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Abstract

Background: Complete and accurate annotation of sequenced genomes is of paramount importance to their
utility and analysis. Differences in gene prediction pipelines mean that genome annotations for a species can differ
considerably in the quality and quantity of their predicted genes. Furthermore, genes that are present in genome
sequences sometimes fail to be detected by computational gene prediction methods. Erroneously unannotated genes
can lead to oversights and inaccurate assertions in biological investigations, especially for smaller-scale genome
projects, which rely heavily on computational prediction.

Results: Here we present OrthoFiller, a tool designed to address the problem of finding and adding such missing
genes to genome annotations. OrthoFiller leverages information from multiple related species to identify those
genes whose existence can be verified through comparison with known gene families, but which have not been
predicted. By simulating missing gene annotations in real sequence datasets from both plants and fungi we demonstrate
the accuracy and utility of OrthoFiller for finding missing genes and improving genome annotations. Furthermore, we
show that applying OrthoFiller to existing “complete” genome annotations can identify and correct substantial numbers
of erroneously missing genes in these two sets of species.

Conclusions: We show that significant improvements in the completeness of genome annotations can be made

by leveraging information from multiple species.

Keywords: Genome annotation, Gene prediction, Orthology, Orthogroup

Background
Genome sequences have become fundamental to many
aspects of biological research. They provide the basis
for our understanding of the biological properties of
organisms, and enable extrapolation and comparison of
information between species. Owing to the increasing
availability and affordability of whole-genome sequen-
cing technology [1, 2], genomic data sets are now pro-
duced at a rate at which it is infeasible to rely entirely
on careful manual curation to annotate a new genome;
rather it is taken as given that a considerable portion of
the process must be automated.

There has been substantial methodology development in
the area of automated gene prediction, with the production
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of several effective algorithms for identifying genes in
de novo sequenced genomes [3]. In general, these
methods predict genes by learning species-specific
characteristics from training sets of manually curated
genes. These characteristics include the distribution of
intron and exon lengths, intron GC content, exon GC
content, codon bias, and motifs associated with the
starts and ends of exons (splice donor and acceptor
sites, poly-pyrimidine tracts and other features). These
characteristics are then used to identify novel genes in
raw nucleotide sequences. These prediction methods
vary in their performance, as demonstrated by consid-
erable disagreement in the genes and gene models that
they predict [3, 4]. For example, one study [4] compar-
ing Augustus, Fgenesh, GENSCAN and MAKER,
looked at the number of genes predicted on a sample
set of D. melanogaster assemblies with varying numbers
of scaffolds. At the extreme end, with 707 scaffolds, the
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most frugal prediction (MAKER, with 12687 predicted
genes) was almost doubled by the most generous pre-
diction (GENSCAN, with 22679 predicted genes). Thus
it is to be expected that genome annotations generated
by different research groups using different methodolo-
gies will differ considerably in the complement of genes
that they contain. This disparity is exemplified by a re-
cent study [5] that analysed 12 published plant ge-
nomes, assessing them for completeness relative to
highly conserved gene sets such as BUSCO [6] and
CEGMA [7]. The study found strong evidence for uni-
versal eukaryotic genes which appeared to be present in
the genomes but had no corresponding gene annota-
tions. This indicates that many genomes likely lack
gene annotations even for highly conserved genes.

Absent or inaccurate gene models can not only con-
tribute to oversights in biological investigations, they can
also lead to false assertions in large-scale genome and
cross-species analyses [8]. For example, incorrectly miss-
ing gene annotations can be mistakenly interpreted as
gene loss, and such interpretations can lead to mistaken
inferences about the biological or metabolic properties
of an organism. Similarly, missing gene models can lead
to errors in gene expression analyses that map and
quantify RNA-seq reads using predicted gene models.
Here, reads derived from erroneously missing genes, as
they have no reference to map to, have the potential to
map to the wrong gene leading to errors in transcript
abundance estimation.

Much of the cost and effort involved in de novo genome
annotation can be reduced by leveraging data from other
taxa. Moreover, data from disparate taxa have the poten-
tial to be used simultaneously to improve a cohort of gen-
ome annotations in a mutualistic framework. A number of
approaches have been developed to utilise data from other
species to improve or assist the process of genome anno-
tation. For example, an automated alignment-based fungal
gene prediction (ABFGP) method [9] has been developed
for fungal genomes. While this method works well on fun-
gal genomes, it cannot be applied to other taxa and thus
has limited general utility.

OrthoFiller aims to simultaneously leverage data from
multiple species to mutually improve the genome anno-
tations of all species under consideration, using the con-
cept of orthogroups. It is designed specifically to find
“missing” genes in sets of predicted genes from multiple
species. That is, to identify those genes that should be
present in a genome’s annotation, whose existence can
be verified through comparison with known gene fam-
ilies. A standalone python implementation of the algo-
rithm is available under the GPLv3 licence at https://
github.com/mpdunne/orthofiller. Example datasets and
instructions for running the algorithm are included in
the git repository.
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Results

Problem definition, algorithm overview and evaluation
criteria

OrthoFiller aims to find genes that are present in a
species’ genome, but which have no predicted gene model
in the genome annotation for that species. It takes a prob-
abilistic, orthology-based approach to gene identification,
leveraging information from multiple species simultan-
eously to improve the completeness of the genome anno-
tations for all species under consideration. OrthoFiller is
not designed for ab initio gene prediction and requires
that each genome under consideration possesses a basic
level of annotation, taken to be at least 100 annotated
genes. The genomes should ideally be from a set of related
species from the same taxonomic group (genus, family,
order or class).

OrthoFiller makes use of the concept of orthogroups,
an extension of the pairwise concepts of orthologous
and paralogous genes. For a given set of species, an
orthogroup is the set of genes descended from a single
ancestral gene in the last common ancestor of those
species [10]. By definition, orthogroups may contain par-
alogous as well as orthologous genes. In the case of
OrthoFiller, orthogroups provide the basis for the gene
searching process, the aim being specifically to find un-
annotated members of existing orthogroups. As a result,
OrthoFiller is able to find genes that are paralogous as
well as orthologous to known genes.

A workflow for OrthoFiller is shown in Fig. 1. The
basic input for the algorithm is a set of genome annota-
tion files in general transfer format (GTF) and a set of
corresponding genome sequence files in FASTA format.
The output from the algorithm is a set of FASTA format
amino acid sequences for each inputted species, and a
set of GTF annotations containing the new genes.
OrthoFiller uses OrthoFinder [10] to cluster the inputted
genes into orthogroups. Advanced users may also specify
their own orthogroups, as described in the software
documentation.

Protein sequences are extracted from the genome
FASTA files using the coordinates in the GTF files and a
user-selected translation table. OrthoFiller then uses
OrthoFinder to cluster the genes from the species into
orthogroups. The protein sequences of each orthogroup
are aligned and the source nucleotide sequences for
these proteins are threaded back through the protein
multiple sequence alignment to create multiple sequence
alignments of the nucleotide sequences of each
orthogroup. Each nucleotide alignment is used to build a
hidden Markov model (HMM) that is used to search the
complete genome sequence of each species under con-
sideration. The scores of these HMMs are used to learn
the score distributions of true positive and false positive
HMM hits (see Implementation). Each hit to an HMM


https://github.com/mpdunne/orthofiller
https://github.com/mpdunne/orthofiller

Dunne and Kelly BMC Genomics (2017) 18:390 Page 3 of 16

Proteomes Orthogroups HMM HMM hits
(per orthogroup) (all genomes)
W 5
- ' 9
> a e N 1 b o-0 |
) —  a* |I o 9, j ~Hm —> (0] :

] RS O0n0 . 4
! ‘? 5 ' > fo) o : @
: e . g

g ) 1 l CcC . =
\ poTTTTTT TSI ’D x -
’ o
\\ F oo © & d &5 s
\ 1

\ « 1 ° <« ) <« Oo 1

N ' e o oo’ 00o°

= ' [ J L] (o) 1

-~ ’

Updated proteomes Filtered models Gene models Filtered hits

Fig. 1 Workflow diagram for the OrthoFiller algorithm. a Proteomes are subdivided into orthogroups using OrthoFinder. b Protein sequences in each
orthogroup are subject to multiple sequence alignment, back-translated to DNA and used to create hidden Markov models (HMMs). These HMMs are
used to search each genome in the set. ¢ The set of hits are evaluated and filtered to remove low quality hits. d Gene models are constructed around
each retained hit using Augustus. e The new gene models are compared to the hints that were used to generate them, and filtered to remove those

which bear insufficient similarity to the hints. f The filtered genes are clustered into orthogroups and genes that are successfully placed into the
orthogroup that was used to identify them are retained. g The process may be run once, or iteratively until no further genes are found

that does not overlap with an existing predicted gene is
subject to filtration using species-specific parameters that
have been learned for true and false positive hits. Each hit
that survives this filtration is considered to be a potential
genic region, or hint. The algorithm then attempts to
build gene models around these hints, using the Augustus
[11] gene finder. Gene models constructed by Augustus
are subject to two successive rounds of assessment and fil-
tration. Firstly, the predicted gene models are compared
against the hints that were used to inform them: if the
gene model and its source hint are not sufficiently similar
(see Implementation), the gene model is considered to be
unrelated to the hint, and thus to the orthogroup used to
inform its prediction. Secondly, the newly predicted genes
that satisfy the first criterion are subject to orthogroup in-
ference using the full set of existing and newly predicted
genes. Those newly predicted genes that are clustered in
an orthogroup whose HMM was used to predict them are
then accepted as bona fide genes and added to the gen-
ome annotation. Thus, genes predicted by OrthoFiller sat-
isfy stringent orthology-based criteria for their existence.

To demonstrate the utility of OrthoFiller on real data
it was applied independently to two sets of species. Set
A comprised five fungal genomes (Table 1) and Set B
comprised five plant genomes (Table 2), sourced from
the Joint Genome Institute (JGI) and the Saccharomyces
Genome Database (SGD) [12-15]. OrthoFiller was
assessed using these datasets in two ways: first via simu-
lating an incomplete genome annotation by randomly
removing entries from the genome annotation of one
species from each set, and assessing the accuracy of
OrthoFiller in recovering the removed genes; second by
application of OrthoFiller to the complete datasets and
validating the novel detected genes through analysis of
publicly available RNA-seq data.

Two measures were used to assess the quality of re-
covered genes: the protein F-score and the orthogroup
F-score, both defined in the Implementation section.
These scores were calculated for all genes identified by
OrthoFiller, by comparing the recovered gene with the
removed gene and assuming that the original removed
gene model was correct. Genes that are unique to the
test species that lack homologues in other species were
not analysed in this test, as OrthoFiller was designed to
find evolutionarily conserved genes. As there were no
publicly-available comparable methods that perform the
same task as OrthoFiller, the method was assessed in
comparison to performing the analysis without conduct-
ing the OrthoFiller evaluation and filtration steps. i.e.
using unfiltered HMM hits from the orthogroups as
hints for the de novo gene finder Augustus, and accept-
ing all identified gene models that did not overlap an
existing gene.

Evaluation of OrthoFiller on S. cerevisiae after removal of
10% of gene annotations

Figure 2 and Table 3 show the results of running Ortho-
Filler on the set of fungal species shown in Table 1 after
random removal of 10% of “discoverable” genes (genes
that were contained in an orthogroup with at least one

Table 1 Species Set A, fungal species used for algorithm validation

Species name Source Strain Taxonomy ID  References

Eremothecium gossypii  JGI® ATCC10895 284811 [12]
Debaromyces hansenii )Gl CBS767 284592 [13,14]
Kluyveromyces lactis JGl CLIB210 284590 [13]
Saccharomyces cerevisiae SGD°  $288C 559292 [26]
Yarrowia lipolytica JaGl CLiB122 284591 [13]

?Joint Genome Institute; bSaccharomyces Genome Database
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Table 2 Species Set B, plant species used for algorithm validation

Species name Source  Version Taxonomy ID  References
Arabidopsis thaliana  JGI TAIR10 3702 [15]
Brassica rapa JaGl v13 3711 [15]
Carica papaya JGl ASGPBv04 3649 [15]
Capsella rubella JGl v1.0 81985 [15]
Theobroma cacao JGI vl 3641 [15]

gene from another species) from the predicted comple-
ment of genes in S. cerevisiae (i.e. 513 nuclear encoded
gene annotations were deleted from a total set of 5129
discoverable genes). This was performed 10 times, each
time with a different disjoint subset removed. The full
details of detection of the deleted genes at different
stages in the OrthoFiller algorithm are shown in
Additional file 1: Figure S1.

After running OrthoFiller, an average of 160 genes
were predicted in the genome of S. cerevisiae that were
not present in the submitted depleted genome annota-
tion file. Of these, 98.9% overlapped with genes that
were deleted from the original annotation. 96.1% of
genes were recovered to high accuracy (protein F-
score = 0.95). The mean protein F-score of the remaining
genes of lower accuracy (protein F-score < 0.95) was still
high at 0.89 (Fig. 2b). All of the genes that had lower
gene model accuracy were placed in exactly the same
orthogroup as expected when the sequences were sub-
jected to orthogroup inference. Thus, although typically
around six of the gene models differed from the original
reference gene model, this difference was not sufficient
to disrupt downstream identification of orthogroups.

To provide a comparison, in the absence of the Ortho-
Filler evaluation steps an average of 582 genes were
identified, of which only 79.2% overlapped with genes
that were deleted from the original annotation and an
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average of 120 genes had not been predicted as genes in
the original S. cerevisiae genome (Fig. 2a), indicating
many of these were erroneous. In addition, on average
11 removed genes were split into multiple individual
genes upon recovery. Of the predicted genes that over-
lapped with removed genes, 89.3% were recovered with
high accuracy (protein F-score = 0.95) and the mean pro-
tein F-score of those recovered to a lower accuracy was
0.57 (Fig. 2b), considerably lower than with OrthoFiller.
Of the lower-quality genes, an average of 42.1% had an
orthogroup F-score less than or equal to 0.95, compared
with 4.0% for OrthoFiller. Moreover, 39.4% of the lower-
quality genes were sufficiently mis-predicted that they
failed to be placed in an orthogroup, or were placed in
an orthogroup that shared no members with the
orthogroup that contained the original gene. Thus in the
absence of OrthoFiller filtration there was an increase in
the percentage of gene prediction errors and a reduction
in the accuracy of orthogroup inference.

Figure 2c-d show the distribution of orthogroup F-
scores versus protein F-scores obtained following appli-
cation of OrthoFiller to this test dataset. In these figures,
results from all 10 runs have been pooled together. The
majority of genes recovered with OrthoFiller had both
high protein and orthogroup F-scores (Fig. 2c): 94.4%
had both F-scores > 0.95. This indicates that the majority
of predicted genes were identical (or nearly identical) to
the original removed gene and that when subjected to
orthogroup inference they were clustered in the correct
orthogroup. Imperfect protein F-scores can be explained
by discrepancies in intron/exon and start/stop codon
choices between the removed and recovered gene
models. Imperfect orthogroup F-scores were due to fluc-
tuations in orthogroup membership. Figure 2d shows
the results in the absence of OrthoFiller processing. In
this case, 85.3% were of dually high quality. However,
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Fig. 2 Performance of OrthoFiller on S. cerevisiae genome with 10% of annotated genes removed. a Using OrthoFiller an average of 158 of 160 found
genes (99.0%) had genomic locations matching any of the 513 deleted genes. In the absence of OrthoFiller filtration an average of 447 of 582 (79.2%)
of the found genes matched any of the deleted genes. b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predictions made in
the absence of OrthoFiller filtration, that had a protein F-score of <0.95. ¢ Density plot showing the protein and orthogroup F-scores for all recovered
genes using OrthoFiller. d Density plot showing the protein and orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration
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Table 3 Recovery of removed genes in S. cerevisiae, averaged over 10 runs
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10% annotations removed

90% annotations removed

OrthoFiller de novo OrthoFiller de novo
No. genes removed 513 513 4615 4615
Total genes found? 160 (11.4) 582 (21.2) 1473 (47.5) 4270 (28.2)
Found genes which overlap removed genes® 158 (11.2) 462 (11.9) 1472 (47.4) 4163 (18.3)
Total recovered genes® 158 (11.1) 447 (9.6) 1471 (47.3) 4074 (22.4)
Number of split genes® 0 0.3) 11 4.5) 1 0.7) 89 (8.49)
Mean pF-score of found genes® 0.99 (<0.01) 0.95 0.01) 0.99 (<0.01) 0.96 (<0.01)
Mean oF-score of found genes® 0.99 (<0.01) 0.96 (0.01) 0.99 (<0.01) 0.96 (<0.01)
High-quality found genes (pF-score >0.95)* 152 9.1) 4123 (94) 1401.7 (44.76) 3766 (33.6)
Lower-quality found genes (pF-score <0.95) ° 6.2 (32 493 (12.2) 70.6 (5.6) 396.7 (23.1)
Mean pF-score of lower-quality genes® 0.89 (0.04) 0.57 (0.07) 0.88 (<0.01) 0.63 (0.01)
% of lower-quality genes with oF-score <0.95° 40 (8.1) 421 (9.3) 48 (14) 387 (1.1)

“Numbers shown are rounded mean values from 10 disjoint removed subsets of genes, with standard deviations bracketed

3.2% of predicted genes had both a low (<0.5) protein
and orthogroup F-score, indicating those predicted genes
were sufficiently incorrect to cause errors in orthogroup
inference. Thus, although OrthoFiller does not recover
all deleted genes (30.8% of removed genes), application
of OrthoFiller resulted in the recovery of high-quality
gene annotations that contain few (in this example there
are none) incorrectly predicted genes.

Evaluation of OrthoFiller on S. cerevisiae after removal of
90% of gene annotations

Figure 3 and Table 3 show the performance statistics for
OrthoFiller using a version of S. cerevisiae genome where
90% of gene annotations were removed (4615 annota-
tions). This represents an extreme case where a genome
has minimal annotation. The full details of detection of
the deleted genes at different stages in the OrthoFiller
algorithm are shown in Additional file 2: Figure S2. Again,

the experiment was run 10 times, this time with disjoint
subsets of 10% of genes left remaining. Here, application
of OrthoFiller resulted in the identification of on average
1473 genes, of which 99.9% overlapped with the removed
genes. Of the found genes, 95.2% were recovered with a
protein F-score of 0.95 or greater. Of the genes with lower
protein F-scores (Fig. 3b), only 4.7% had an orthogroup F-
score <0.95. As before, although these gene models
differed from the original reference gene model, this
difference was not sufficient to disrupt downstream
orthogroup inference.

In the absence of OrthoFiller filtration, an average of
4270 genes were found, of which 97.5% overlapped
the removed genes. An average of 89 removed genes
were split into multiple individual genes upon recovery.
On average, 90.4% of the found genes had a protein F-
score > 0.95. Of the genes with lower protein F-scores,
39.4% had an orthogroup F-score lower than 0.95, and
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32.3% were sufficiently mis-predicted that they failed to
be placed in any orthogroup at all, or in an orthogroup
completely different to the one that was used to find
them.

Figures 3c-d show the distribution of orthogroup F-
scores versus protein F-scores for recovery in the 90%
removal case. Figure 3c shows that most genes were re-
covered well, with 89.8% genes predicted correctly and
placed in the correct orthogroup when subject to
orthogroup inference (protein F-score > 0.95, orthogroup
F-score > 0.95). Interestingly, there are many genes that
are predicted correctly but are placed into a slightly dif-
ferent orthogroup to what was expected. This is due to
changes in orthogroup membership caused by the many
still-missing genes.

Thus, although the input datasets are dramatically
different the performance characteristics of OrthoFil-
ler on the 10 and 90% datasets are broadly consistent
(e.g. 30.8 and 31.9% recovery of removed genes re-
spectively, of which 94.1 and 89.8% were high-
accuracy predictions).

Evaluation of OrthoFiller on A. thaliana after removal of
10% of gene annotations
As it could be argued that fungal genomes present an eas-
ier challenge, an additional demonstration of the utility of
OrthoFiller on an alternative group of organisms was also
conducted. Here the analogous test of the method was
applied to a set of five land plant genomes (Table 2).
OrthoFiller was run five times with 10% of discoverable A.
thaliana genes removed, with a different disjoint random
subset removed each time. Table 4 and Fig. 4 show aver-
age performance statistics from these runs.

An average of 1233 genes were discovered by Ortho-
Filler, 89.7% of which overlapped removed genes. Of
these, 39.0% were recovered to very high accuracy

Table 4 Recovery of removed genes in A. thaliana
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(protein F-score >0.95), and the mean protein score of
the lower-quality genes was 0.61. 95% of these lower-
quality genes were placed in the correct orthogroup
after orthogroup inference, indicating that the lower
protein scores were typically a product of inaccurate
gene model rather than the gene itself being incorrect,
and orthogroup inference remained reliable.

In the absence of OrthoFiller filtration, an average of
13184 genes were discovered, considerably more than the
number of genes removed, indicating that a large number of
these may be erroneous: only 37.3% of these genes over-
lapped removed genes. Of those that overlapped re-
moved genes, 24.7% represented removed genes that
were split into multiple parts, and only 13.0% were high
quality. The average protein F-score of the lower-quality
genes was 0.31, and 81.1% of these lower-quality genes
also had a low (<0.95) orthogroup F-score. Thus in the
absence of OrthoFiller filtration, large numbers of unre-
liable genes were found.

Figure 4c-d show the distribution of orthogroup F-
scores versus protein F-scores for recovery in the 10%
removal case for A. thaliana. Using OrthoFiller, 37.1% of
genes had both a high (20.95) protein and orthogroup F-
score. Furthermore, in the de novo case, 52.4% of recov-
ered genes scored poorly on both metrics (<0.5), com-
pared with 1.4% of genes found using OrthoFiller. Thus
using OrthoFiller reduces the proportion of found genes
which are erroneous.

Evaluation of OrthoFiller on A. thaliana after removal of
90% of gene annotations

Average performance statistics for the application of
OrthoFiller to the 90% depleted A. thaliana genome
(21683 genes removed) can be seen in Table 4 and Fig. 5.
Statistics are averaged over five runs using different dis-
joint subsets of discoverable genes left in the annotation.

10% annotations removed

90% annotations removed

OrthoFiller de novo OrthoFiller de novo
No. genes removed 2410 2410 21683 21683
Total genes found® 1233 (37.5) 13184 (426.7) 11480 (96.2) 42504 (223.5)
Found genes which overlap removed genes® 1107 (37.5) 4918 (130.4) 11344 (89.0) 35609 (149.5)
Total recovered genes® 1036 (31.72) 2269 (16.4) 10380 (59.7) 20431 (33.0)
Number of split genes® 67 (54) 1214 (23.6) 945 (34.4) 7451 (37.7)
Mean pF-score of found genes® 0.75 (0.01) 045 (<0.01) 0.70 (<0.01) 0.55 (<0.01)
Mean oF-score of found genes® 0.94 (<0.01) 0.51 (<0.01) 0.89 (<0.01) 0.64 (<0.01)
High-quality found genes (pF-score 20.95)° 4320 (29.3) 640.8 27.4) 34198 (21.3) 9079.6 (99.5)
Lower-quality found genes (pF-score <0.95)° 6746 (32.1) 42772 (147.8) 79238 (99.5) 26529.8 (201.3)
Mean pF-score of lower-quality genes® 0.61 (0.02) 0.31 (<0.01) 0.57 (<0.01) 033 (<0.01)
% of lower-quality genes with oF-score < 0.95° 346 (19 81.1 0.9) 434 (0.6) 739 0.1)

“Numbers shown are rounded mean values from 5 disjoint removed subsets of genes, with standard deviations bracketed
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tions made in the absence of OrthofFiller filtration, that had a protein F-score of <0.95. Scores were typically lower for the de novo runs. ¢ Dens-
ity plot showing the protein and orthogroup F-scores for all recovered genes using OrthoFiller. d Density plot showing the protein and
orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration

Using OrthoFiller, 11480 genes were discovered, of
which 98.8% overlapped genes that had been removed.
Of these, 30.1% had a high protein F-score, and the aver-
age protein F-score for those of lower quality remained
relatively high at 0.57. 56.5% of genes with lower pro-
tein F-scores ended up in the right orthogroup after
orthogroup inference.

In the absence of OrthoFiller filtration, many more
genes were found than removed, with an average of
42504 genes found. Of these, 83.8% overlapped re-
moved genes, however many removed genes (20%)
were split into multiple parts. Only 25% of the overlap-
ping genes were recovered to high accuracy (protein
F-score > 0.95), and the average protein F-score for the
lower-quality genes was low at 0.33, indicating that a
large number of these genes bore little resemblance to
the removed gene they overlapped. In addition, 73.9%

of lower-quality genes had low-quality orthogroup in-
ference, indicating that the proteins were sufficiently
mis-predicted that they disrupted orthogroup infer-
ence. This shows that, although more genes were
recovered in the absence of OrthoFiller filtration, con-
siderably more noise and erroneous predictions are
produced.

Figure 5c-d show the distribution of orthogroup F-
scores versus protein F-scores for recovery in the 90%
removal case for A. thaliana. On average, 38.1% of genes
recovered without OrthoFiller were of dually low quality
(protein F-score, orthogroup F-score <0.5), compared with
only 34% of genes recovered with OrthoFiller. Thus,
similar to the fungal data set analysis, the performance
characteristics of OrthoFiller on the 10 and 90% plant
datasets are broadly consistent (e.g. 42.9 and 47.9% recov-
ery respectively, 39.0 and 30.1% high-accuracy recoveries

Orthogroup F-score & protein F-score comparison, OrthoFiller vs de novo
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Fig. 5 Performance of OrthoFiller on A. thaliana genome with 90% of annotated genes removed. a Using OrthoFiller 98.8% of found genes overlapped
removed gene annotations, compared with 83.7% without filtration; b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predic-
tions made in