, 2, 5, 7–9, 13].
Previous studies have examined aspects of this post-

feeding response using morphological and physiological
assays [2, 3, 7, 14–16], analyses of gene expression [5, 13],
and combinations of the two [5, 14]. Together, these stud-
ies have demonstrated that transcriptional responses
following feeding are extremely rapid and massive, both in
the magnitude of expression changes and in the number
of genes with significant differential expression. Genes
important in a number of developmental, metabolic, pro-
liferative, apoptotic, and growth processes have been
shown to be involved in these major shifts in organ form
and function [5, 11, 13]. Previous studies have shown that
mammalian cells respond to the growth signals in post-
fed python serum, which likely indicates a conserved
response to core signaling molecules [11, 17]. We there-
fore hypothesize that a relatively small number of core
molecular regulatory molecules and signaling pathways
may underlie these responses. However, the identification
of a core set of upstream regulatory molecules and mecha-
nisms has been hindered by the large number of genes
that are significantly differentially expressed during this
response, making manual interpretation of this gene
expression data difficult. Additionally, the lack of compar-
able replicated sampling across multiple organs has
further prevented meaningful across-organ comparisons
of changes in gene expression in previous studies [13].
Accordingly, major gaps remain in our understanding of
the specific mechanisms and growth pathways that are
responsible for driving these extreme shifts in Burmese
python organ size and function, as well as how these
mechanisms may vary across different organ systems.
Our previous study of the Burmese python feeding

response addressed some gaps through the use of
increased replicates and more frequent time point sam-
pling for one organ, the small intestine [5]. We identified
over 1,700 genes that were significantly differentially
expressed during post-feeding regeneration in the small
intestine with many of these genes being functionally
linked to cellular processes such as WNT signaling, cell
cycling, and apoptosis. This study also linked changes in
gene expression with functional and phenotypic shifts by
comparing RNAseq data with physiological and histo-
logical data. This detailed analysis was only conducted
on the small intestine, however, and failed to address
any upper-level signaling mechanisms and pathways.
Here, we leverage fully replicated organ-specific time

courses detailing gene-level responses to infer canonical
pathways and regulatory molecules driving post-feeding

organ growth in the Burmese python. We examined
gene expression across four major organ systems – the
heart, liver, kidney, and small intestine. We combined
increased replicated sampling with statistical inferences
of pathway activation and regulatory molecule prediction
to identify the mechanistic drivers of cross-tissue, post-
feeding organ regeneration. Despite highly organ-specific
gene expression responses associated with organ regen-
erative growth, we found evidence for high degrees of
overlap in predicted pathways and regulatory molecules
underlying these growth processes between organs.
Pathways predicted to be involved in regulating this
physiological response include LXR/RXR activation,
PI3K/AKT, and mTOR signaling. Interestingly, we also
found strong and consistent evidence for the involve-
ment of NRF2-mediated oxidative stress response and
other stress-response pathways in this extreme example
of rapid organ growth. Our results suggest that post-
feeding, regenerative organ growth in the Burmese
python may stem from small numbers of key effector
molecules mediating a core set of growth and stress-
response pathways, which in turn activate diverse,
tissue-specific signaling cascades.

Methods
Feeding experiments
Burmese pythons were obtained from commercial
breeders. All animal care and tissue sampling was con-
ducted using protocols approved by the University of
Alabama Institutional Animal Care and Use Committee
(14-06-0075). Burmese pythons were sampled at three
physiological states: fasted (30 days since last meal),
1 day post-feeding (1DPF) and 4DPF, with the meal con-
sumed equaling at least 25% of their body mass. Previ-
ous studies have shown that organ masses and
functional phenotypes climax between 1 and 3 DPF [1,
2, 5, 9] and that phenotypes begin to decline by 4DPF
[2, 3, 7, 9]. We therefore chose sampling time points
here to capture gene expression patters during the
period before phenotypes climax (1DPF) and early in
their regression (4DPF). Snakes were humanely eutha-
nized by severing the spinal cord immediately behind
the head, and organs were immediately extracted, snap
frozen in liquid nitrogen, and stored at -80 °C. Between
three and six biological replicates (i.e., animals) were
sampled for each time point. See Additional file 1,
Supplementary Methods for additional details.

Transcriptome library generation
Total RNA was extracted from ~50 mg of snap-frozen
tissue using Trizol Reagent (Invitrogen), followed by
mechanical cell disruption using a TissueLyzer for
10 min at 20 strokes/min, and precipitation of RNA
using isopropanol. Individual Illumina mRNAseq
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libraries were constructed using either the Illumina Tru-
Seq RNAseq kit or the NEB Next RNAseq kit, both of
which included poly-A selection, RNA fragmentation,
cDNA synthesis, and indexed Illumina adapter ligation.
Completed RNAseq libraries were quantified on a BioA-
nalyzer (Agilent), pooled in equal molar ratios in various
multiplex arrangements, and sequenced on either an
Illumina GAIIx or Illumina HiSeq2000 (see Additional
file 1: Table S1).

Quantifying and visualizing gene expression
Raw demultiplexed Illumina RNAseq reads were quality
filtered and trimmed with Trimmomatic v. 0.32 [18]. In
instances where the same library was sequenced in mul-
tiple different runs, reads were combined and mapped for
each individual and time point. Mapping of reads to the
reference transcriptome of the Burmese python [13] was
conducted using BWA v. 0.6.1 [19] with the following
parameters: mismatch penalty = 2, gap open penalty = 3,
and alignment score minimum= 20. Expression was
determined using SAMtools v. 0.1.19 [20] by counting the
number of unique gene reads that mapped to an anno-
tated transcript, while excluding reads that mapped to
multiple positions. New RNAseq data for various time
points and replicates was analyzed together with previ-
ously published data from other individuals and replicates
[5, 13]. Newly-generated sequencing data were archived
on the NCBI Short Read Archive (NCBI: SRP051827).
Raw expression counts were normalized using TMM

normalization in edgeR [21] and all statistical analyses of
gene expression were conducted using normalized data.
We identified genes that were significantly differentially
expressed between time points using two approaches.
First, we estimated significant changes in gene expres-
sion between pairs of time points using pairwise exact
tests for the binomial distribution calculated in edgeR,
integrating both common and tagwise dispersion [21].
Second, to accommodate the time-series nature of the
experimental design, we also conducted step-wise re-
gression analysis of gene expression in maSigPro [22].
Regression analysis enabled the detection of genes with
significant patterns of differential expression across all
three time points. Gene expression heatmaps were gen-
erated in R and clustered with the package vegan [23],
with gene clustering calculated using average linkage
hierarchical clustering based on a Bray-Curtis dissimilar-
ity matrix. We used the program STEM [24] to identify
and visualize significant expression profiles for all genes
in our RNAseq data.

Assigning homology for functional analyses
To facilitate the use of various pathway activation and
regulatory molecule predictions, we annotated the full
Burmese python transcript set [13] with orthologous

human gene Ensembl [25] identifiers. Reciprocal tblastx
was first conducted between Anolis carolinensis and
Burmese python, and Anolis gene IDs identified as
orthologous to python genes were converted to human
Ensembl identifiers using homology tables from
Ensembl’s Biomart [26]. The same process of reciprocal
best blast using tblastx was performed between Burmese
python and Gallus gallus, followed by conversion of
chicken Ensembl identifiers to human Ensembl identi-
fiers using homology tables from Ensembl’s Biomart
[26]. We also performed reciprocal best blast of the
python with Homo sapiens. Finally, we used one-way
tblastx with anolis, chicken, and human to annotate
python genes that were not assigned an ortholog from
reciprocal best blast. Using this annotation approach, we
were able to assign human Ensembl IDs to 22,393 of
25,385 total python reference transcripts.

Pathway and upstream regulatory molecule analyses
To infer the involvement of upstream regulatory mole-
cules and pathways, we performed Core Analysis in
Ingenuity Pathway Analysis (IPA; Qiagen), using default
parameters. IPA uses gene identifiers and the fold-change
value for each differentially expressed gene to identify en-
richment patterns for Canonical Pathway Analysis (CPA)
and Upstream Regulatory Molecule Analysis (URMA),
and to infer the activation direction (activated versus
inhibited) between particular time points. These two ana-
lyses both use observed gene expression data to infer un-
observed features (e.g., activation state of key signaling
molecules), but differ fundamentally in how they use ex-
pression data to make inferences. CPA predicts the in-
volvement and activation/inhibition of canonical pathways
based on observed evidence from gene expression data,
specifically for genes that participate as higher-level regu-
latory molecules within a given pathway; analysis of ob-
served gene expression data incorporates information
from the Ingenuity Knowledge Base (including genes
known to be involved within a given pathway) to provide
both a statistical value of enrichment and a prediction of
the biological involvement for the pathway as a whole (i.e.
activated or inhibited; IPA documentation, Qiagen). In
contrast, URMA uses observed changes in gene expres-
sion specifically for genes at lower levels within pathways
(e.g., low level effectors) to predict activation or inhibition
of regulatory molecules upstream of these genes [27]. Due
to differences in these approaches, together these two
methods provide a well-rounded set of comparable infer-
ences for dissecting molecular mechanisms (Fig. 1).
For IPA analyses, we used only genes identified as

significant in pairwise differential expression analyses
between time intervals (per organ), and we input fold
changes per gene averaged across biological replicates,
along with our estimate of the orthologous human
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Ensembl ID for each gene. Pathways important to cross-
tissue physiological responses were isolated using the IPA
CPA (included with Core Analysis), with a right-tailed
Fisher’s exact test p-value of less than 0.01. We examined
only those pathways that were significant, based on a pre-
dicted activation z-score, in at least one of the four organs
for at least one of the post-feeding time points. For IPA
analyses, the z-score is used to determine the statistical
significance of the number of activated and inhibited pre-
dictions, and the sign of the value indicates the overall
activation state (i.e., positive versus negative activation).
We used a p-value cutoff of 0.01 for the CPA in IPA to re-
duce potentially spurious inferences. Upstream regulators
and hypotheses for global signaling molecules were
identified using URMA in IPA, with a Fisher’s exact
test overlap p-value threshold of 0.05. Pathway net-
work figures were modified manually from predicted
network figures generated in IPA. For analysis of spe-
cific pathways (mTOR signaling and NRF2-mediated
oxidative stress response), we also determined the
number of genes involved in each pathway that were
assigned python orthologs by our orthology analyses,
and how many of these genes were expressed at some
level in our dataset (see Additional file 1: Table S2).

Results
Trends in gene expression across organs
We used our expression data from all python samples (see
Additional file 1: Table S1) to examine the degree to which

different organ systems ‘turn on’ upon feeding and then
experience ‘regression’ towards pre-feeding patterns of ex-
pression at 4DPF. We found that for each organ, the ma-
jority of differentially expressed genes showed immediate
up- or downregulation from fasting to 1DPF. Interestingly,
each of the four organs examined appeared to experience
regression towards fasting levels of expression by 4DPF to
widely different extents, indicating that each organ may
have its own unique temporal program of growth followed
by atrophy. Across organs, the heart appeared to shift
towards regression the fastest. Other organs experienced
reversals of fasted to 1DPF expression shifts to varying de-
grees by 4DPF, ranging from the moderately paced small
intestine and kidney, to the slow-paced liver (Table 1).
STEM analysis further supported these temporal patterns
of up-regulation and regression across organs (see
Additional file 1: Figure S1).
Regression analysis across time points, which tends to

be conservative, identified hundreds of genes that were
significantly differentially expressed across all three time
points with 722 genes in the heart, 750 genes in the
kidney, 711 genes in the liver, and 1,284 genes in the
small intestine. Of the 2,922 total genes differentially
expressed across all four organs, 21% are unique to
the heart, 16% are unique to the kidney, 15% are
unique to the liver, and 32% are unique to the small
intestine (Fig. 2). Only a single gene was identified as
significant in all four organs across all time points:
coagulation factor X (F10).

Fig. 1 Conceptual overview of differences between Canonical Pathway Analysis (CPA) and Upstream Regulatory Molecule Analysis (URMA). Pairwise
analyses on experimental gene expression data (a) identify significantly upregulated and downregulated genes (b). Significantly differentially expressed
genes are then analyzed in two distinct IPA analyses (CPA and URMA) (c) Canonical Pathway Analysis predicts pathway activation based on overlap of
gene expression data with molecules within the pathway. d Upstream Regulatory Molecule Analysis predicts activation of specific regulatory
molecules based on downstream molecules in our gene expression dataset
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To further dissect patterns of expression change fol-
lowing feeding, we conducted pairwise analyses of gene
expression between time points for each organ. In the
heart, pairwise analyses identified 436 significantly differ-
entially expressed genes between fasted and 1DPF (208
upregulated and 228 downregulated; Table 1), and 76
genes were significantly differentially expressed between
1DPF and 4DPF (36 upregulated and 40 downregulated).
In the kidney, 344 genes were significantly differentially
expressed between the fasted state and 1DPF (244
upregulated and 100 downregulated), while only eight
genes were significantly differentially expressed from
1DPF to 4DPF (five upregulated and three downregu-
lated). In contrast to the heart, we found many genes
(147) significantly differentially expressed between fasted
and 4DPF in the kidney. In the liver, 461 genes were
differentially expressed within 1DPF (335 upregulated
and 126 downregulated), while only 41 genes were
significantly differentially expressed from 1DPF to 4DPF
(29 upregulated and 12 downregulated). With 371 genes
significantly differentially expressed between fasted and
4DPF, among all four organs, the liver was the least ‘re-
set’ to the fasting condition by 4DPF. Finally, the small
intestine showed higher levels of differential expression
than the other three organs. Within 1DPF, 2,313 genes
were significantly differentially expressed (1,271 upregu-
lated and 1,042 downregulated). From 1DPF to 4DPF,
268 genes were upregulated and 146 genes were down-
regulated, and 892 genes were differentially expressed
between fasted and 4DPF (Table 1).

Genes and pathways implicated in differential gene
expression in individual tissues
To move beyond gene-specific responses and towards
deciphering the mechanisms that may underlie growth
responses across different organs, we identified pathways
that were significantly activated/repressed between fast-
ing and 1DPF (Fig. 3). We found consistent evidence
that the NRF2 stress-response pathway is activated in all
tissues, except in the heart, where there was insufficient
data to determine the direction of activation. We also

found relatively consistent evidence for activation of the
related growth pathways mTOR and PI3K/AKT across
organs, although this inference was most significant in
the heart and small intestine. We also inferred the in-
volvement of the related pathways: LXR/RXR, LPS/IL-1-
mediated inhibition of RXR function, PPAR/RXR, and
PPAR signaling in multiple organs; the direction of
stimulation of these pathways was both variable across
organs and inconclusive in some organs. Substantial in-
volvement of cytoskeletal pathways, including Actin
cytoskeleton signaling and Actin nucleation by ARP-
WASP complex, was also inferred across organs and
positive in the kidney and small intestine, yet negative or
inconclusive for the heart and liver, respectively.
In addition to pathway activation/repression patterns

shared across organs, a number of pathways showed
substantial organ-specific directionality of response. Ex-
amples of this pattern include the growth-related AMPK
signaling pathway (which was activated in the heart,
repressed in the kidney and small intestine, and ambigu-
ous in the liver), ERK5 signaling (activated in the heart
and repressed in the small intestine), and Integrin signal-
ing (stimulated in the heart and repressed in the small
intestine). Lastly, a number of pathways appeared to be
organ-specific, including p38 MAPK and ERK5 signaling
in the heart and 14-3-3-mediated signaling in the small
intestine (Fig. 3).

Upstream regulatory molecule analysis of 1 DPF
responses
Our inferences of upstream regulatory molecules (URMs)
between the fasted and 1 DPF time points supported
many of the same molecular mechanisms underlying
organ growth identified via CPA, such as stress response,
growth, and lipid signaling pathways. We explored URM
predictions for all classes of URMs except biological
drugs, chemicals, and microRNAs. We found that many
predicted URMs were shared among organs, with 51
shared among all four organs. Predicted URMs also
showed substantial organ-specific patterns, with a large
number of URMs uniquely predicted for each organ. The
heart showed the largest number of unique URM predic-
tions (269), while only 123, 167, and 137 unique URMs
were predicted in the kidney, liver, and small intestine,
respectively (Fig. 4a).
To identify regulators with broadly relevant patterns

across multiple organs, we focused on URMs pre-
dicted significantly in at least three organs and with
moderate to high activation z-score (z > |1.5|) in at
least one organ. A subset of the URMs meeting these
criteria is shown in Fig. 4b, and the full set is shown
in Additional file 1: Figure S2. Many of these URM
predictions coincided directly with predicted canonical
pathways. NFE2L2 and ATF4, key regulators within

Table 1 Numbers of differentially expressed genes between
pre- and post-feeding time points for the four organs studied

Time point Comparisons

Fasted v 1DPF 1DPF v 4DPF Fasted v 4DPF

Up Down Up Down Up Down

Heart 208 228 36 40 5 3

Kidney 244 100 5 3 125 22

Liver 335 126 29 12 295 76

Small Intestine 1,271 1,042 268 146 547 345

For each comparison, the numbers of up and downregulated genes were inferred
using pairwise analysis with a Benjamini-Hochberg corrected p-value <0.05
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Fig. 2 (See legend on next page.)
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the NRF2-mediated oxidative stress response pathway,
were predicted to be strongly activated in the small
intestine, liver, and kidney, consistent with the canon-
ical pathway analysis predictions of activation of the
overall NRF2 pathway in these three organs. We also
predicted involvement of NFkB and NFkBIA, two key
regulators within the NFkB signaling response path-
way – this inflammatory response pathway is thought
to be inhibited by activation of the NRF2-mediated
oxidative stress response pathway [28, 29]. NFkB was
predicted to be inhibited in the liver and heart,
weakly activated in the kidney, and absent in the
small intestine, while NFkBIA was predicted to be
inhibited in the liver, weakly activated in the heart

and kidney, and again absent in the small intestine.
Activation of the growth pathways mTOR and PI3K/
AKT were additionally supported by activation of
predicted regulators such as mTORC1 and RAF1, re-
spectively, and the inhibition of PTEN. Lipid signaling
pathways such as LXR/RXR signaling, LPS/IL-1-medi-
ated inhibition of RXR function, PPAR/RXR, and
PPAR signaling were supported by several predicted
URMs such as PXR ligand, NR1H3, NR1I2,
NR1I3, SREBF1, SREBF2, PPARA, PPARG, RXRA,
PPARGC1A, and PPARGC1B (Fig. 4). These URMs
were consistently predicted as activated in the small
intestine, liver, and kidney and either absent or pre-
dicted as inhibited in the heart.

(See figure on previous page.)
Fig. 2 Summary of significantly differentially expressed genes for all four organs identified via regression analysis. a Venn diagram depicting the
numbers of genes significantly differentially expressed across time points. Darker colors indicate a large number of genes and lighter colors indicate a
smaller number of genes. b Heatmaps depicting all significantly differentially expressed genes across all time points in each organ. 722 genes were
significantly differentially expressed in the heart. There were 750 genes significantly differentially expressed in the kidney. 711 genes were significantly
differentially expressed in the liver and 1,284 genes showed significant differential expression in the small intestine

Fig. 3 Canonical pathways predicted to be activated or inhibited from gene expression data. Each pathway shown is significantly enriched for our genes
with a Fisher’s Exact test p-value less than 0.01 (depicted with an asterisk). Pathways were shown only if they met our criteria for significance and had a
predicted activation state in at least one organ. Z-scores of 0.000 indicate pathway predictions that lack a bias in the direction of gene regulation observed
in our dataset. PPAR signaling (P< 0.05) was also included
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It is notable that while the inferences of activation di-
rections of lipid signaling pathways across organs were
largely ambiguous and sometimes inconsistent in our
CPA (Fig. 3), the associated URMs display a consistent
trend of predicted activation in the small intestine, liver,
and kidney, and either predicted inhibition or absence in
the heart (Fig. 4). Additionally, several URMs, particu-
larly for the mTOR pathway, were predicted as incon-
sistent or even contradictory to the results of CPA or
our experimental data. For example, while mTORC1 is
predicted as significantly activated in the small intestine
by URMA, this molecule is downregulated in our experi-
mental data (see Discussion for details). Additionally, the
mTOR protein that is involved in forming both of the
main complexes of the mTOR signaling pathway
(mTORC1 and mTORC2) is predicted to be strongly
inhibited in the small intestine and weakly inhibited in
the kidney and heart. Both of these URM predictions
appear to contradict the positive activation of the mTOR
signaling pathway inferred for the small intestine and
heart as inferred from the CPA.
In addition to URMs involved in key predicted canonical

pathways, upstream regulatory analysis predicted several
other notable URMs with strong activation or informative
trends across organs. Insulin and INSR were both pre-
dicted as strongly activated regulators in the kidney, liver,
and small intestine, suggesting a possible role of insulin
receptor signaling in facilitating this regenerative response,
which is also consistent with activation of the mTOR
pathway. Myc, a regulator within the ERK5 and p38
MAPK signaling pathways, was predicted as activated in
all four organs, although strongest in the liver. Several
regulators within the MAPK signaling pathway were also
predicted in URMA, with ATF4 and ATF6 predicted as
activated in the kidney, liver, and small intestine, and ERK
predicted as activated in the kidney and inhibited in the
heart and liver. These URMs suggest the involvement of
the ERK and MAPK signaling pathways in this response,
even though CPA predictions for these two pathways were
not substantially strong (Figs. 3 and 4).

Fig. 4 Predicted upstream regulators from IPA analysis of gene
expression changes from fasted to 1DPF. a Venn diagram of all
upstream regulatory molecules analyzed. b Heatmap of predicted
activation z-scores for selected classes of upstream regulatory molecules.
Green indicates predicted activation, blue indicates predicted inhibition,
white indicates the regulator is not predicted to function in that organ,
and grey indicates that the upstream regulator is predicted to have
significant involvement but the activation state cannot be determined
based on the gene expression data. Regulators shown in this heatmap
were filtered by three conditions: 1) were present in at least three of the
four organs, 2) are significantly predicted (p-value < 0.05), and 3) have
activation z-scores greater than |1.5| in at least one organ. Biological
drug, chemical, and microRNA categories were excluded from
URM analyses
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Detailed dissection of NRF2 and mTOR pathway
responses to feeding
We were particularly interested in our findings that the
NRF2 stress response and the mTOR growth pathways
appear to be involved in post-feeding growth in multiple
organs. To investigate these inferences further, we fully
dissected evidence from our gene expression data for ac-
tivation of these pathways by visualizing observed and
inferred evidence for activation of these pathways in the
context of IPA-generated pathway maps (Figs. 5–6;
Additional file 1: Figures S3–S6). Specifically, we gener-
ated pathway predictions that integrate both observed
shifts in gene expression from our data (from fasting -
1DPF), and estimates of activation/inhibition of mole-
cules downstream of these observed genes that are in-
ferred based on canonical signaling patterns in these
pathways. Relevant to our power to detect pathway-wide
signals of activity, we were able to associate over 70% of
human genes within the mTOR and NRF2 pathways with
python orthologs that were expressed at some level in our
dataset (see Additional file 1: Table S2); thus, we expect
that our power and degree of resolution of pathway activa-
tion for these particular pathways is quite good.
Pathways maps for mTOR responsiveness between

fasted and 1DPF show both common and divergent pat-
terns of pathway activation among organs (Fig. 5 and
Additional file 1: Figure S3). The heart (Fig. 5a) and kid-
ney (see Additional file 1: Figure S3) both show similar
patterns of mTOR activation, including the activation of
both the mTORC1 and mTORC2 complexes. Major dif-
ferences in mTOR activation between these two organs
includes strong evidence for downregulation of AMPK
and the eIF4 complex in the heart, yet, no direct and/or
clear evidence for up- or downregulation of these com-
plexes in the kidney. In the small intestine, the mTOR
pathway was inferred to be strongly downregulated, as is
AKT; AMPK and the eIF4 complex showed mixed signs
of activation (both positive and negative) (Fig. 5b). It is
also notable that different organs showed different levels
of internal consistency in the integration of results with
the known functionality within the mTOR pathway. For
example, the heart and kidney have either zero or one
pathway connection in which gene expression results
contradict the direction of activation of the pathway
(pink arrows in Fig. 5a and Additional file 1: Figure S3)
– for the kidney this disagreement occurs in the rela-
tionship between RSK and inhibition of TSC1 (see
Additional file 1: Figure S3). In the small intestine, eight
such disagreements occur (Fig. 5b), and most of these
occur at the steps immediately above or below activation
of mTORC1 and mTORC2 complexes. The liver was the
only organ that contained no signal for the activation or
repression of mTOR pathway (i.e., no differentially
expressed genes in this pathway were observed). It

should be noted that inferences for mTOR activation
from CPA are at times contradictory to those identified
via URMA (Figs. 3–5; Additional file 1: Figure S3).
While predictions based on the pathway maps indicate
downregulation of mTOR in the small intestine, the z-
score suggests slight upregulation of this pathway during
regenerative growth in this tissue. URMA predicts inhib-
ition of the mTOR molecule in the heart, kidney, and
small intestine, while mTORC1 activation is predicted in
both the kidney and small intestine, and undefined in
the heart. Thus, while mTOR involvement in organ re-
generative growth is clear across organs, the relation-
ships between pathway scores, molecule-level inferences,
and URMs are complex.
Pathway maps for the NRF2-mediated oxidative stress

response between fasted and 1DPF indicate consistent
activation of this pathway in the kidney, liver, and small
intestine (Fig. 6; Additional file 1: Figures S4–S6). In
addition to predicted responses inferred from CPA
(Figs. 2 and 5; Additional file 1: Figures S4–S6), multiple
observed genes in our dataset downstream of NRF2 are
upregulated in these three organs, including thioredoxin
(TXN), glutathione s-transferase mu 1 (GST), and perox-
iredoxin 1 (PRDX1), providing confirmatory evidence of
NRF2 activation. The response of this pathway in the
heart is, however, less clear (see Additional file 1: Figure
S4). In the heart, NRF2 responses were predicted based
on the observed fold-change values of only four genes,
and predictions suggest inhibition of this pathway in the
heart (see Additional file 1: Figure S4) although the dir-
ection (activation versus inhibition) was not statistically
significant (Fig. 3). It is also notable that we observed
differences in the inferred consistency of integrated gene
expression results and activation/inhibition inferences
across organs (Fig. 6; Additional file 1: Figures S4–S6):
in the heart, only two inconsistencies are observed while
the kidney, liver, and intestine have one, two, or four in-
consistencies, respectively. Inferences from URMA for
the activation of NRF2 are highly consistent with activa-
tion inferences from CPA, including significant URM ac-
tivation predicted for NFE2L1 in the liver and intestine
and significant activation of NFE2L2 in kidney, liver, and
small intestine (Fig. 4). In contrast, upstream regulators
of this pathway were not predicted to be significantly
activated or inhibited in the heart, inconsistent with the
predictions given in the pathway figure (Fig. 4 and
Additional file 1: Figure S4).

Expression response between 1 and 4 DPF
In comparison to expression between fasting and 1DPF,
the IPA analyses conducted on genes differentially
expressed between 1DPF and 4DPF across organs pre-
dicted a substantially smaller number of pathways as sig-
nificantly enriched, the majority of which were predicted
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with ambiguous directions of activation. This is likely
due to the substantially smaller number of significantly
differentially expressed genes identified in all organs be-
tween 1DPF and 4DPF, which is expected because 4DPF
represents a sampling time intermediate between the
peaking of organ growth and the regression of these
phenotypes. This time interval (1DPF-4DPF) aimed to
capture the early stages of organs shifting expression to-
wards organ atrophy and towards a reversion to the
fasted state, and we expected to observe partial reversals
in pathways predicted to be active between fasted and
1DPF, and perhaps additional new pathways involved in
apoptosis and atrophy. However, we found few consist-
ent or clear patterns of interpretable pathway involve-
ment between the 1DPF and 4DPF time points (see
Additional file 1: Figure S7). Pathways predicted for this
time interval include various pathways related to biosyn-
thesis and stress response, such as unfolded protein re-
sponse. We also inferred inconsistent involvement of
these pathways across organs, and none were predicted
with a direction of activation (see Additional file 1:
Figure S7). Only one pathway, mitotic roles of polo-like
kinase, was predicted as significant and with a direction
of activation between 1DPF and 4DPF, and was pre-
dicted only in the small intestine. While we did infer a
single lipid signaling pathway that also was indicated by
CPA predictions from the fasted to 1DPF interval (LPS/
IL-1 mediated inhibition of RXR function), the lack of
predicted directions of activation and unclear involve-
ment across organs prevents informative interpretation
of the activity of this pathway between 1DPF and 4DPF.
Collectively, these results suggest that the 4DPF time
point may not be sufficient to capture shifts in gene
expression that elucidate the mechanisms involved in
the early stages of regression of organ phenotypes.

Discussion
A detailed understanding of the molecular mechanisms
capable of driving regenerative growth in vertebrates
may provide important insights into the treatment of
diverse human diseases. Because traditional vertebrate
model systems offer limited insight into natural organ
regenerative processes, non-traditional model systems,

Fig. 5 Combined gene expression and predicted activation
information for the mTOR pathway in the heart and small
intestine. a Gene expression and predicted activity for the mTOR
pathway in the heart. b Gene expression and predicted activity for
the mTOR pathway in the small intestine. Differentially expressed
genes identified in our RNAseq data set are highlighted in red
(upregulated) and blue (downregulated) while predicted activation
states are highlighted in orange (activation) and green (inhibition).
c CPA and URMA results for pathways and upstream regulatory
molecules involved in mTOR signaling and other relevant
growth pathways
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Fig. 6 IPA generated pathway prediction for the NRF2-mediated oxidative stress response in the small intestine. Predicted activation state of the
pathway was estimated using genes identified as significantly differentially expressed from our RNAseq data set. a Gene expression and predicted
activity for the NRF2 pathway in the small intestine. Differentially expressed genes identified in our RNAseq data set are highlighted in red
(upregulated) and blue (downregulated) while predicted activation states are highlighted in orange (activation) and green (inhibition). b CPA and
URMA results for pathways and upstream regulatory molecules involved in NRF2 signaling and other related pathways
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including snakes in general and Burmese pythons in par-
ticular, hold great potential for providing unique insights
into vertebrate regenerative organ growth processes. In this
study we have found that multiple integrated growth path-
ways, in addition to multiple stress-response pathways, ap-
pear to underlie the coordinated organ regenerative process
in Burmese pythons upon feeding. Despite distinct patterns
of gene expression associated with growth for each organ,
pathway and upstream regulatory molecule analyses reveal
substantial similarities in pathways associated with post-
feeding, extreme-growth responses across multiple organs.
Specifically, we found evidence for a consistent interactive
role of three major types of pathways underlying growth
responses in python organs following feeding, including
the related growth pathways mTOR and PI3K/AKT, lipid-
signaling pathways such as PPAR and LXR/RXR, and
stress-response/cell-protective pathways including NRF2.

mTOR and other growth pathways underlying organ growth
Across the four organs examined, we found evidence for the
involvement of the mTOR signaling pathway as a key integra-
tor of growth signals underlying post-feeding regenerative
organ growth. This pathway integrates processes for the use
of energy and nutrients to regulate growth and homeostasis
[30]. mTOR interacts withmultiple other pathways, including
PI3K/AKT, several lipid metabolism and signaling pathways
[30, 31], and the NRF2-mediated oxidative stress response
[32, 33]– all of which are also active inmultiple organs during
growth (Figs. 3–5). mTOR complex 1 (mTORC1) is the most
well-characterized of the two mTOR complexes and inte-
grates signaling from growth factors, energy status, oxygen,
and amino acids to promote cell growth when activated [31].
TheTSC1/2 complex transmits upstream signals fromgrowth
factor and insulin signaling to modulate the activity of
mTORC1 and its interaction with other pathways including
PI3K/AKT [30, 31, 34]. The effector kinases of these external
pathways inactivate the TSC complex through phosphoryl-
ation, thus, indirectly activating mTORC1 [30, 31]. AKT can
also directly activate mTORC1 through phosphorylation of
an mTORC1 inhibitor. In a low energy state, AMPK inhibits
mTORC1 by phosphorylating regulatory associated protein of
mTORC1 (RAPTOR) [30, 31]. mTORC2 signaling is less
well-understood, but is known to respond to growth factors
through PI3K signaling [30].
CPA of gene expression in the first 24 h after feeding indi-

cate that involvement of the mTOR signaling pathway is sig-
nificant in the small intestine (predicted activation), but
insignificant in both the heart (predicted activation) and kid-
ney (activation state undetermined). The liver lacked evidence
of involvement of the mTOR signaling pathway from CPA
(Figs. 3–4). In URM analysis, the mTOR molecule itself was
predicted to be downregulated in the heart, liver, and intestine
with no presence in the kidney, which contrasts our CPA re-
sults (Figs. 3–4). However, URMA-predicted activation of the

mTORC1 complex is supported in both the kidney and small
intestine with undefined involvement in the heart, and the
liver shows no signal for mTORC1 (Fig. 4). Interestingly, CPA
indicate mTORC1 is downregulated in the small intestine at
0–1DPF (Fig. 6), yet this downregulated state of mTORC1 is
based only on the downregulation of a single gene, G protein
subunit beta 1 like (GNB1L), which IPA identifies as a subunit
of the mTORC1 complex. In contrast, AMPK signaling is
predicted to be downregulated in the kidney and small intes-
tine, indicative of elevated ATP levels and active mTORC1
[30, 31] (Fig. 3). It is notable that nearly all genes in themTOR
pathway were associated with python orthologs that were ob-
served as expressed across our dataset (see Additional file 1:
Table S2), which suggests that our inferences of non-
responsive genes within the mTOR pathway are biologically
meaningful (e.g., true negatives), rather than representative of
a lack of data. Thus, mTOR signaling in python tissues during
regenerative organ growth may include non-canonical fea-
tures compared to typical models of mTOR signaling that ac-
count for the partial responsiveness of genes and targets
inferred fromourCPA.
Our results identify mTOR as a central regulator and

integrator of a number of diverse growth signals that drive
post-feeding regenerative organ growth in Burmese pythons.
Insulin signaling represents a key-regulating factor of the
mTOR pathway [31], and we foundmultiple lines of evidence
indicating roles of insulin signaling in post-feeding growth re-
sponses. Specifically, 0–1DPF URMA inferred the activation
of INSR and insulin, and the inhibition of INSIG1 and
INSIG2, in the kidney, small intestine, and liver, and the in-
verse of these activation patterns in the heart. INSIG1 and
INSIG2 are negative regulators of SCAP [35, 36], which in
turn regulates SREBP activity. Consistent with inferences of
inhibition of INSIG1–2, URMApredicted the upregulation of
SREBF1 and SREBF2, which provide evidence of an increase
in sterol-regulatory element activity coincident with organ
growth [36, 37] (Fig. 4). In addition to the interaction of insulin
signaling and mTOR activity, we also found multiple lines of
evidence for PI3K/AKT signaling that would interact with
mTOR. Our URMA indicates significant downregulation of
PTEN, an upstream regulator of the PI3K/AKT pathway,
across all four organs, and CPA predicts activation of the
PI3K/AKTsignaling pathway in the small intestine and liver.
Evidence from previous studies also support the role of

mTOR, PI3K/AKT, and AMPK signaling mechanisms in py-
thon post-feeding growth, at least in the heart. Western blots
of python cardiac tissue post-feeding support the inference of
early activation of mTOR and PI3K/AKT pathways by dem-
onstrating that phosphorylated AKTand MTOR proteins in-
crease significantly in abundance between 12 and 24 h post-
feeding [11]. These western blots also demonstrated phos-
phorylated AMPK protein was upregulated within 24 h post-
feeding, but lagging temporally behind the peak in phosphory-
lated MTOR and AKT [11], consistent with the antagonistic
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relationship betweenAMPK andMTOR/AKT [30]. These in-
dependent lines of evidence for the roles of mTOR, PI3K/
AKT, and AMPK signaling in python post-feeding organ
growth confirm our inferences of the central roles of these
pathways, and support the power of pathway and URM infer-
ences for inferring signalingmechanisms.
MAPK and related pathways also appear to be promin-

ently involved in organ growth responses post-feeding,
which is sensible given their known interactions with mul-
tiple growth pathways, including PI3K/AKT signaling and
mTOR [38–40]. Our data reveal the involvement of MAPK
signaling most clearly in the heart, with significant enrich-
ment and predicted inhibition of p38 MAPK signaling and
significant activation of ERK5 signaling (Fig. 3). ERK5 is a
member of the Mitogen-activated protein kinases (MAPKs)
that is crucial to cell proliferation and activated in response
to growth factors and oxidative stress [41, 42]. MYC is a
downstream transcription factor regulated by the MAPK
pathway and ERK5 specifically [43, 44], and an essential
regulator of development and cell proliferation [45–47].
Our URMA predict significant activation of MYC in all four
organs, indicating a broad role of active MAPK signaling in
post-feeding organ growth in the python.

NRF2 – protective function and interaction with growth
pathways
One of the strongest and most consistent signals in the ca-
nonical pathway and upstream regulatory molecule ana-
lyses was the involvement of the NRF2-mediated oxidative
stress response pathway. Commonly associated with anti-
aging and longevity [48–50], injury repair, and mitigation
of inflammation [51], evidence for the central involvement
of the NRF2-mediated oxidative stress response pathway
in the small intestine, liver, and kidney begs the question
of whether there is an important yet largely unappreciated
role for stress-response signaling pathways in growth re-
sponses, and regenerative organ growth in particular.
The NRF2 pathway was significantly upregulated in

small intestine, kidney, and liver within the first day
following feeding (Fig. 3), and the NRF2 transcription
factor (NFE2L2) was one of the most significant and
highest in magnitude URMs predicted in these three
organs (p-values < 1.55e-10, z-scores > 3.0) (Fig. 4). The
24 h period following feeding in Burmese pythons
involves unparalleled rates and magnitudes of organ
growth, and also includes massive upregulation of
metabolism – up to 44-fold increases in aerobic metab-
olism, which is among the highest fluctuation known for
any vertebrate [3]. It is, therefore, sensible that activation
of NRF2 is related to these major shifts in oxidative me-
tabolism, and associated generation of reactive oxygen
species [1, 2, 6, 9]. An open question, however, is what
broader role the activation of NRF2 may play in facilitat-
ing the extraordinary growth responses associated with

feeding in pythons. For example, post-fed Burmese python
blood plasma has been shown to convey resistance to
apoptosis to mammalian cells, even with exposure to high
fatty acid concentrations that would otherwise cause cell
death [11, 17]; such cell-protective qualities may be related
to signals that activate NRF2 and/or other stress-response
pathways. Interestingly, in addition to cell-protective roles
of NRF2, this pathway also contains multiple points of
integration with various growth pathways, including those
activated in python organ regenerative growth.
The NRF2-mediated oxidative stress response pathway

interacts with multiple pathways predicted in our canonical
pathway analysis [52–57] (Figs. 3–4). The PI3K/AKT signal-
ing pathway, predicted to be upregulated upon feeding in
both the liver and small intestine, is essential for regulating
the antioxidant functions of NRF2, and studies have shown
that inhibition of this signaling pathway leads to attenuation
of NRF2 activities [58, 59]. This interaction is evident when
examining the role of NRF2 in the proliferation of cancer
cells. Studies have shown that NRF2 is able to redirect glu-
cose and glutamine into anabolic pathways through activa-
tion of PI3K/AKT signaling [60]. The activated PI3K/AKT
pathway leads to greater accumulation of NRF2 in the nu-
cleus, which allows NRF2 to enhance metabolic activities as
well as promote cell proliferation and cytoprotection [60].
The PI3K/AKT signaling pathway activates mTOR activity
in response to growth factors, and this and previous studies
[11] have shown that PI3K/AKT and mTOR signaling are
key growth pathways underlying organ regenerative growth
in the Burmese python. Therefore, there appears to be
strong and coordinated links between growth signaling (via
PI3k/AKT and mTOR) and stress response signaling via
NRF2 underlying organ growth in pythons following feed-
ing. Like mTOR, a large majority of genes in the NRF2
pathway were associated with python orthologs and were
observed as expressed across our dataset (see Additional file
1: Table S2), which indicates that our inferences of non-
responsive genes within the NRF2 pathway are likely true
negatives, rather than artifacts due to a lack of ortholog
identification in the python. Accordingly, predicted but un-
observed expression responses in the NRF2 pathway in py-
thons suggest that the absence of expected responses may
represent novel or non-canonical aspects of python biology
or of the organ regeneration response in pythons.
In addition to NRF2-mediated oxidative stress response,

evidence for the involvement of other stress response signal-
ing mechanisms in python post-feeding organ growth was
also observed. EIF2 signaling, important in translational con-
trol and responsiveness to conditions of environmental stress
[61, 62], is strongly downregulated in the intestine, yet, absent
in the other three organs (Fig. 3). Acute phase response signal-
ing, which is involved in restoring homeostasis following in-
flammation or injury [63], is predicted to be strongly
downregulated in the liver and moderately upregulated (but
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non-significant in the heart; Fig. 3). The precise roles of these
additional stress response mechanisms in regenerative organ
growth in the python remains an open question, although
there is strong and consistent signal for the involvement of
multiple stress response pathways overall in python post-
feeding organ growth.

Role of lipid signaling in driving growth
Previous studies have shown evidence that molecules
responsible for triggering python post-feeding organ
growth circulate in the blood of the Burmese python
[11, 64]. Riquelme et al. demonstrated that post-feeding
python plasma was capable of inducing cardiomyocyte
growth in pythons and mice, and that fasted python
plasma supplemented with three particular fatty acids
successfully stimulated cardiomyocyte growth in mice
[11]. Because these fatty acids only facilitated a growth
response in the presence of fasted Burmese python
serum, it is likely that python plasma contains additional
factors required for successful post-feeding regenerative
growth and that fatty acids are only partially responsible
for stimulating growth responses. In the heart, we found
significant enrichment and predicted activation for the
LXR/RXR activation pathway as well as predicted activa-
tion of this pathway (although insignificant enrichment
with P > 0.01) in the small intestine (Fig. 3). LXR is a
potent activator of the SREBP-1c gene [65], and our data
predict clear and significant activation of both SREBF1
and SREBF2 upon feeding in the kidney, liver, and small
intestine with significant downregulation and undefined
direction for SREBF1 and SREBF2 in the heart, respect-
ively (Fig. 4). When activated, these proteins directly en-
hance genes important for the uptake and synthesis of
various lipids. SCAP, important for the activation of these
SREB molecules, is also predicted to be strongly activated
in the kidney, liver, and small intestine (Fig. 4) [35, 36, 66].
We also examined PPAR signaling as a potential path-

way for lipid signaling during this regenerative growth,
given the central role of PPAR in mediating fatty acid
signaling as well as its effects on gene expression [67].
PPAR has also been identified as an important regulator
of cell survival during wound repair and regeneration
[68]. Although CPA did not detect significant PPAR sig-
naling activation, URMA significantly predicted PPARA,
PPARG, PPARGC1A, and PPARGC1b involvement
across organs, typically inhibited in the heart and acti-
vated in the other three organs in 0–1DPF comparisons
(Fig. 4). Given the variations in pathway and URM infer-
ences between the heart and the other three organs, the
question of whether fatty acids also play a similar stimu-
latory role in regenerative growth in the small intestine,
liver, and kidney as they do in the heart remains. Our
results do, however, argue for a poorly understood yet
central role of lipid-signaling in these growth responses,

and suggest that the unusually strong bioactivity of fatty
acids may elicit growth through conserved canonical
pathway signaling mechanisms.

Early phases of organ regression following digestion
Physiological studies have shown that python post-feeding
organ growth peaks between 1DPF and 3DPF [1, 2, 5, 9] and
that phenotypes begin to decline by 4DPF [2, 3, 7, 9]. Thus,
as post-feeding growth phenotypes reverse from 1DPF to
4DPF, we expected to observe shifts towards the fasted state,
such as the reversal or inhibition of growth-associated path-
ways. Relative to comparisons between fasting and 1DPF,
comparisons between 1DPF and 4DPF yielded nearly an
order of magnitude fewer significantly differentially
expressed genes (Table 1). Accordingly, expression heatmaps
(Fig. 2) and expression profile summaries (see Additional file
1: Figure S1) show that expression profiles of many genes at
4DPF tend to remain elevated (i.e., similar to levels at
1DPF), or exist at intermediate levels (between fasted and
1DPF levels of expression). We did not observe any par-
ticularly informative trends in canonical pathways and up-
stream regulator molecule predictions (see Additional file
1: Figure S7) associated with shifts in gene expression
from 1DPF to 4DPF, and this result is not surprising given
the relatively small number of genes that significantly
change between these time points. Among the predicted
pathways were several that are related to stress response
and biosynthesis (see Additional file 1: Figure S7), al-
though a lack of predicted direction of activation prevents
detailed interpretation of the involvement of nearly all
pathways predicted between 1DPF and 4DPF. The only
pathway predicted as significant and with a direction of
activation between 1DPF and 4DPF was the mitotic roles
of polo-like kinase pathway, which was activated in the
small intestine (see Additional file 1: Figure S7). It there-
fore remains an open question whether atrophy and other
processes involved in reverting to the fasting state are con-
trolled actively (via a new signal that stimulates the apop-
totic and atrophy processes), passively (the signal (s) that
stimulates the initial cascade of responses fades or stops),
or some combination of the two mechanisms. Collectively,
our results suggest that comparisons between the 1DPF to
4DPF time points may not be sufficient to predict the
physiological mechanisms involved in phenotypic regres-
sion with adequate power. Further experiments, possibly
with multiple later-stage time point sampling, may be re-
quired to address outstanding questions about how these
growth phenotypes are reversed.

Comparison of python organ regeneration to other
regenerative model systems
Organ regeneration in snakes represents an extreme and
unique phenotype among vertebrates. However, other ex-
amples of regenerative growth do exist among vertebrates,
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such as limb regeneration in salamanders [69], fin regen-
eration in fish [70], and regenerative heart growth in zeb-
rafish [71, 72] and prenatal mammals [73]. This begs the
question of whether or not these regenerative responses
share common mechanisms, and as we continue to better
understand the mechanisms driving regenerative growth
in snakes, such key comparisons can begin to be made.
While none of these other vertebrate regenerative growth
systems directly parallel regenerative organ growth in
snakes, regeneration of heart tissue in zebrafish is the
most analogous comparison, as it occurs in adult organ-
isms and represents regenerative growth of organ tissue
specifically. Following injury or amputation of cardiac tis-
sue, zebrafish hearts grow primarily by dedifferentiation
and subsequent proliferation of cardiomyocytes [72]. Con-
versely, python hearts grow only by hypertrophy [3, 11,
74], and therefore may be driven by largely different re-
generative mechanisms. The python small intestine, liver,
and kidney, however, do grow via by hypertrophy and
hyperplasia [3, 5, 11, 12]; while they represent different
organ systems than the zebrafish heart, they may be driven
by similar pathways that regulate cell proliferation in
general. Indeed, there are parallels between zebrafish and
python responses in the shared involvement of p38 MAPK
signaling, a negative regulator of cardiomyocyte prolifera-
tion in zebrafish [71] that we infer to be inhibited in the
Burmese python heart between fasting and 1DPF (Fig. 3).
Additionally the mitotic roles of polo-like kinase pathway,
which was the only pathway we predicted as significant
and with a direction of activation between 1DPF and
4DPF (activated in the small intestine; see Additional file
1: Figure S7) is also involved in zebrafish regenerative
heart growth. Cell-cycle regulation by polo-like kinase 1 is
an important component of cardiomyocyte proliferation
in zebrafish [72], and therefore may be playing a similar
role in the python small intestine, although it is notable
that it was not predicted as significant between fasting
and 1DPF, when growth is presumably greatest in this
organ [3, 5]. Other pathways involved in zebrafish regen-
erative growth, such as IGF signaling, FGF signaling,
HIPPO signaling, and TGF-Beta signaling [71], were not
inferred as significant based on canonical pathway ana-
lyses of either post-feeding time interval in our study of
the Burmese python. TGFB1 and IGF1 growth factors
were, however, inferred in our URMA analysis of the fast-
ing to 1DPF interval (see Additional file 1: Figure S2), sug-
gesting that there may still be some involvement of these
growth factors in the regulation of regenerative growth in
the Burmese python. A key conclusion based on our study
is that, to our knowledge, mTOR signaling and NRF2-
mediated oxidative stress response pathways have not
been implicated in zebrafish regenerative growth. Thus,
regenerative organ growth in the Burmese python appears
to remain quite unique among vertebrates, both in the

nature of the phenotype, and now in the molecular mech-
anisms underlying growth.

Conclusions
Multiple coordinated growth pathways appear to play an
important role in facilitating regenerative organ growth
in multiple tissues of the Burmese python, and the over-
lap of pathways across organs suggests common signal-
ing molecules may drive this response – consistent with
evidence that common factors circulating in the plasma
of pythons are capable of eliciting growth [11, 64]. Our
analyses provide strong evidence for the involvement of
particular growth and stress response pathways in post-
feeding organ growth responses in multiple organs,
although it is notable that our inferences of the activa-
tion versus inhibition of mechanisms was not always
consistent across analyses (e.g., CPA versus URMA). As
discussed above, such conflicting inferences could be
due to the fundamental differences in CPA and URMA
(e.g., n), in that they are integrating very different
sources of evidence, coupled with the possibility that the
continuous nature of this response may survey various
mechanisms during an inflection point of activity that
can confound inferences of directionality. However,
contradictory inferences of mechanistic activation may
also suggest that some of these core signaling pathways
function differentially in snakes, or that some molecules
or pathways are signaling via non-canonical mecha-
nisms. Experiments have demonstrated that exposure to
Burmese python 2DPF blood serum elicits significant
growth of rat cardiomyocytes [11], as well as increases in
size and insulin production of human pancreatic beta
cells [17]. These findings suggest that even if regenera-
tive organ growth in snakes is achieved in part by non-
canonical pathway or regulator activity, core aspects of
signaling underlying organ growth in pythons is con-
served across vertebrates. Among the most intriguing
results of this study is the consistent predicted activation
of the NRF2-mediated oxidative stress response pathway,
and NRF2-related signaling molecules, during regenera-
tive organ growth. The integration of NRF2 signaling
with other growth pathways, including mTOR, provide
an exciting and novel mechanistic hypothesis for how
NRF2 and other stress-response pathways may play an
important yet largely unappreciated role in regenerative
growth responses in vertebrates.

Additional file

Additional file 1: Figure S1. STEM analysis of all genes differentially
expressed across all time points (fasted – 4DPF). All significant expression
profiles are shown with P-value and number of genes following that profile.
Figure S2. Heat maps depicting activation z-scores for classes of upstream
regulator molecules. Green indicates predicted activation, blue indicates
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predicted inhibition, white indicates that the regulator is not predicted to
function in that organ, and grey indicates that the upstream regulator is
predicted to have significant involvement but the activation state cannot be
determined based on the gene expression data. Regulators shown on the
heat maps were filtered by activation z-scores greater than |1.5| in at least one
tissue. Figure S3. Combined gene expression and predicted activation
information for the mTOR pathway in the kidney. Differentially expressed
genes identified in our RNAseq data are highlighted in red (upregulated) and
blue (downregulated) while predicted activation states are highlighted in
orange (activation) and green (inhibition). Figure S4. Pathway prediction for
the NRF2-mediated oxidative stress response in the heart. Predicted activation
state of the pathway was estimated using genes identified as significantly
differentially expressed from our RNAseq data set. Figure S5. Pathway
prediction for the NRF2-mediated oxidative stress response in the kidney.
Predicted activation state of the pathway was estimated using genes identified
as significantly differentially expressed from our RNAseq data set. Figure S6.
Pathway prediction for the NRF2-mediated oxidative stress response in the
liver. Predicted activation state of the pathway was estimated using genes
identified as significantly differentially expressed from our RNAseq data set.
Figure S7. Pathway analysis of gene expression responses from 1DPF to
4DPF. Bar graph showing significant canonical pathways (Fisher’s Exact test
P< 0.01) enriched for genes differentially expressed at these time points.
Pathways were filtered to include those with at least one significant p-value in
one of the four organs. Bars are colored based on the predicted activation
Z-score for that pathway. Table S1. Sequencing information for all included
python samples. PE76 and PE120 stand for the sequence read type (e.g.,
Paired-end 76 bp). The year provided represents the year in which the sample
was sequenced. Table S2. The number of genes involved in each pathway as
defined by IPA, the number of genes in the pathway that were assigned
python orthologs via tblastx, and the number of those python orthologs
observed with a non-zero level of expression in our dataset. (PDF 4804 kb)
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