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Transcription factor-associated
combinatorial epigenetic pattern reveals
higher transcriptional activity of TCF7L2-
regulated intragenic enhancers
Qi Liu1,2, Russell Bonneville3, Tianbao Li1,2 and Victor X. Jin1*

Abstract

Background: Recent studies have suggested that combinations of multiple epigenetic modifications are essential
for controlling gene expression. Despite numerous computational approaches have been developed to decipher
the combinatorial epigenetic patterns or “epigenetic code”, none of them has explicitly addressed the relationship
between a specific transcription factor (TF) and the patterns.

Methods: Here, we developed a novel computational method, T-cep, for annotating chromatin states associated
with a specific TF. T-cep is composed of three key consecutive modules: (i) Data preprocessing, (ii) HMM training,
and (iii) Potential TF-states calling.

Results: We evaluated T-cep on a TCF7L2-omics data. Unexpectedly, our method has uncovered a novel set of
TCF7L2-regulated intragenic enhancers missed by other software tools, where the associated genes exert the
highest gene expression. We further used siRNA knockdown, Co-transfection, RT-qPCR and Luciferase Reporter
Assay not only to validate the accuracy and efficiency of prediction by T-cep, but also to confirm the functionality
of TCF7L2-regulated enhancers in both MCF7 and PANC1 cells respectively.

Conclusions: Our study for the first time at a genome-wide scale reveals the enhanced transcriptional activity of
cell-type-specific TCF7L2 intragenic enhancers in regulating gene expression.
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Background
Numerous public data resources, including the ENCODE
and Epigenomics Roadmap, have generated thousands of
genome-wide data sets, and provided us with substantial
quantities of data to study transcriptional and epigenetic
patterns in different cell types at a genome-wide scale [1,
2]. Many studies have shown that epigenetic modifications
play a central role in regulating gene expression, and are
involved in a diversity of biological processes in the human
organism [3, 4]. However, the “epigenetic code”, referring
to the transcription of genetic information encoded in
DNA is in part regulated by DNA methylation and histone

modifications, has not yet been fully elucidated. Substantial
efforts in cracking this code and uncovering its biological
functions have been made, utilizing both in vitro and in
silico methods [5–7]. One innovative and practical way is
to segment the epigenome into various chromatin states
[8–10], where each state is decoded as a specific combina-
torial pattern of multiple epigenetic modifications. Such
states or combinatorial patterns can reflect a variety of sets
of genes’ expression levels, which are essential to establish
and maintain distinct functions in chromatin [11, 12]. For
instance, novel classes of enhancers have been identified
through genome-wide pattern analyses [13–15]. Therefore,
identification of epigenetic regulatory combinations and
networks is increasingly important for understanding gen-
ome functions, chromatin components and molecular
mechanisms.
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Computational approaches and models have been a
major force to uncover these complex epigenetic patterns.
These contain probabilistic methods, such as ChromaSig,
an unbiased clustering and alignment approach that finds
over-represented epigenetic signatures [16]. More advanced
machine learning approaches have been applied in recent
work, such as hidden Markov models (HMM) [10] and
Bayesian network methods [17]. The HMM has proved to
be a good model in training models with numerous inputs,
and that generate thousands of outputs [18–20]. For ex-
ample, ChromHMM utilized a multivariate HMM to learn
chromatin states and to output emission probabilities for
each mark in each state and then to infer the number of
combinatorial marks in each of all states [21]. Segway [17]
applied dynamic Bayesian networks (DBN) to segregate the
genome with a higher segment resolution, and derive differ-
ent chromatin states from chromatin marks [22]. Although
these computational methods have successfully been used
to annotate chromatin elements, many of them suffer from
significant limitations. For instance, some supervised learn-
ing methods cannot find de novo information. Some un-
supervised learning methods train on small genomic
regions such as Segway [17] and HMMSeg [23], or output
a single mark’s probability such as ChomHMM [21]. None
of these algorithms explicitly compare targets of a specific
TF with different histone modification marks to qualita-
tively assess the association of that TF with active, repres-
sive and elongation regions. Most TFs have narrow binding
patterns compared to most histone modification marks,
but are major regulators of gene expression [24, 25]. There-
fore, by ignoring TF binding in the beginning of algorithm
design or training, a method may erroneously consider it as
less meaningful due to the lower probability of TF than
chromatin states, or not incorporate TF binding informa-
tion at all. As such, it is critical to develop an algorithm that
considers a specific TF together with many different epi-
genetic marks.
In order to address TF-dependent epigenetic regulatory

events, we have developed a novel algorithm and software
tool, T-cep (Transcription factor-associated combinatorial
epigenetic patterns), which applies a univariate HMM to
identify combinatorial epigenetic patterns associated with
cell type-specific TF targets in different cell types. To
evaluate T-cep, we applied it on TCF7L2-omics data, in-
cluding ChIP-seq data of TCF7L2, Pol-II, active chromatin
marks (H3K4me1,3 and H3K27ac), repressive chromatin
marks (H3K27me3 and H3K9me3), a mark of transcrip-
tional elongation (H3K36me3) as well as DNase-seq for
open chromatin regions in five cancer cell types.
TCF7L2 (transcription factor 7-like 2), an important

component of WNT pathway, has been implicated in
several human diseases including carcinogenesis, type 2
diabetes and bipolar disorder [26–29]. The WNT path-
way is often constitutively activated in human cancers,

such as colon, liver, breast, and pancreatic cancer [30],
with high upregulation of TCF7L2. Several studies have
shown tissue-specific alternative splicing of TCF7L2,
suggesting that TCF7L2 may have different functional
properties in different cells [31, 32]. In our previous
studies, we have mapped genome-wide binding of
TCF7L2 in six cell lines [33, 34]. However, the combina-
torial epigenetic profile of TCF7L2 in these cancer types
has not been well studied. One hypothesis is that
TCF7L2 regulates its downstream target genes in a cell
type-specific manner, i.e., utilizing different combinatorial
patterns with various epigenetic environment cues in each
cell type. Therefore, one way to test this hypothesis is to
identify TCF7L2-assoicated combinatorial epigenetic
patterns in a diverse set of cell types.
In this paper, we first describe the workflow of T-cep,

then present training results on TCF7L2-omics data in five
cancer cell types, and compare it with ChromHMM [21].
Finally, we perform functional validations using siRNA,
RT-qPCR, co-transfections and luciferase reporter assays
on selected gene loci. To the best of our knowledge, this is
the first genome-wide combinational epigenetic pattern
discovery study for cell type-specific TCF7L2 regulation.

Results
The workflow of T-cep
To identify TF regulated chromatin states through a var-
iety of epigenetic marks, we have developed a novel
computational method, T-cep, for annotating chromatin
states associated with a specific TF. T-cep is composed
of three key consecutive modules: (i) Data pre-
processing, (ii) HMM training, and (iii) Potential
TF-states calling (Fig. 1a). The detail of the algorithm is
described in Methods.

Step 1: Data pre-processing
T-cep uses a univariate HMM, where each bin can only
emit one probability value, which corresponds to a
combination of different marks. An alphabet of 2n (n =
the number of epigenetic marks) observation symbols is
constructed by enumerating each possible combination
of marks (including no marks). We combine all ChIP--
seq data in multiple cells as observations and translate
them to such an alphabet of 2n observations as an input
for the next step. If necessary for computational effi-
ciency, this alphabet can be simplified by removing sym-
bols that correspond to mark combinations not present
in the input data.

Step 2: HMM training
We initially train multiple HMMs for 300 iterations with
T-cep, and select the best model based on the lowest
BIC score. If desired, this model may be simplified by
removing infrequent states. This is performed by
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eliminating the states which are called in very few bins
(lower than 5% of the average number) and uniformly
redistributing their transition probabilities to other
states. We then re-train this derived HMM for another
100 iterations to produce the final model.

Step 3: Potential TF-states calling
The Viterbi decoding algorithm is used to output called
states for all bins in the genome. The probabilities of
each mark are futher calculated by marginalization for
each of different cell types respectively. We chose states
with a cutoff of probability greater than 0.1 for any
individual mark for further investigation, as these are
most likely to yield meaningful biological insights.
Finally, the HMM states can be classified as potential
TF-associated chromatin states (TF-states) and potential
non-TF-associated chromatin states (non-TF-States).

Identification of TCF7L2-associated chromatin states by
T-cep
To demonstrate the accuracy of T-cep and evaluate its
performance, we chose TCF7L2-omics data as a study
case. TCF7L2 is an important component of the WNT

pathway, and has previously been studied by our laboratory.
Additionally, 45 datasets of omics-seq data are available for
the training (Additional file 1: Table S1-S2, all are available
in the ENCODE Consortium), including ChIP-seq of
TCF7L2, six histone marks (H3K4me1, H3K4me3,
H3K9me3, H3K27ac, H3K27me3, H3K36me3), Pol-II and
DNase-seq in five cancer cell types, HCT116, HeLa,
HepG2, MCF7 and PANC1, with a total of ~2.02 billion
reads. For each of these cell types, we also obtained RNA--
seq data from our previous study or publicly available
sources [35, 36].
We initially trained five 25-state HMMs over the data

with bin sizes of 750 bp for 300 iterations, and selected
the best HMM with the lowest BIC score of 4.3247 • 107

(Additional file 1: Table S3). The states of every bin in
each genome were called after the first HMM training.
Seven infrequent states (lower than 5% of the average)
were then eliminated (Additional file 1: Table S4) to
produce an 18-state HMM model with BIC 4.40718 *
107. We then performed a secondary HMM training for
100 iterations, and the log-likelihood was calculated at
each iteration to verify model convergence (Additional
file 1: Figure S1). This produced the final model, with a

Fig. 1 T-cep algorithm and training results for TCF7L2-omics data. a The workflow of T-cep algorithm. Shown is a schematic summary of the four
steps needed for de novo identifying transcription factor associated chromatin state (TF-state). The approach begins with preprocessing the ChIP-seq
data into an alphabet of 2n observations, builds a HMM to generate a best selected model without infrequent state, re-estimate transition and emission
probabilities and then annotate biological meaningful TF-states. b Result of T-cep approach. The emission probabilities of each mark are independent
of others for the selected 18-state HMM. The mark probability of greater than 0.1 is considered to be associated with a chromatin state. c A screenshot
of a genomic region in Chr8 of MCF-7 annotated by T-cep in UCSC genome browser. ChIP-seq of TCF7L2 and histone marks are in the first nine lines,
while the tenth track represents the main output of the T-cep, annotated different states represented by different colors. RefSeq gene (HG19) genomic
positions are shown in the last line
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BIC score of 4.31487 *107. The transition probabilities and
the emission probabilities of each final state are shown in
Additional file 1: Figures S2-S3. The Pearson correlation
between the HMM emission probabilities and the actual
observation frequencies under each state was R2 ≥ 0.97
for all cell types, except HCT116 with R2 = 0.9545
(Additional file 1: Table S5 and Figure S4). We then
divided emission probabilities for each mark inde-
pendently by marginalization among combinations of
marks probabilities and potential TF-states (Fig. 1b
and Additional file 1: Figure S5). A comparison of a
genomic region for the states annotated by T-cep and
the actual ChIP-seq signals (Fig. 1c) clearly demon-
strated the ability of T-cep to accurately capture
epigenetic elements.
We further examined the genomic characterization of

potential TF-states using the annotated genomic regions
defined in Additional file 1: Table S6, as well as the
expression levels of their associated genes (Fig. 2a and
Additional file 1: Figure S6). We were able to classify
four states, 1, 3, 4 and 5, as TCF7L2-associated states,
and the others as non-TCF7L2-associated states (Fig. 2b).
State 3 was assigned as TCF7L2-associated promoter
because of its higher frequency in 5’TSS regions (44.2%
relative to other states) and its high emission probabil-
ities for Pol-II and H3K4me3 (Fig. 2a). State 1 was
classified as TCF7L2 binding, non-combinatorial
TF-state, as its emission probability is only high for
TCF7L2. We classified states 4 and 5 as TCF7L2-
associated enhancer states due to their higher emission
probabilities for the enhancer marks H3K27ac and
H3K4me1. Location distribution showed most bins
(75.9%) of state 5 were in gene body regions while the
associated genes have a higher average gene expression
as well as its high emission probabilities for enhancer
marks H3K4me1, H3K27ac and gene body mark,
H3K36me3 (Fig. 1b). Thus, state 5 was annotated as
TCF7L2 intragenic enhancer. State 4 was classified as a
TCF7L2 distal enhancer since 67.9% bins of state 14
were outside intragenic regions. Except those bins in
Gene Desert regions, there were clearly more bins in
5’Distal regions than in 5’Proximal and 3’Distal regions.
State 2 was classified as mapping bias/CNV due to its
high emission probabilities for all active and repressive
marks, where marks such as Pol-II and H3K9me3 were
not expected to co-occur, as well as due to the relatively
high proportion of its bins in known amplified regions.
We also identified some non-TCF7L2-associated states

(non-TF-states). States 7 and 9 were classified as
non-TCF7L2-associated enhancers. State 9 with a high
Pol-II was assigned as an active non-TCF7L2-associated
enhancer, while state 7 was likely to be an inactive non-
TCF7L2-associated enhancer. Interestingly, the average
gene expression levels of both states are less than those

of the TCF7L2-associated states. State 6 was classified as a
non-TCF7L2-associated bivalent state or poised enhancer
due to its high emission probability of both repressive
mark H3K27me3 and enhancer mark H3K4me1, and its
lower average gene expression. All the other non-
TCF7L2-associated states were assigned for their possible
functions as well (Fig. 2b).
The annotation of chromatin states is further sup-

ported by the location analysis of bins within each state
relative to genes (Fig. 2c). All genes’ length is normalized
by Virtual bin Creation and the 5’-3’ region represents
the whole gene body region and the distal region is
extended to each to 90 kb upstream of 5’TSS or down-
stream of 3’TSS. Clearly, it is showed more than 60% of
state 3 bins were located at or near the 5’TSS of each
gene, (the green line), in which we interpreted it as
promoter. State 5 is represented with the red line, in
which its bins were distributed mainly in gene body re-
gion, thus called as intragenic enhancer. State 4 as distal
enhancer shown in the blue line was mainly located in
distal regions, and state 1 was infrequently in any of
gene body or intragenic regions (Fig. 2c and Additional
file 1: Figure S7).
In the other aspect, we wanted to re-examine whether

the distribution in proportion of numbers of three anno-
tated functional states is actually in their expected
genomic regions. Indeed, State 3 bins are only in 5’TSS
regions (131,086 bins), state 5 bins in intragenic regions
(206,644 bins) and state 4 bins in 5’Distal regions
(70,812 bins) for further analysis. Moreover, we observed
in each cell type the distribution of these three TF-States
in order 3/5/4 is the following: 239/32/26 for HCT116,
1061/559/30 for HepG2, 737/1109/29 for HeLa, 802/
1265/327 for MCF7 and 3093/1972/1581 for PANC1
(Fig. 2d). Our results indicate the distribution in propor-
tion of numbers of each of three functional states may
be cell type specific.

Gene enrichment and pathway analyses of TCF7L2-associated
chromatin states
Next, we wanted to examine in silico the biological
functions of TCF7L2-associated chromatin states. We
chose MCF7 and PANC1 cell types for further analysis
as they had the highest number of genes associated with
states 3, 4, and 5, where the number of genes associated
with states 3/4/5 is 742/230/573 for MCF7 and 2718/
677/672 for PANC1 respectively (see the list in
Additional file 2). Firstly, we checked the cell type speci-
ficity of all of the genes. Interestingly, when examined in
the National Cancer Institute’s NCI-60 cell lines [37],
MCF7 cell line was the top category for genes selected
in MCF7 cells, and PANC1 cell line was the top category
for its selected genes (Fig. 3a). A Venn diagram of exam-
ining these same genes within each cell line showed a
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little among genes associated with each state, with only 22
genes in MCF7 and 77 in PANC1, respectively, associated
with all three states (Fig. 3b). We also found that the genes
associated with these three different TCF7L2 states in
MCF7 and PANC1 cells are different, suggesting cell type
specificity of TCF7L2 activity. Moreover, when we exam-
ined the average expression levels of all genes associated
with each state, we found that the overall gene expression
level of state 5 genes was the highest in all selected cell
types (p-value < 0.0001) and much higher than genes
associated with state 4 or state 3. Our result suggested
that TCF7L2-regulated intragenic enhancers may play a
prominent role in upregulating gene expression than
TCF7L2-regulated distal enhancers (Fig. 3c).

We further examined the biological function of the
TCF7L2-regulated genes by KEGG pathway enrichment
analysis [38, 39]. Our results demonstrated that the
enriched pathways are different between these three
categories with cell type specificity (Fig. 3d). In overall,
pathway enrichments in MCF7 cells were more involved
in cancer initiation and cell cycle pathways, while those
in PANC1 cells were more related to the metabolic
pathway and cell adhesion. Interestingly, TCF7L2-
regulated promoters are more enriched with well-known
specific cancer initial development such as Epstein-Barr
virus infection in breast cancer and metabolic in pancre-
atic cancer [20, 40, 41]. However, TCF7L2-regulated
intragenic enhancers included advanced stage markers

Fig. 2 The annotation of chromatin states for TCF7L2-omics data. a The correlation with other genomic features, the distribution of each state
bins as well as the average of gene expression for each of 18 states. The average gene expression is normalized by z-score and % total bin shows the
percentage of each state in the human genome. b The biological interpretations of the HMM states and identification of four TCF7L2-assoicated States
according to the emission probability and other genomic information. c The distribution of four TF-associated States on the gene structure. All genes’
length is normalized, representing the 5’–3’ region as gene body region and extending 90 kb of up/down steam for gene surrounding distribution.
d Summary of bin distribution of three TCF7L2-associated states in five cancer cell types
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Fig. 3 (See legend on next page.)
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in cancers such as Thyroid hormone signaling and
Proteoglycan in cell adhesion [42, 43], whereas TCF7L2-
regulated distal enhancers are enriched with the general
signaling in cancer development such as PI3K-AKT
pathway and Rap signaling [44]. These results suggested
that genes associated with TCF7L2 regulated intragenic
enhancers may be more relevant to metastasis and
cancer progression dependent on a specific cancer type.

Comparison with ChromHMM
To compare T-cep with other published software tools,
we chose ChromHMM [45] since it is a widely used
software tool, is powerful in genomic segmentation with
a user-friendly application, and can take different types
of epigenetic marks (histone modification, transcription
factor, DNA methylation and et al) as combinatorial
inputs. However, when coming to the question of
segmentation involved in a specific TF, the method has
some limitations. 1) Given that the number of binding
sites for most TFs are much less than those of histone
modification sites at a whole genome, thus treating TF
same as histone marks may lose the specific TF charac-
teristics. 2) In ChromHMM, the independence between
marks is transformed into a combination of probabilities
in a given state. This would indicate that, for example,
those regions showing low probability of TF binding are
combined with the regions without TF binding because
both have similar probabilities of other marks. Such
output is contradicted to the actual combination. 3)
Since there is no specific rule for determining the final
threshold of segmentation, this may result in various
outputs for the same data samples. In contrast, T-cep is
designed to consider all possible events without ignoring
any low number of marks. In addition, TF-state is not
combined with other similar combinations since T-cep
focuses on TF associated combinatorial states.
We trained our TCF7L2-omics data on ChromHMM

with both 25-state model and 18-state HMM. We found
that ChromHMM output similar patterns for two
models, indicating the 18-state model is optimized for
segmentation (Additional file 1: Figure S9). We matched
the output of 18 states for both tools in order to show a
direct side-to-side comparison. We also adopt the
following metrics for the evaluation in order to show the
TF-specific segmentation: 1) whether the tool is able to
identify potential TF-states; 2) how many TF-state bins
are able to be recovered in the annotated functional

state; and 3) what is the quantitative correlation between
annotated functional TF-state and gene expression level.
Despite that both methods can identify TCF7L2-

associated states. T-cep were able to annotate four
TF-states, states 1, 3, 4 and 5 and ChromHMM only
annotated two TF-states, states 3 and 4 (Fig. 4a). Both
methods identified a TCF7L2-associated promoter state
(state 3) with a high probability of H3K4me3, and a
TCF7L2-associated distal enhancer state (state 4) with
highly enriched H3K27ac and H3K4me1. Although
ChromHMM assigned state 5 as an intragenic enhancer
with a high probability of H3K27ac, H3K4me1 and
H3K36me3, the intragenic enhancer state is not corre-
lated well with TCF7L2 binding. This clearly showed that
ChromHMM missed an intragenic TF-enhancer state for
TCF7L2-omics data. We also observed that a non-
combinatorial TCF7L2-assoaited state, state 1, identified
by T-cep was missed by ChromHMM. We then examed
the number of bins recovered within each of annotated
functional states and found T-cep had more bins for
state 3 (296,248 vs 234,750 bins) and state 4 (354,573 vs
190,683 bins) respectively than ChomHMM did, while
ChromHMM got more bins for state 5 (534,683 vs
272,409 bins) (Fig. 4b). For promoter regions related to
state 3, we observed that a majority of the bins were
common between T-cep (71.9% of all state 3 bins) and
ChromHMM (90.8% of all state 3 bins), and only 83,175
and 21,677 bins were unique annotate in each of two
methods respectively. For intragenic enhancer regions
related to state 5, these two methods shared much less
common bins with only 49,382 bins (18.1% for T-cep
and 9.2% for ChromHMM) despite there are more bins
overall in state 5 (Fig. 4b). The gene expression
associated with those unique bins showed that the genes
associated with promoters have a slightly higher for
ChromHMM while those associated distal and
intragenic enhancers are much higher for T-cep. Inter-
estingly, genes associated with TCF7L2-regulated
intragenic enhancers (state 5 in T-cep) showed the
highest expression, indicating only T-cep is capable of
identifying a specific set of TCF7L2-regulated intragenic
enhancers (Fig. 4c). Further, we compared the overlap-
ping and distinction of PANC1 cell segmentation
between two methods. Clearly, promoter segmentation
is similar between two methods, but enhancer segmenta-
tions are dramatically different. We found that state 4 in
T-cep was mainly aligned to state 4 and state 6 in

(See figure on previous page.)
Fig. 3 Genes with TCF7L2-associated states in MCF7 and PANC1 cells. a Identification of gene associated with TCF7L2-states in NCI-60 cell showing
cancer type specificity. b A Venn diagram showing an overlapping set of genes among TCFL2-associated States in two cancer cell lines. c Boxplot of
gene expression level showing TCF7L2-associated intragenic enhancers with the highest expression among three TCF7L2-associated states. Expression
levels were log2-transformed, with genes having expression level <1 considered to have an expression level of 1. d The KEGG pathways for TCF7L2
promoters, TCF7L2 distal enhancers and TCF7L2 intragenic enhancers
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ChromHMM while state 5 in T-cep is split into
several states in ChromHMM (Fig. 4d). These com-
parisons clearly showed the advantage of T-cep that
can identify specific TF-associated states due to its
consideration of a TF within the algorithmic design.
Our results also pointed out a major difference
between two methods such that ChromHMM is
focused on annotating more functional combination
of marks, while T-cep considers more influences of a
specific TF on functional chromatin states.

Functional validations of TCF7L2-associated intragenic
enhancers
Using our T-cep method, we were able to identify a set
of TCF7L2-associated distal and intragenic enhancers in
MCF7 and PANC1 cells respectively. In order to
compare the activity between intragenic and distal
enhancer, we chose the genes having both intragenic and

distal enhancer regions, nine in MCF7 and eight in
PANC1 cells, respectively (Additional file 1: Table S7).
We first performed the knockdown TCF7L2 experiment
using small interfering RNA (siRNA) in these two cell
lines and then used quantitative PCR assays to confirm
these genes are actually regulated by TCF7L2
(Additional file 1: Figure S8). Our results showed that
94.1% (16/17 genes except SMAD3) of gene expressional
levels were significantly decreased (p < 0.0001) after
TCF7L2 knockdown, demonstrating that 1) the de novo
prediction of TF-associated chromatin states (TF-states)
by T-cep is valid; and 2) TCF7L2 are involved in regulat-
ing these genes enhancers (Fig. 5a). Out of the most
significantly decreased expressed genes, we further chose
KRT8, PTK2, ERRFI1 and ZNF217 for enhancer activity
validations. We cloned specific TCF7L2-associated
enhancer loci (TFE) into pGL3 promoter vector for
enhancer efficiency detection and the cloned regions are

Fig. 4 A comparison of T-cep with ChromHMM. a The emission probabilities of 18 states trained by T-cep and ChromHMM respectively. b The
common and unique number of TF-state bins in each of three TCF7L2-associated functional states between T-cep and ChromHMM. c Boxplot of gene
expression associated with those unique bins in each of three TF-states for T-cep and ChromHMM respectively. d Three TF-states’ segmentation
(regions) identified by T-cep corresponding to states identified by ChromHMM in PANC1 cells
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listed in Additional file 1: Table S8-S9. We applied Lucif-
erase Reporter Assay to further compare the activity be-
tween different types of TF-enhancers. In control cells,
both cell types clearly illustrate TF-Intragenic enhancer

shows more activity than TF-distal enhancers and
ZNF217 TF-intragenic enhancer shows almost 4 times
than ZNF217 TF-distal enhancer (Fig. 5b). Moreover, we
applied TCF7L2 knockdown and TCF7L2 overexpression

Fig. 5 Functional validations of the predicted TCF7L2 enhancers by T-cep. a Quantitative PCR analysis of selected gene associated with TCF7L2-enhancers
in MCF7 and PANC1 cells after TCF7L2 knockdown. Selected genes contain both of TCF7L2 intragenic and distal enhancers for further analysis. All data are
normalized by GAPDH mRNA and represent the average of three independent experiments with p-values less than 0.05 (t-test). b Luciferase
reporter activity assay in TCF7L2 knockdown cells. MCF7 and PANC1 cells are transient transfected with intragenic or distal TFE-pGL3 vector at the
TCF7L2-siRNA or non-targeting siRNA conditions. c Luciferase reporter activity assay in TCF7L2 overexpression cells. Intragenic or distal TF-enhancer-pGL3
vector and TCF7L2-pcDNA or empty vector are transient transfected into MCF7 and PANC1 cells
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in both cell lines to characterize TCF7L2-associated en-
hancers. In TCF7L2 knockdown cell lines, we firstly
wanted to confirm if TCF7L2 regulates the predicted in-
tragenic and distal enhancers. The activities of all en-
hancers are decreased after TCF7L2 knockdown, notably
the enhancers in PANC1 cells decreased more than those
in MCF7 cells and both of ZNF217 and ERRFI1 intragenic
enhancer decrease more than 70% in PANC1 cells, illus-
trating TCF7L2 indeed regulates those enhancer activities
(Fig. 5b). In the other aspects, in TCF7L2 overexpression
cells, clearly, both types of enhancers for four tested genes
showed higher activities with TCF7L2 co-transfection.
Strikingly, we found that TCF7L2 intragenic en-
hancers showed much higher activity than the
TCF7L2 distal enhancers. The activity of KRT8 and
PTK2 TF-intragenic enhancer increased more than
400% comparing their TF-distal enhancer around
300% in MCF7 cells. In PANC1 cells, ZNF217 and
ERRFI1 intragenic enhancer also increase 30 ~ 50%
although they are already on high basic activity level
before TCF7L2 overexpressed (Fig. 5c). These expri-
mental results strongly supported a notion that TF
intragenic enhancers might contribute higher in tran-
scribing gene expression than TF distal enhancers.
Taken together, our experimental validations not only
confirmed the functionalities of annotated TCF7L2-
associated enhancer states but also strengthened the
reliability of our method in unveiling novel TF-states.

Discussion
In this study, we have developed a novel computational
method, T-cep, to identify transcriptional factor associ-
ated combinatorial epigenetic patterns from ChIP-seq
data. T-cep applied an univariate HMM training,
selected best models by the BIC score and imposed
second HMM re-training for determine TF-state and
non-TF-state. The unique features of T-cep are the
following: (1) encoding each mark as an alphabet of 2n

observations as an input with ability of scaling up, (2)
training HMM twice to reduce background noise and
infrequent states, (3) outputting all combinatorial pat-
terns for emission probability, and (4) marginalizing on
decoding each mark probability in each state. This is a
computationally intensive approach, allowing states in
T-cep to directly examine combinatorial marks together,
since they have emission probabilities for marks’
combinations rather than individual marks. This is in
contrast to other software tools which are limited to
treat all kind of data set as equal biological weight and
lack a focus on the key factor during HMM training.
Importantly, using the T-cep method, we were able to
unveil a novel set of TF-associated intragenic enhancers
that are predicted to be higher transcriptional activity
than typical distal enhancers.

As a study case, TCF7L2 is chosen in that it is a key
WNT downstream regulator which is implicated in can-
cers and diabetes, as well as its alternative splicing gen-
erates protein variants with differential promoter-
binding and transcriptional activation [31, 32, 46]. After
trained by T-cep with the TCF7L2-omics data, we
uncovered four types of TCF7L2-associated chromatin
states with distinct combinatorial characteristics and
genomic distribution. Of them, TCF7L2 intragenic
enhancer is particularly interesting. The Gene Enrich-
ment and Pathway analyses further revealed that genes
with TCF7L2-associated states are cancer type specific
(Fig. 3a) and their intragenic enhancers are more associ-
ated with advanced stage markers in cancer such as
Thyroid hormone signaling and Proteoglycan in cell
adhesion (Fig. 3c), illustrating their functional relevance
to specific cancer progression and metastasis. Our func-
tional validations found that such intragenic enhancers
exert higher transcriptional activities than those distal
enhancers in TCF7L2 regulated gene expression. Our
findings provide a new set of intragenic enhancers
consisting of epigenetic signatures H3K4me1, H3K27ac
and H3K36me3 [47] that may play more important func-
tional role in diseases progression. This is in contrast to
the role of conventional distal enhancers with typical
epigenetic marks of H3K4me1, H3K27ac but the absence
of significant H3K4me3 [48, 49] in regulating the cell
type specificity.
One notable advantage of T-cep is that it can identify

more TF-states at a cell-type dependent manner in
comparison to ChromHMM due to the unique under-
lying algorithmic design. At a broader application, our
T-cep was able to identify five MYC-associated states,
states 1, 2, 4, 5 and 6, the similar pattern found in
TCF7L2 data sets: TF-promoter (state 2), TF-intragenic
enhancer (state 6), TF-distal enhancer (state 5) and
TF-non-combinatorial state (state 1), as well as TF-inac-
tive enhancer state (state 4) (Additional file 1: Figure
S10). Three of these states (state 1, 4, 6) were noticeably
missed by ChromHMM (Additional file 1: Figure S11).
In a broader aspect, T-cep may be capable of deeply
exploiting transcription factor associated epigenetic pat-
terns where many other tools are unable to, and may
further uncover their novel functionalities associated
with various diseases or cancer types, providing a ra-
tionale to explore the underlying mechanisms.

Conclusions
In summary, our study for the first time at a genome-
wide scale reveals the enhanced transcriptional activity
of cell type-specific TF-associated intragenic enhancers,
allowing us more insights into underlying epigenetic
regulatory codes in different cell or tissue types as well
as in normal or disease conditions.
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Methods
Training a hidden Markov model (HMM)
In HMMs, TF-state or non-TF-state are considered as
hidden states and all of the possible combinations of
chromatin marks are as observations. T-cep introduces a
binary value for each segment that ‘1’ for mark presence
or ‘0’ for mark absence based on a Poisson background
distribution(P < 10−4). Observation symbols are made up
by enumerating each possible combination of mark. For
example, a segment with TCF7L2, H3K4me1 and
H3K36me3 can be translated into 0b101000100, while 0
inside means no correspondent mark in this segment.
The HMMs sequence is assumed as a segment-
homogeneous first-order chain.
Let n be the number of distinct states and m be the

number of distinct observation symbols per state in the
model. We denote the individual hidden states as S
= {S1,S2,…,Sn} and individual combination histone mark
symbols as O = {O1,O2,…,Om}. The hidden state transi-
tion probability matrix is A = {aij}, where Aij = P(Yt+1 = Sj
| Yt = Si), i ≥ 1, j ≤ n. The emission is the combination of
TF, remodelers, histone marks symbol probability distri-
bution. We assume B = {bj(Ot)} is the symbol in hidden
state Sj, where Bj(Ok) = P(Xt =Ok | Yt = Sj), 1 ≤ j ≤ n, 1 ≤
k ≤m. Xt is the Observation of symbol and Yt represents
the hidden state in bin t. To begin modeling, π is
randomly initialized state probability distribution and
there are three probability measures noted as λ = (A,B,π).
Each HMM is trained for 300 iterations using a
probability-scaling variant of the canonical Baum-Welch
expectation-maximization algorithm with a minimum
probability of 10−6 enforced for all transition, emission
and initial probabilities to avoid potential numerical
underflow. The best HMM is selected by the lowest
Bayesian Information Criterion (BIC) score. After Viterbi
decoding algorithm, those states with much less bins are
removed from the model. Another canonical Baum-
Welch algorithm is further modified by running multiple
instances of the forward-backward algorithm. Let ξt(i) is
the probability of the partial observation symbols
sequence (O1,O2,…,Ot) until bin t and the state Si at bin t,
given the model λ. ξt(i) can be written as P(X1 = O1, X2 =
O2,…,Xt = Ot, Yt = Si | λ), the forward procedure can be
calculated recursively by Eq 1, 2.

ξ1 ið Þ ¼ πibi O1ð Þ ð1Þ

ξtþ1 jð Þ ¼ bj Otþ1ð Þ
Xn

i¼1
ξt ið Þaij ð2Þ

We assume that the particular state (Yt = Si) is the
initialization. Let ζt(i) = P(Xt+1 =Ot+1,Xt+2 =Ot+2,…,XT =
OT|Yt = Si, λ), to be the probability of the partial observa-
tion symbols sequence from t + 1 to end, given the state

Si at bin t and the model λ. The backward procedure
can be computed by Eq 3, 4.

ζT ið Þ ¼ 1 ð3Þ

ζ t ið Þ ¼
Xn

j¼1
bj Otþ1ð Þζ tþ1 jð Þaij ð4Þ

In order to re-estimate the HMMs parameter λ, the
HMMs is trained for a further 100 iteration to produce
the final states. We define P(Si,t) as the probability of be-
ing in state Si at bin t, given the model and the observa-
tion sequence and P(Sij,t) is the probability of being in
state Si at bin t and state Sj at bin t + 1, given the model
and the observation symbols sequence. We calculate the
P(Si,t) and P(Sij,t) with the forward and backward variables
ξt(i) and ζt(i). The HMM parameter λ can be re-
estimated as following Eq 5:

π ¼ P Si;tð Þ t ¼ 1ð Þ

A ¼
XT−1

t¼1
P Sij;tð Þ=

XT−1

t¼1
P Si;tð Þ

B ¼
XT

t¼1
P Si;tð Þ=

XT
t ¼ 1
Xt ¼ O

P Si;tð Þ

8
>>>>>><

>>>>>>:

ð5Þ
The second Viterbi decoding algorithm is used to

compute the highest probability of combinatorial epigen-
etic marks in correlation with the hidden states. Each
combination of epigenetic mark has one output which is
done to allow more direct interrogation of combinatorial
epigenetic patterns with states. The probabilities of emit-
ting each epigenetic mark independent are calculated by
marginalization among all output combinations of marks
probabilities. The independent emission probability
follows Eq 6:

P IDð Þ ¼
X

x¼1

2n
P xð Þ xID > 0jð Þj0 xID ¼ 0ð Þ� ð6Þ

where ID is the epigenetic mark binary value, x is the
output number and & is the bitwise AND operator.

Implementation and Application
T-cep is implemented in C++, runs on Linux, and
depends on the OpenMP and Boost APIs. T-cep
contains a suite of scripts and program implement-
ing the preprocessing, HMM training and TF-State
calling steps. A univariate hidden Markov model
(HMM) is applied to uncode observed genome-wide
epigenetic data into hidden functional chromatin
states. Several other scripts are provided for various
utility functions.
For the concern of scaling limitation, although it is not

necessary in this study (only 512 output combinations),
T-cep also provided several scripts for allowing large
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numbers of marks in application. getOutputMap.pl can
output the actually combination in all database.
manyOutputMapper.pl used for mapping output combi-
nations in precompiled datasets to an arbitrary ID
system, which only for at least one bin actually found in
output combinations. Due to far fewer mark combinations
are expected to occur in practice, this script effectively frees
T-cep from the scalability for reasonable outputs instead of
considering every combination of marks as a possible
output, which grows according to 2n. ManyOutputModel-
BackConvert.pl applied in mapping the outputs of HMMs
trained with this data back to the original output
combinations. This only considers mark combinations
actually found in the data sets an upper bound to
model complexity corresponding to the number of
bins in all datasets.
The tool and scripts are available at our website,

http://compbio.uthscsa.edu/T-cep/.

Raw data processing
Public ChIP-seq datasets were downloaded from
ENCODE project and only the 5’-end of uniquely
mapped reads are used for the further analysis. Align-
ment to human reference genome hg19 was performed
with Bowtie. Default settings were used with an excep-
tion that the number of allowed alignments was re-
stricted to 1 in order to obtain only unique mapped
reads, and seven threads were used. RNA-seq FASTQ
files were aligned to hg19 using Tophat2 and average
gene expression of each state was calculated by first
finding the highest expression for any splice variant of
each gene in the RNA-seq results. The midpoint of each
bin is calculated, and compared to the 5’ and 3’ ends of
annotated RefSeq genes. The average gene expression re-
ported as gene expression levels are weighted by the
number of bins close to them. The percentage of bins
within RepeatMasker regions was calculated for all states
in all cell lines. Hg19 RepeatMasker data was downloaded
from http://www.repeatmasker.org/genomes/hg19/Repeat-
Masker-rm405-db20140131/. The raw RepeatMasker
regions were extracted and converted to BED format. The
mergeBed program of the BEDTools package was used to
merge adjacent RepeatMasker regions. The merged regions
were filtered to exclude regions less than 500 bp length.
Correlation between state bins and these filtered regions was
performed by BEDTools’ intersectBed.

Co-transfection and RT-qPCR
TCF7L2 siRNAs were purchased from Thermo Fisher
Scientific Silencer® Select siRNAs. For transfection of
siRNA oligo, MCF7 and PANC1 cells were seeded by 6
cell plate with Lipofectamine® RNAiMAX Transfection
Reagent for 48 h. Total RNAs from cells were extracted
using Quick-RNA™ MiniPrep kit (Zymo Research). Then

cDNA was prepared using RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific).
Expression of mRNA analysis was performed with
LightCycler® 480 SYBR Green I Masteron and LightCycler®
480 System Sequence Detection System (Roche Applied
Science) using GAPDH for normalization.

Luciferase reporter assay
Intragenic or distal TFEs were transient transfection into
MCF7/PANC1 cells with Lipofectamine 2000 reagent with
or without TCF7L2 co-transfection and β-galactosidase
expression vector. Cells were harvested and luciferase
activity was determined using the Luciferase Assay System
(Promega) per the manufacturer’s protocol. The β-
galactosidase activity was performed on lysates as a
control. The experiments were performed in triplicate.

Additional files

Additional file 1: Supplementary Figures and Tables. (DOCX 4445 kb)

Additional file 2: Gene List associated with TF-states. (XLSX 330 kb)
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