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Abstract

Background: Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential
component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions
remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in
splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and
transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create
the observed position level read count curves. A single number for measuring gene expression which is widely
used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression
variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome
sequencing (WGS) data poses enormous challenges.

Methods: We develop a nonlinear functional regression model (FRGM) with functional responses where the
position-level read counts within a gene are taken as a function of genomic position, and functional predictors
where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data.
Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis
analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed
to collectively test interaction between all possible pairs of SNPs within two genome regions.

Results: By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the
correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The
proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of
significantly interacting genes after Bonferroni correction identified using FRGM, RPKM and DESeq were 16,2361, 260
and 51, respectively, from the 350 European samples.

Conclusions: The proposed FRGM for epistasis analysis of RNA-seq can capture isoform and position-level information
and will have a broad application. Both simulations and real data analysis highlight the potential for the FRGM to be a
good choice of the epistatic analysis with sequencing data.
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Next-generation sequencing, Association studies, eQTL
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Background
Epistatic effect in gene expression, defined as the depart-
ure from additive effects in a linear model of eQTL ana-
lysis [1], plays an essential role in understanding the
gene regulation and disease mechanisms [2–4].
One polymorphism’s effect on expression of a gene de-
pends on other polymorphisms present in the genome
[5]. Epistasis analysis of gene expressions will substan-
tially improve the understanding of the genetic architec-
ture of gene expression and facilitate mechanistic
insights into complex traits [6, 7]. However, eQTL epis-
tasis analysis remains fundamentally unexplored due to
large computational challenges and data availability [6].
Gene expression is an intermediate phenotype that brid-

ges the genotype and higher level phenotypes such as dis-
eases [8, 9]. Studying the effect of epistasis on the gene
expression could provide a better understanding of the
genetic architecture and gene regulation. The importance
of detecting the epistatic effect on the gene expression has
been emphasized in many recent studies [10, 11]. How-
ever, the corresponding methods are relatively rare. The
widely used statistical methods for identifying eQTL epis-
tasis are designed for microarray expression data where an
overall expression of the gene is taken as a quantitative
trait and all methods for QTL epistasis analysis can be
used for eQTL epistasis analysis [10, 12].
Application of next generation sequencing (NGS)

techniques to the genetic analysis of gene expression in-
volves (1) generating millions of short reads of mRNA
or cDNA which are mapped to the genome and lead to
a sequence of read counts at the hundreds of millions of
genomic positions [13–16] and (2) generating millions
or 10 millions of genetic variants. RNA-seq counts vary
greatly across the gene [17]. Count variations can be due
to experimental bias such as fragmentation methods,
reverse-transcription [16], sequence-specific bias and se-
quencing technology variation [18]. However, count vari-
ation can also be caused by variation in splicing,
transcription start sites, polyadenylation sites, post-
transcriptional RNA editing across the entire gene, and
transcription rates of the cells [13–16, 18]. RNA-seq
data can be viewed as a function or a curve of the gen-
omic position and hence can be taken as a function-
valued trait.
Although RNA-seq data are measured as a function,

the widely used methods for genetic studies of the RNA-
seq in humans are the same as that for the traditional
single-valued quantitative traits where a single number
for overall expression of the gene is taken as a quantita-
tive trait. These methods use summary statistics to
measure or represent gene expressions assayed by NGS
techniques and cannot capture the expression variations
across the gene due to splicing, transcription start sites,
polyadenylation sites, post-transcriptional RNA editing

across the entire gene, and transcription rates of the
various cells. The summary statistic-based epistasis
analysis of the RNA-seq fails to utilize all transcripts
information.
The critical barrier in epistasis analysis is to deal with

rare variants. The traditional statistical methods for epis-
tasis analysis were originally designed for testing the
interaction between common variants and are difficult
to apply to rare variants due to high type 1 error rates,
severe multiple testing, prohibitive computational time
and low power [19]. Whole genome RNA-req eQTL
analysis poses a significant challenge. To meet the chal-
lenge, we developed a nonlinear functional regression
model (FRGM) with functional responses where the
position-level read counts within a gene are taken as a
function of genomic position, and functional predictors
where genotype profiles are viewed as a function of gen-
omic position, for epistasis analysis with RNA-seq data,
which allows simultaneous capture of all space informa-
tion hidden in the RNA-seq data and genetic variation
data, but with substantially reduced dimensions. Instead
of testing the interaction of all possible pair-wises SNPs,
the FRGM takes a gene as a basic unit for epistasis
analysis, which tests for the interaction of all possible
pairs of genes and uses all the information that can be
accessed to collectively test interaction between all
possible pairs of SNPs within two genome regions (or
genes). The proposed FRGM for epistasis analysis of
the RNA-seq can capture isoform and position-level
information and will have a broad application.
The FRGM for epistasis analysis has several remark-

able features. First, the FRGM accounts for the change
in the position-level read counts, while preserving the
intrinsic structure and all the positional-level genetic in-
formation. Second, the FRGM simultaneously utilizes
both correlation information among the RNA-seq at dif-
ferent genomic positions and among all variants in a
genomic region. Third, the multicollinearity problems in
the FRGM which may be presented in both the RNA-
seq and genetic variation are alleviated. Fourth, the
FRGM expands both position-level read count function
and genotype function in terms of orthogonal eigenfunc-
tion, which leads to substantial dimension reduction in
both RNA-seq data and SNP data. The FRGM for epista-
sis analysis of function-valued traits which capture key
information in the data is expected to open a new route
for epistasis analysis of RNA-seq data.
To evaluate its performance for epistasis analysis of

the RNA-seq, we use large scale simulations to calculate
the type I error rates and evaluate the power of the pro-
posed FRGM for detecting epistasis. To further evaluate its
performance, the FRGM for epistasis analysis is applied to
350 samples with both RNA-seq and NGS data from the
1000 Genomes Project. An R packge for implementing the
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developed FRGM for epistasis analysis of RNA-seq and
NGS data can be downloaded from our website https://
sph.uth.edu/research/centers/hgc/xiong/software.htm.

Results
Null distribution of test statistics
To examine the null distribution of test statistics, we
performed a series of simulation studies to compare
their empirical levels with the nominal ones. We con-
sider three models for type 1 error rate simulations:
model 1 with no marginal effects, model 2 with marginal
effects at the first gene and model 3 with marginal ef-
fects at both the first and second genes.
We generated 100,000 chromosomes by resampling

from the 350 European samples with genetic variants in
five genes: IRAK3, ACSS3, SUV420H1, ETV7, and HPS4
from the next generation sequencing data in the 1000 Ge-
nomes Project. The summary statistics of the variants in
five genes are summarized in Additional file 1: Table S1.
The marginal genetic effects will be estimated from the
data. 100 genes with RNA-seq data were randomly se-
lected from GEUVADIS project. They were used to de-
velop the models for generating RNA-seq data in
simulation (Detailed description were referred to Method
Section).10 pairs of genes were selected from five genes :
IRAK3, ACSS3, SUV420H1, ETV7, and HPS4 with geno-
type data from 1000 Genome Project dataset.
The number of sampled individuals from the popula-

tion ranged from 1000 to 5,000, and 5,000 simulations
were repeated. We randomly selected 10% of the SNPs
as causal variants from five genes: IRAK3, ACSS3,
SUV420H1, ETV7, and HPS4. We perfume gene-gene
interaction tests for 10 pairs of genes selected from five
genes with genotypes under the three models for 5000
times. The type 1 error rates were averaged over 10 pairs
of genes with genotype data and 5,000 simulations for
each model. Tables 1, 2 and 3 summarized the type I
error rates of the test statistics for testing the interaction
between two genes with no marginal effect, marginal ef-
fect at the first gene and marginal effects at both genes
consisting only of rare variants and both common and
rare variants, respectively, averaged over 100 genes with

RNA-seq data and 10 pairs of genes with genotype data
at the nominal levels α = 0.05, α = 0.01 and α = 0.001.
These results clearly showed that the type I error rates
of the FRGM-based test statistics for testing interaction
between two genes with or without marginal effects were
not appreciably different from the nominal α levels.

Power evaluation
To evaluate the performance of the functional regression
model for testing the epistatic effect on gene expression,
we estimated the power through simulations. We gener-
ated 100,000 chromosomes by resampling from the 350
European samples with genetic variants in two genes:
IRAK3 and ACSS3 from the next generation sequencing
data in 1000 Genomes Project. We randomly selected
20% variants as causal variants, assumed that there were
k1 SNPs in the first gene, and k2 SNPs in the second
gene. Two thousand individuals were sampled. We as-
sumed that both marginal effects and epistasis effects
were a function of the genomic position and used the
multiple regression models to generate the RNA-seq
data under four interaction models: Dominant OR Dom-
inant, Dominant AND Dominant, Recessive OR Reces-
sive and Threshold (See the Methods section).
We compared the power of the FRGM with both func-

tional response and functional predictors (BFGM),
FRGM with scalar response and functional predictors
(SFGM) and regression on principal component analysis
(PCA). For the PCA method, the PCA was performed
on the RNA-seq data and the number of PCs were

Table 1 Average type 1 error rates of the statistic for testing
interaction between two genes with no marginal effect over 10
pairs of genes

Rare Variants Common & Rare Variants

Sample Size 0.05 0.01 0.001 0.05 0.01 0.001

1000 0.0495 0.0099 0.0009 0.0497 0.0101 0.0010

2000 0.0501 0.0094 0.0010 0.0510 0.0100 0.0011

3000 0.0475 0.0097 0.0011 0.0498 0.0103 0.0011

4000 0.0497 0.0097 0.0011 0.0501 0.0101 0.0009

5000 0.0499 0.0104 0.0011 0.0511 0.0108 0.0010

Table 2 Average type 1 error rates of the statistic for testing
interaction between two genes with marginal effect at the first
genes over 10 pairs of genes

Rare Variants Common & Rare Variants

0.05 0.01 0.001 0.05 0.01 0.001

0.0507 0.0094 0.0007 0.0491 0.0100 0.0010

0.0500 0.0098 0.0009 0.0489 0.0099 0.0012

0.0508 0.0108 0.0010 0.0496 0.0096 0.0011

0.0490 0.0101 0.0010 0.0498 0.0103 0.0011

0.0490 0.0101 0.0010 0.0506 0.0093 0.0008

Table 3 Average type 1 error rates of the statistic for testing
interaction between two genes with marginal effects at two
genes over 10 pairs of genes

Rare Variants Common & Rare Variants

Sample Size 0.05 0.01 0.001 0.05 0.01 0.001

1000 0.0501 0.0108 0.0011 0.0486 0.0103 0.0010

2000 0.0493 0.0098 0.0010 0.0495 0.0101 0.0010

3000 0.0499 0.0095 0.0011 0.0497 0.0101 0.0011

4000 0.0494 0.0099 0.0010 0.0496 0.0096 0.0008

5000 0.0489 0.0097 0.0011 0.0497 0.0107 0.0010
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selected to explain 80% variance of number of reads at
different genomic positions. The multiple functional re-
gression was performed to analyze the data [20]. In the
BFGM, both RNA-seq and genotype profiles were taken
as a function of genomic position and expanded in terms
of functional principal components.
Figure 1a-d plotted the power curves of three statistics:

BFGM, SFGM and PCA to test the interaction between
two genes with rare variants under the Dominant OR
Dominant, Dominant AND Dominant, Recessive OR
Recessive and Threshold models, respectively. In the

simulation, 20% of the rare variants were randomly se-
lected as the causal variants. These power curves were
a function of the risk parameter at the significance level
α = 0.05. We observed that under all four interaction
models the BFGM had the highest power, followed by
the regression on PCA. Power of the SFGM was the
lowest. The results demonstrated that summary statis-
tics such as RPKM for measuring gene expression
could not capture the expression variations across the
gene and almost had no power to detect the interaction
between two genes with rare variants.

Fig. 1 a. Power curves of three statistics: the BFGM, regression on PCA, SFGM, for testing interaction between two genomic regions that consist
of rare variants with the RNA-seq trait as a function of the relative risk parameter r at the significance level α = 0.05 under the Dominant OR
Dominant model, assuming sample sizes of 2,000. b. Power curves of three statistics: the BFGM, regression on PCA, SFGM, for testing interaction
between two genomic regions that consist of rare variants with RNA-seq trait as a function of the relative risk parameter r at the significance level
α = 0.05 under the Dominant AND Dominantmodel, assuming sample sizes of 2,000. c. Power curves of three statistics: the BFGM, regression on
PCA, SFGM, for testing interaction between two genomic regions that consist of rare variants with RNA-seq trait as a function of the relative risk
parameter r at the significance level α = 0.05 under the Recessive OR Recessive model, assuming sample sizes of 2,000. d. Power curves of three
statistics: the BFGM, regression on PCA, SFGM, for testing interaction between two genomic regions that consist of rare variants with RNA-seq trait
as a function of the relative risk parameter r at the significance level α = 0.05 under the Threshold model, assuming sample sizes of 2,000
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The BFGM can also be applied to the presence of both
common and rare variants. Figure 2a-d plotted the power
curves of three statistics for testing interaction between two
genes with both common and rare variants where 10% of
the common variants and 10% of the rare variants were
chosen as causal variants under the Dominant OR Domin-
ant, Dominant AND Dominant, Recessive OR Recessive
and Threshold models, respectively. The power patterns of
tests for the interactions between two genes with both
common and rare variants were similar to that with rare
variants only. The BFGM had the highest power, followed

by the PCA and the SFGM. However, we noticed that the
power of the SFGM for epistasis analysis in the pres-
ence of common variants increased substantially. Under
some models such as the Dominant OR Dominant
model, the SFGM would have enough power to detect
interactions between two genes with common variants.

RNA-seq data and NGS data
The BFGM was applied to the RNA-seq data in the
GEUVADIS RNA Sequencing Project [21] and the WGS
data in the1000 Genomes Project. A total of 350 samples

Fig. 2 a. Power curves of three statistics: the BFGM, regression on PCA, SFGM, for testing interaction between two genomic regions that consist of both
common and rare variants with the RNA-seq trait as a function of the relative risk parameter r at the significance level α= 0.05 under the Dominant OR
Dominant model, assuming sample sizes of 2,000. b. Power curves of three statistics: the BFGM, regression on PCA, SFGM, for testing interaction between
two genomic regions that consist of both common and rare variants with RNA-seq trait as a function of the relative risk parameter r at the significance level
α= 0.05 under the Dominant AND Dominantmodel, assuming sample sizes of 2,000. c. Power curves of three statistics: the BFGM, regression on PCA, SFGM,
for testing interaction between two genomic regions that consist of both common and rare variants with RNA-seq trait as a function of the relative risk
parameter r at the significance level α= 0.05 under the Recessive OR Recessive model, assuming sample sizes of 2,000. d. Power curves of three statistics:
the BFGM, regression on PCA, SFGM, for testing interaction between two genomic regions that consist of both common and rare variants with RNA-seq
trait as a function of the relative risk parameter r at the significance level α= 0.05 under the Threshold model, assuming sample sizes of 2,000
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with European origin was shared between the GEUVA-
DIS RNA Sequencing Project and 1000 Genomes
Project, which had combined transcriptome (22,706 gene
expressions measured by RNA-seq) and genome sequen-
cing data (2,708,453 SNPs in 24,519 genes). After remov-
ing singleton SNPs, repeated SNPs, and filtering out the
SNPs violating HW equilibrium [22] (P value < 10−9 for
declaring HW disequilibrium), 2,566,261 SNPs in 18,986
genes were included in the epistasis analysis. In the
RNA-seq data pre-processing, we removed the genes
whose expressing rates were less than 30% and the genes
that did not contain any SNPs. Finally, RNA-seq data of
the 15,656 genes were included in the analysis. We used
DESeq [23] to normalize the RNA-seq data.

Cis-trans interactions
We considered the RNA-seq curve of the target gene as
a function-valued trait. The target gene selected from
the 15656 gene expressions was referred to as gene 1.
We selected one of the remaining 18985 genotyping
genes as gene 2. We used BFGM to test for the interac-
tions between gene 1 and gene 2 influencing the expres-
sion of the target gene 1. The total number of gene pairs
tested for interactions which included both common
and rare variants was 297,229,160. A P-value for declar-
ing significant interaction after applying the Bonferroni
correction for multiple tests was 1.68 × 10−10. To
examine the behavior of the BFGM, we plotted the QQ
plot of the test (Fig. 3). QQ plot showed that the false
positive rate of the BFGM for detection of epistasis
was controlled.
For comparisons, the SFGM was also applied to the

dataset. RPKM and DESeq were used to compute the

overall expression value of genes from the RNA-seq
data. All the expression values were processed by the
rank-based inverse normal transformation [24]. For both
common and rare variants, in total, 162361, 260 and 51
significant cis-trans interactions regulating the gene ex-
pressions were identified by the BFGM, SFGM with the
RPKM and DESeq, respectively. We observed 9,846genes
whose expressions were influenced by 16,2361cis-trans
interactions. We found that the average number of epis-
tasis influencing each gene was 16. A total of 3,505 gene
expressions were influenced by one significant cis-trans
gene-gene interactions, 169 gene expressions were influ-
enced by more than 100 cis-trans gene-gene interactions.
Figure 4 presented a histogram that showed a distribu-
tion of the cis-trans gene-gene interactions.
The P-values of the top 20 interactions between genes

ranked by the BFGM method were summarized in
Table 4 where P-values for testing interactions between
genes by the SFGM (RPKM, DESeq and RNAmin) and
min P-values were also listed. The RNAmin denoted the
minimum of P-values computed by the SFGM method
with the number of reads at each genome position of the
gene as the scalar response in the functional regression
model. The min P-values denoted to take the minimum
of all P-values for testing all possible pairs of SNPs be-
tween two genes using functional regression model with
functional response and scalar predictors. Table 4
showed several remarkable features. First, we often ob-
served the pair-wise interaction between rare and rare
variants (34.38%), and rare and common variants
(59.38%). Less observed was the significant pair-wise
interaction between common and common variants
(6.25%). Second, significant interactions between two

Fig. 3 QQ plot of P-values from the BFGM for testing the cis-trans interactions between two genes influencing transcription
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Fig. 4 A histogram showing a distribution of the number of cis-trans gene-gene interactions on each gene expression

Table 4 P-values of top 20 genes ranked by the BFGM methods
P-value (Interaction)

SFGM

Gene
Expression

Gene 1 Chr Marginal
(eQTL)

Gene 2 Chr Marginal
(eQTL)

BFGM RPKM DESeq RNA-min min P-value

ULK4 ULK4 3 1.45E-01 C19orf70 19 7.96E-06 0.00E + 00 4.17E-01 4.98E-01 0.00E + 00 0.00E + 00

ULK4 ULK4 3 1.45E-01 OR10A2 11 6.04E-15 4.07E-305 4.33E-05 4.97E-03 0.00E + 00 0.00E + 00

CCDC13 CCDC13 3 5.60E-01 TMEM121 14 9.94E-24 2.91E-302 4.98E-03 1.73E-02 1.36E-304 2.12E-12

ULK4 ULK4 3 1.45E-01 PSMC5 17 7.30E-23 5.72E-267 2.79E-05 1.50E-03 0.00E + 00 0.00E + 00

ULK4 ULK4 3 1.45E-01 COX5B 2 1.15E-03 2.46E-242 1.82E-03 3.06E-02 2.46E-259 4.94E-323

NKX2-5 NKX2-5 5 3.41E-01 TP53TG3D 16 5.81E-10 2.18E-226 6.66E-02 7.61E-02 1.15E-228 0.00E + 00

ASIC2 ASIC2 17 2.24E-02 RPS16P5 6 4.08E-05 3.39E-226 1.12E-01 7.77E-02 1.76E-158 8.01E-237

TMEM132E TMEM132E 17 8.25E-02 LOC100144602 4 9.50E-51 2.04E-213 1.34E-01 1.30E-01 2.27E-142 1.14E-215

TMEM98 TMEM98 17 6.66E-01 LOC100144602 4 9.28E-51 4.89E-213 8.10E-02 1.13E-01 4.06E-144 6.05E-216

SPACA3 SPACA3 17 7.13E-02 LOC100144602 4 1.41E-50 9.18E-211 9.72E-03 1.21E-02 8.78E-141 4.90E-214

ASIC2 ASIC2 17 2.24E-02 OR5B12 11 3.09E-05 2.89E-205 1.97E-01 1.18E-01 3.63E-141 1.18E-259

CCL1 CCL1 17 6.53E-02 TINF2 14 3.57E-22 3.85E-205 1.23E-01 1.31E-01 1.52E-157 3.33E-210

SCN2A SCN2A 2 1.41E-01 DEFB4B 8 1.30E-32 5.53E-203 1.88E-02 4.91E-02 1.30E-104 2.67E-236

ZNF254 ZNF254 19 4.41E-01 OR2V1 5 2.20E-13 1.19E-183 2.35E-02 4.91E-02 5.50E-225 2.88E-259

KRT5 KRT5 12 2.45E-02 OR5K1 3 1.03E-28 3.26E-177 1.15E-02 2.33E-02 2.29E-201 5.79E-199

FNDC8 FNDC8 17 4.83E-01 LOC100144602 4 8.13E-49 3.46E-172 4.38E-03 6.19E-02 1.20E-124 8.03E-175

CCT6B CCT6B 17 3.25E-01 LOC100144602 4 8.81E-49 4.24E-172 7.49E-03 3.59E-02 3.10E-125 1.72E-177

TMEM163 TMEM163 2 1.16E-01 HIST1H4H 6 1.79E-09 8.50E-170 6.74E-02 4.79E-02 3.40E-112 1.19E-25

ASIC2 ASIC2 17 2.24E-02 LOC100144602 4 9.66E-51 6.06E-165 9.22E-01 8.72E-01 3.82E-104 9.50E-236

KRT5 KRT5 12 2.45E-02 IFNA7 9 3.70E-16 2.43E-163 2.26E-02 1.83E-02 2.15E-178 2.14E-211
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genes often indicated that at least one significant pair of
SNPs in two genes could be observed (min P-values
were small). However, we can observe that pairs of SNPs
between two genes jointly had significant interaction
effects, but individually each pair of SNPs mildly con-
tributed to the interaction effects. Third, the BFGM
often had a much smaller P-value to detect interaction
than other tests. Fourth, we observed that genes may
not show even mild marginal association, but they did
demonstrate significant evidence of interaction. If only
the interactions between two marginally significant
genes are tested, some significant interactions may be
missed. The fifth, the BFGM tremendously reduced
computation burden.
To further assess the validity of the BFGM for epistasis

analysis with RNA-seq data, we randomly selected six
pairs of genes from the significant 162361 gene-gene in-
teractions. The P-values for testing the interactions of
six pairs of genes using the BFGM and SFGM were sum-
marized in Table 5. Table 5 showed that six significant
interactions identified by the BFGM significantly influ-
enced read count variation at least at one genomic pos-
ition within the gene. To explain why the BFGM had
higher power to detect interaction than the SFGM, we
presented Fig. 5a-f showing the RNA-seq profiles and
overall expression level of the genes PLA2G4A, PLA2G6,
PLAUR, PLD4, PLD6 and PLEKHA3 of two individuals,
respectively. These figures showed that the overall ex-
pression levels of the individuals were the same, but
their RNA-seq profiles were quite different. This demon-
strated that unlike the RNA-seq profiles, the overall ex-
pression levels cannot capture the expression variation
across the genes. Therefore, the SFGM using summary
statistics as a trait will have less power to detect the
interaction than the BFGM using the RNA-seq profiles
as a function-valued trait.
To investigate whether the top 20 interactions were

caused by the linkage disequilibrium (LD) or not, we
listed the maximum of r2 between all possible SNPs in
the top 20 significantly interacting pairs of genes and

the P-values for testing their presence of LD in Table 6.
We did not observe the strong LD between the inter-
acting genes.

Interactions in the MAPK signaling pathway
To show the detailed interaction structure, we presented
the results of 331 significant cis-trans interactions in the
MAPK signaling pathway in the Additional file 2:
Table S3 where min P-values indicated that the func-
tional regression model with functional response and
discrete predictors was used to test for the inter-
action for all possible pairs of SNPs within two genes
and minimum of P-values of the tests was listed in
the Additional file 2: Table S3. The column “SNP
pair” listed their corresponding pair of SNPs reaching
the minimum of the P-values and their chromosome
locations. From Additional file 2: Table S3 we had
several significant observations. First, we observed
that the majority of interacting genes were located in
different chromosomes, which implied that interac-
tions were not caused by the linkage disequilibrium
(LD). Second, we observed that large proportions of
interacting genes did not show significant evidence of
marginal association. This demonstrated that if we
only selected the genes with significant marginal
association for epistasis analysis, many interactions
would be missed. Third, in general, the function-
value-based epistasis analysis (BFGM, min P-values)
had much smaller P-values than the summary statistic-
based epistasis analysis (SFGM). Fourth, we observed
that the genes interacting with the genes in MAPK
signaling pathway were in 147 other pathways, includ-
ing cytokine-cytokine receptor interaction, Cytosolic
DNA-sensing pathway, DNA replicationamong others.
Fifth, it was interesting to observe that the interacting
genes formed a large connected network with 281
nodes and 317 edges (Fig. 6). We observed hub genes
IBA57-AS1 with 67 connections, HIST1H2AD with 21
connections, PRR24 with 18 connections and ARL6IP4
with 14 connections. HIST1H2AD is a core compo-
nent of nucleosome and plays a central role in tran-
scription regulation. ARL6IP4 functions as a splicing
inhibitor [25].

Gene ontology and KEGG pathway enrichment analysis
Gene ontology enrichment analysis was performed on
the genes in the identified 162361 pairs of significant
cis-trans interactions influencing the transcription to
discover overrepresented functional biological groupings
with interactions. Our analysis was performed using the
biological process, cellular component and molecular
function categories of the gene ontology.
Ontology enrichment analysis found that cis-trans in-

teractions were significantly enriched in biological

Table 5 The P-values of randomly selected 6 pairs of genes
from the significant 162361 gene-gene interactions

P-values

GENE1 GENE2 BFGM SFGM

RPKM DESeq RNAmin

PLA2G4A OR7E2P 1.18E-18 3.68E-02 2.79E-02 1.68E-28

PLA2G6 FGF14-AS2 2.43E-14 8.19E-01 4.90E-01 1.42E-26

PLAUR CAPNS2 5.14E-13 1.44E-01 9.97E-01 5.15E-22

PLD4 RPL19P12 2.68E-16 4.68E-01 3.49E-01 4.90E-19

PLD6 GHSR 1.07E-11 1.32E-01 4.00E-02 1.48E-28

PLEKHA3 ORMDL2 2.16E-13 4.98E-01 8.43E-01 1.80E-33
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Fig. 5 a. RNA-seq profile of the gene PLA2G4A where the curve represented the number of reads as a function of the genomic position. The
dotted line denoted the overall expression of the gene PLA2G4A. b. RNA-seq profile of the gene PLA2G6 where the curve represented the number
of reads as a function of the genomic position. The dotted line denoted the overall expression of the gene PLA2G6. c. RNA-seq profile of the gene
PLAUR where the curve represented the number of reads as a function of the genomic position. The dotted line denoted the overall expression
of the gene PLAUR. d. RNA-seq profile of the gene PLD4 where the curve represented the number of reads as a function of the genomic position.
The dotted line denoted the overall expression of the gene PLD4. e. RNA-seq profile of the gene PLD6 where the curve represented the number
of reads as a function of genomic position. The dotted line denoted the overall expression of the gene PLD6. f. RNA-seq profile of the gene
PLEKHA3 where the curve represented the number of reads as a function of the genomic position. The dotted line denoted the overall expression
of the gene PLEKHA3
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processes (BP) including a single organism process, sin-
gle organism cellular process, single organism metabolic
process and development process (Fig. 7) and molecular
functions that were primarily related to catalytic and
binding activity with P-values <10−4 (Fig. 8). Ontology
enrichment analysis also identified that cis-trans inter-
actions were significantly enriched in the cell, intracel-
lular, organelle, and membrane bounded organelle
components (Fig. 9).
The enrichment analysis was also applied to 228

KEGG pathways to identify the pathways that were
enriched with cis-trans interactions. The results were
summarized in Fig. 10. The cis-trans interactions were
enriched in metabolic pathways, MAPK signaling path-
way, pathways in cancer, endocytosis, protein processing
in endoplasmic reticulum and Wnt signaling pathway.

Communities in gene interaction networks
We used random walks in igraph [26] to detect 10 com-
munities from the entire gene-gene interaction network.
We used R package GOstats [27] to conduct gene set
enrichment analysis. We have identified 29 pathways
enriched in 10 communities. Figure 11 showed the 6th

community with 96 genes and 186 interactions enriched
with metabolism (Three of four significantly enriched
pathways were metabolism pathways: Glycerolipid

metabolism, Nicotinate and nicotinamide metabolism,
and Pyrimidine metabolism) where node represents a
gene and an edge represents the interaction between the
connected gene by the edge. All 10 communities with
the enriched pathways (P-value < 0.01) are summarized
in Additional file 3: Table S4.

Discussion
In the past, the statistical epistasis of gene expression is
defined as variant–variant interactions that regulate gene
expression and its analysis has been mainly designed for
microarray gene expression data and common variants.
Since the dimension of the data for epistasis analysis of
gene expression is very high, all the traditional methods
for epistasis analysis of gene expression have the limited
application to eQTL data. The whole genome epistasis
studies of gene expressions have been very limited. The
genetic structure of epistasis of gene expressions has not
been fully discovered.
The recently developed next-generation mRNA se-

quencing (RNA-seq) assay generates dozens or even one
hundred million short reads of mRNA and WGS also
generates millions of SNPs. As a consequence, these
genetic variation and gene expression variation data are
so densely distributed across the genome that both gen-
etic variation and expression variation can be modeled
as a function of genomic location. The RNA-seq profiles
can be taken as a function-valued trait. However, the
standard multivariate statistical analysis often fails with
functional data. The computational burden and correc-
tion for multiple tests seriously damage the feasibility of
the variant-variant interaction analysis of extremely high
dimensional RNA-seq and WGS genotype data. The
variant-variant interaction analysis is not suitable for the
epistasis analysis of the function-valued traits with NGS
data as genotype data. Although the genetic study of
quantitative traits has seen wide application and exten-
sive technical development, the quantitative genetic ana-
lysis, particularly epistasis analysis of function-valued
trait is comparatively less developed. To our knowledge,
no statistical methods have been developed for genetic
epistasis analysis of function-valued traits with NGS
data. In the past few years we have witnessed the rapid
development of novel statistical methods for association
studies using NGS data. However, these methods might
not be appropriate for genetic epistasis analysis of
function-valued trait. The quantitative genetic epistasis
analysis of rare variants for function-valued traits re-
mains a huge challenge.
The widely used methods for reducing dimensionality

of the RNA-seq data use the Poisson distribution, bino-
mial distribution and negative binomial distribution to
summarize the RNA-seq profile into a single number to
represent the RNA-seq curve. However, these discrete

Table 6 The maximum of r2 between all possible SNPs in top
20 significantly interacting pairs of genes

GENE1 GENE2 r2 P-value

ULK4 C19orf70 0.00014 0.14974

ULK4 OR10A2 0.00145 0.16383

CCDC13 TMEM121 0.00175 0.19444

ULK4 PSMC5 0.00019 0.11420

ULK4 COX5B 0.00020 0.12871

NKX2-5 TP53TG3D 0.00111 0.18750

ASIC2 RPS16P5 0.00029 0.12406

TMEM132E LOC100144602 0.00064 0.10577

TMEM98 LOC100144602 0.00043 0.10606

SPACA3 LOC100144602 0.00108 0.09375

ASIC2 OR5B12 0.00048 0.11716

CCL1 TINF2 0.00017 0.13846

SCN2A DEFB4B 0.00016 0.07823

ZNF254 OR2V1 0.00058 0.14939

KRT5 OR5K1 0.00017 0.03571

FNDC8 LOC100144602 0.00025 0.05882

CCT6B LOC100144602 0.00029 0.05000

TMEM163 HIST1H4H 0.00193 0.14273

ASIC2 LOC100144602 0.00059 0.12145

KRT5 IFNA7 0.00023 0.07143
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Fig. 6 Networks of 317 pairs of genes from 281 genes showing the significant evidence of cis-trans interactions as identified by BFGM
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Fig. 7 Gene ontology (GO) enrichment analysis of cis-trans interactions: enriched in the category of biological processes
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distributions cannot capture the shape and variation of
the RNA-seq curve. To illustrate this we presented
Additional file 4: Figure S1A showing the real RNA-seq
curve, the data simulated by a negative distribution of
the gene LMNB2 and Additional file 4: Figure S1B show-
ing the real RNA-seq curve of the gene LMNB2 and the

curve estimated by the FPCA of the RNA-seq data. We
observed that the negative distribution failed to capture
the variation of the RNA-seq profile, but the FPCA
approximated the RNA-seq curve exceedingly well.
Emergence of the NGS techniques demands a para-

digm shift in the analytic methods for eQTL epistasis
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Fig. 8 Gene ontology (GO) enrichment analysis of cis-trans interactions: enriched in the category of molecular functions
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Fig. 9 Gene ontology (GO) enrichment analysis of cis-trans interactions: enriched in the category of cellular components
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analysis from standard single-variate or multivariate data
analysis to functional data analysis. The BFGM with
functional response and functional predictors takes a
RNA-seq profile as a functional response and genetic
variants across the genomic regions as functional predic-
tors, which can be used to test the association of the

entire allelic spectrum of the genetic variation with a
function-valued trait and has several remarkable fea-
tures. First, unlike simple and multiple regressions that
discard a large amount of information, the BFGM pre-
serves the intrinsic structure and all the positional-level
genetic information. Second, the multiple regressions
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Fig. 10 The enrichment analysis of cis-trans interactions in 228 KEGG pathways

Fig. 11 A subnetwork in the 6th community with 96 genes and 186 interactions enriched with metabolism where node represents a gene and
an edge represents the interaction between the connected gene by the edge
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will not account for the space-ordering of the data and
correlation information contained in the data. The
BFGM simultaneously employs genetic information of
the individual variants and correlation information con-
tained in both RNA-seq and SNP data. Third, both the
sign and the size of the heterogeneity will also be incor-
porated into the test in the BFGM. Fourth, the multicoli-
nearity problem in the BFGM is alleviated. Fifth, the
BFGM expands both RNA-seq function and genotype
function in terms of orthogonal eigenfunctions, which
leads to substantial dimension reduction. The BFGM for
genetic epistasis analysis of a function-valued trait which
captures key information in the data is expected to open
a new route for genetic epistasis analysis of RNA-seq
and NGS genotype data.

Conclusions
We developed a novel functional regression model with
both functional response and functional predictors for
detection of epistasis influencing RNA-seq variations in
humans, which is referred to as the BFGM. The BFGM
takes genes as a basic unit of epistasis analysis and uti-
lizes all information contained in both the RNA-seq
and SNP data. By large simulations and real data ana-
lysis we demonstrated the merits and limitations of the
proposed new paradigm of epistasis analysis for the
RNA-seq and WGS data.
The new approach uses all genetic information in the

genome regions and expression variation information in
the target gene to collectively test the interaction be-
tween multiple SNPs within the regions influencing the
RNA-seq curves. Therefore, the BFGM for interaction
analysis overcomes limitations inherent in pair-wise
interaction tests with the summary expression level as a
scalar trait. By large simulations and real data analysis,
we showed that the proposed BFGM substantially in-
creased the power, dramatically reduced the computa-
tional burden and substantially outperformed the
traditional variant-variant epistasis analysis of summary
statistic measured quantitative traits. In real data ana-
lysis, we also clearly demonstrate that pairs of SNPs be-
tween two genes jointly have significant interaction
effects, but individually each pair of SNPs makes a mild
contribution to interaction effects.
The previous interaction analyses have mainly focused

on the interactions between common and common vari-
ants. The distribution of the common and rare variants
causing interactions is unknown. Very few genome-wide
interaction analyses with the RNA-seq and WGS data,
and very few results of significant interaction between rare
and rare variants, and rare and common variants have
been reported. We analyzed 350 samples of European ori-
gin with both RNA-seq and whole genome sequencing
data available. We observed the large proportions of pair-

wise interactions between rare and rare variants, and rare
and common variants. The significant pair-wise interac-
tions between common and common variants were less
observed. The results showed that the number of signifi-
cant cis-trans interactions identified by the SFGM with
RPKM as overall gene expression level only accounted for
0.16% of the significant cis-trans interactions identified by
the BFGM with RNA-seq and NGS genotype data. The
majority of epistasis analysis for gene expressions used the
microarray to measure gene expressions and test interac-
tions for only common variants. Even though the RNA-
seq data are available they still converted variation rich
RNA-seq data into a single number such as RPKM or
other summary statistics. Then, the variant-variant
epistasis analysis is conducted on these converted data.
That explains why these researches question the uni-
verse presence of significant gene-gene interaction in-
fluencing gene expressions.
Some researchers suggest that in genome-wide inter-

action analysis only genes with large or mildly marginal
genetic effects should be tested for interaction. However,
we observed that the majority of the significantly interact-
ing genes showed no marginal association. These results
clearly demonstrated that if we tested interactions for only
genes with marginal associations, then many true interac-
tions will be missing.
We are unsure whether interaction is most often

presented in isolation, or interacting genes form net-
works. We identified a large number of cis-trans inter-
actions and observed that the interacting genes formed
large connected networks with hub genes presented.
We found that some hub genes, for example histone
modification genes, can globally regulate gene expres-
sions. Enrichment analysis also showed that metabolic
pathways, MAPK signaling pathway, pathways in can-
cer, endocytosis, protein processing in endoplasmic
reticulum and Wnt signaling pathway among others
were enriched with cis-trans interactions.
The results in this paper are preliminary. The con-

founding factors that cause spurious interactions have
not been investigated. The statistical methods for epista-
sis analysis which remove confounding factors have not
been developed. The complete genome-wide epistasis
analysis including all cis and trans interactions have not
been performed. The purpose of this paper is to stimu-
late further discussions regarding the great challenges
we are facing in the epistasis analysis of high dimen-
sional RNA-seq and WGS data.

Methods
Functional regression with both functional response and
functional predictor models for epistasis analysis
For the convenience of discussion, position level read
counts are taken as the RNA-seq profile and is referred
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to as a function-valued trait. Let yi(τ), τ ∈ Ττ = [0,Ττ] be
the read counts of the ith individual at the genomic pos-
ition τ. Consider two genomic regions (or genes) [a1, b1]
and [a2, b2]. Let xi(t) and zi(s) be genotypic functions of
the ith individual defined in the regions [a1, b1] and [a2,
b2], respectively. Let t and s be a genomic position in the
first and second genomic regions, respectively. The
genotype functions xi(t) and zi(s) are defined as

xi tð Þ ¼
2Pm tð Þ ; MM
Pm tð Þ‐PM tð Þ; Mm
−2PM tð Þ ; mm

8<
: ; zi sð Þ ¼

2Pm sð Þ ; MM
Pm sð Þ ‐ PM sð Þ; Mm;
−2PM sð Þ ; mm

8<
:

where M and m are two alleles of the marker at the
genomic position t and s, PM(t) and Pm(t), and PM(s),
Pm(s) are the frequencies of the alleles M and m at the
genomic positions t and s, respectively. Consider a
functional regression model with functional response
and functional predictors (BFGM):

yi τð Þ ¼ μ τð Þ þWT
i ω τð Þ þ

Z
T
xi tð Þα t; τð Þdt þ

Z
S
zi sð Þβ s; τð Þds

þ
Z
T

Z
S
xi tð Þzi sð Þγ t; s; τð Þdsdt þ εi τð Þ

ð1Þ

where μ(τ) is an overall mean function at the genomic
position τ, Wi is a vector of covariates for ith individual,
ω(τ) is a vector of effects associated with the covariates,
α(t, τ) is a genetic additive effect function at genomic
position t of the first gene and genomic position τ of the
RNA-seq profile, β(s, τ) is a genetic additive effect func-
tion at genomic positions s of the second gene and the
genomic position τ, γ(t, s, τ) is an interaction effect func-
tion between two putative quantitative trait loci (QTLs)
located at the genomic positions t and s influencing the
read counts at the genomic position τ, and εi(τ) is a
residual function of the unexplained effect for the ith

individual at the genomic position τ. The interaction
function is measured by double integrals of the geno-
type function in two genes.

Estimation of interaction effect function
We assume that both position level read count function
and genotype functions are centered. The genotype
functions xi(t) and zi(s) are expanded in terms of the
orthonormal basis function as:

xi tð Þ ¼
X∞
j¼1

ξ ijϕ j tð Þ and zi sð Þ ¼
X∞

l¼1

η
il
ψ

l
sð Þ; ð2Þ

where ϕ
j
tð Þ and ψl(s) are sequences of the orthonormal

basis functions. The expansion coefficients ξij and ηil are
estimated by

ξ ij ¼
Z

T

xi tð Þϕ
j
tð Þdt and η

il
¼

Z

S

zi sð Þψl
sð Þds

ð3Þ
In practice, numerical methods for the integral will be

used to calculate the expansion coefficients. Substituting
Eq. (2) into Eq. (1), we obtain

yi τð Þ ¼ μ τð Þ þWT
i ω τð Þ þ

XJ

j¼1
ξ ijαj τð Þ þ

XL

l¼1
ηilβl τð Þ

þ
XJ

j¼1

XL

l¼1
ξ ijηilγ jl τð Þ þ εi τð Þ;

ð4Þ
where

αj τð Þ ¼
Z

T
α t; τð Þϕ

j
tð Þdt; β

l
τð Þ ¼

Z

S
β s; τð Þψl sð Þds and

γ
jl
τð Þ ¼

Z

T

Z

S
γ t; s; τð Þϕ

j
tð Þψ

l
sð Þdtds:

The parameters αj(τ), βl(τ) and γjl(τ) are referred to as
genetic additive effect and additive x additive effect score
functions. These score functions can also be viewed as
the expansion coefficients of the genetic effect functions
with respect to orthonormal basis functions:

α t; τð Þ ¼
X
j

αj τð Þϕj tð Þ; β s; τð Þ

¼
X
l

βl τð Þψl sð Þ and γ s; tð Þ

¼
X
j

X
l

γ jl τð Þϕj sð Þψl tð Þ

:

Equation (4) can be written in a vector form:

Y τð Þ ¼ Eμ τð Þ þWω τð Þ þ ξα τð Þ þ ηβ τð Þ þ Γγ τð Þ þ ε τð Þ ;

ð5Þ
where Y(τ), μ(τ), ω(τ), α(τ), β(τ) and γ(τ) are vectors, W, ξ,
η and Γ are matrices.
Expanding Y(τ), μ(τ), ω(τ), α(τ), β(τ), γ(τ) and ε(τ) in

terms of the orthogonal basis functions yield

y
i
τð Þ ¼

XK

k¼1
y
ik
θk τð Þ ; μ τð Þ ¼

XK

k¼1
μ

k
θk τð Þ ;

ωj τð Þ ¼
XK

k¼1
ωjkθk τð Þ ; αj τð Þ ¼

XK

k¼1
αjkθk τð Þ ;

β
j
τð Þ ¼

XK

k¼1
β

jk
θk τð Þ ; γ

jl
τð Þ ¼

XK

k¼1
γ

jlk
θk τð Þ ;

and εi τð Þ ¼
XK

k¼1
εikθk τð Þ:

Define expansion coefficient vectors and matrices as
follows.
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Y ¼
y
11

⋯ y
1K

⋮ ⋱ ⋮
y
n1
⋯ y

nK

2
4

3
5; μ ¼

μ
1

⋮
μ

K

2
4

3
5
T

; E ¼
1
⋮
1

2
4

3
5;

ω ¼
ω11 ⋯ ω1K

⋮ ⋱ ⋮

ωd1 ⋯ ωdK

2
64

3
75; α ¼

α11 ⋯ α1K

⋮ ⋱ ⋮

αJ1 ⋯ αJK

2
64

3
75;

β ¼
β

11
⋯ β

1K

⋮ ⋱ ⋮

β
L1
⋯ β

LK

2
664

3
775; γ ¼

γ
111

⋯ γ
11K

⋮ ⋱ ⋮

γ
JL1

⋯ γ
JLK

2
64

3
75

and ε ¼
ε11 ⋯ ε1K

⋮ ⋱ ⋮

εn1⋯ εnK

2
64

3
75:

Thus, substituting the above expansion into Eq. (5) gives

Yθ τð Þ ¼ μθ τð Þ þWωθ τð Þ þ ξαθ τð Þ þ ηβθ τð Þ

þΓγθ τð Þ þ εθ τð Þ;
ð6Þ

where

W ¼
W 11 ⋯ W 1d

⋮ ⋱ ⋮
Wn1 ⋯ Wnd

2
64

3
75; ξ ¼

ξ
11

⋯ ξ
1J

⋮ ⋱ ⋮

ξ
n1

⋯ ξ
nJ

2
64

3
75 ;

η ¼
η

11
⋯ η

1L

⋮ ⋱ ⋮

η
n1 ⋯ η

nL

2
664

3
775 and Γ ¼

ξT1 ⊗ηT1
⋮

ξTn⊗ηTn

2
4

3
5

¼
ξ
11
η

11
⋯ ξ

11
η

1L
⋯ ξ

1J η11
⋯ ξ

1J
η

1L

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

ξ
n1 ηn1

⋯ ξ
n1
η

nL
⋯ ξ

nJ ηn1
⋯ ξ

nJ
η

nL

2
64

3
75:

Since Eq. (6) holds for every genomic position τ, the
coefficients on both sides of Eq. (6) should be equal.
Therefore, the functional regression model (6) can be
further transformed to standard multivariate multiple
regression:

Y ¼ EμþWωþ ξαþ ηβþ Γγ þ ε: ð7Þ
Let

A ¼ E W ξ η Γ½ � and b ¼

μ
ω
α
β
γ

2
6664

3
7775:

Equation (7) can be rewritten as

Y ¼ Abþ ε: ð8Þ
The standard least square estimators of b is

b̂ ¼ ATA
� �−1

ATY : ð9Þ

The covariance matrix Σ is estimated by

Σ̂ ¼
Y−Ab̂

� �T
Y−Ab̂

� �

n− 1þ d þ J þ Lþ JLð Þð ÞK : ð10Þ

Test statistic
An essential problem in genetic epistasis analysis of the
function-valued traits is to test the interaction between
two genomic regions (or genes). Formally, we investigate
the problem of testing the following hypothesis:

γ t; s; τð Þ ¼ 0; ∀t∈ a1; b1½ �; s∈ a2; b2½ �; τ∈ 0;T τ½ �;

which is equivalent to testing the hypothesis:

H0 : γ ¼ 0: ð11Þ

Let vec denote the vector operation. To develop test
statistics, we begin with calculating the covariance matrix

of the vec b̂
� �

. We assume that

var vec εð Þð Þ ¼ Σ⊗In: ð12Þ
Recall that

vec b̂
� �

¼ IK⊗ ATA
� �−1

AT
h i

vec Yð Þ:

Therefore, we have

var vec b̂
� �� �

¼ IK⊗ ATA
� �−1

AT
h i

Σ⊗Inð Þ IK⊗A ATA
� �−1h i

¼ Σ⊗ ATA
� �−1

ð13Þ

Let Λ be a matrix consisting of the last JLK columns

and JLK rows of the covariance matrix var vec b̂
� �� �

and γ̂ be the estimators of interaction which can be ob-
tained by extracting the last JL rows of the estimators

of the matrix b̂ . Define the test statistic for testing the
interaction between two genomic regions [a1, b1] and
[a2, b2] as

TI ¼ vec γ̂ð ÞTΛ−1vec γ̂ð Þ: ð14Þ

Then, under the null hypothesis H0 : γ = 0, TI is asymp-
totically distributed as a central χ(JLK)

2 with degrees of
freedom JLK or the rank of the matrix Λ.
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Null distribution of test statistics
To examine the null distribution of test statistics, we
performed a series of simulation studies to compare
their empirical levels with the nominal ones. We calcu-
lated the type I error under three models. We first as-
sumed the model with no marginal effects:
Model 1 (no marginal effect):

yi τð Þ ¼ μ τð Þ þ εi τð Þ; ð15Þ

where μ(τ) is the overall mean at the genomic position τ,
yi(τ) is the normalized number of reads at the genomic
position τ of the ith individual and εi(τ) is an error stochas-
tic process. The errors should be correlated stochastic
process. The theoretic models for the errors are unclear.
They were estimated from the data. The procedures for
generating mean μ(τ) and errors εi(τ) consisted of the
following steps.
Step 1: We randomly sampled 100 genes from the

whole real RNA-seq dataset. Let k index genes, j index
the genomic positions and i index the samples. Assume
that the gene k is located in the interval [ak, bk]. Let
xikj , (i = 1,…, n, k = 1,…, 100, j = 1,…, sk) be the observed
count of reads of the gene k in the genomic position j
of the ith individual where the length of gene k is
denoted sk. For each genomic position, we define an n
dimensional vector:
xkj = [x1kj,…, xnkj]

T.
Step 2. Let m be the median length of 100 genes. In

our dataset, m = 2, 456.
Step 3. Re-map the original RNA-seq data of 100

genes to the interval [0, 1] using transformation j−ak
bk−ak

.

Then, estimate the count of reads on position 0; 1m ; 2m ;…;

1 from the original RNA-seq data of the 100 genes using
local polynomial regression (LOESS). The estimated count
of reads of the gene k in the genomic position j of the
ith individual at the equally distributed new positions
0; 1m ; 2m ;…; 1 are denoted by yikj. Define vector

ykj ¼ y1kj;…; ynkj
h iT

; k ¼ 1;…; 100; j ¼ 1;…;m:

Step 4. Compute the means of the re-mapped the
RNA-seq data over 100 genes and over n samples:

yij ¼ 1
100

X100

k¼1
yikj; i ¼ 1;…; n; j ¼ 1;…;m and yj ¼ 1

100�nXn

i¼1

X100

k¼1
yikj; j ¼ 1;…;m.

Define the mean vector of the re-mapped counts of

reads: y ¼ y1;…; ym½ �T .
Step 5. Compute the mean function μ(τ). Pooling all

the re-mapped data:

Y ¼
y11⋯ y1m
⋮ ⋮ ⋮

yn1 ⋮ ynm

2
64

3
75:

Use the pooled data to perform FPCA, which leads to
functional principal component expansion:

yi τð Þ ¼
XL

l¼1
ξ
il
β

l
τð Þ; i ¼ 1;…; n;

where βl(τ) are the functional principal components.

Calculate ξ l ¼ 1
n

Xn

i¼1
ξ il; l ¼ 1;…; L. Using the averaged

functional principal component score, we compute the
mean μ(τ) as follows:

μ τð Þ ¼
XL

l¼1
ξ lβl τð Þ:

Step 6. Define the centralized RNA-seq data matrix:

Z ¼
z11 ⋯ z1m

⋮ ⋮ ⋮
zn1⋯ znm

2
64

3
75;

where Zij ¼ yij−yj; i ¼ 1;…; n; j ¼ 1;…;m.
We perform FPCA on the centralized dataset Z where

means of the RNA-seq data at each genomic position
over 100 genes is removed and obtain a set of functional
principal components (eigenfunctions) {φ1(τ),…, φT(τ)}
and functional principal component scores ηit, i = 1,…,
n, t = 1,…,T. Define T random variables η = [η1,…, ηT]
with vectors of their sampling values:ηt = [η1t,…, ηnt]

T,
t = 1,…,T.
We then calculate the sampling covariance matrix

Σ̂ ¼ cov η; ηð Þ.Assume that the scores of the residuals

follow a multivariate normal distribution N 0; Σ̂
� �

.
Using the normal random variables to generate an n
sample of vectors εi = [εi1,…, εiT]. The residuals εi(τ)
will be defined as

εi τð Þ ¼
XT

t¼1
εitϕt τð Þ; i ¼ 1;…; n:

Model 2 (a marginal effect at the first gene):

yi τð Þ ¼ μ τð Þ þ
XJ

j¼1
xijαj τð Þ þ εi τð Þ; ð16Þ

where μ(τ) is the overall mean at the genomic position τ,
εi(τ) is an error stochastic process, xij is an indicator
variable for the genotype of ith individual at the jth SNP
of the first gene, yi(τ) is defined as that in model 1. The
coefficient αj(τ) = rj ⋅ α(τ), where rj is randomly selected
from 0.5 to 1.5, is the additive effect function of the jth

SNP of the first gene, μ(τ) is obtained by randomly sam-
pling 100 genes from the real RNA-seq and WGS geno-
type data without interactions and α(τ) is obtained by
randomly sampling 100 genes from the real RNA-seq and
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WGS genotype data under the condition that one gene
have significant main effect, the other gene do not have
significant main effect, and these gene pairs are not in the
list of significantly interacted gene pairs in our results.
The overall mean μ(τ), effect function α(τ) and the resid-
uals εi(τ) were similarly simulated as that in Model 1.
Model 3 (marginal effects at both the first and the

second genes):

yi τð Þ ¼ μ tð Þ þ
XJ

j¼1
xijαj τð Þ þ

XK

k¼1
zikβk τð Þþεi τð Þ;

ð17Þ

where zik is an indicator variable for the genotype of ith

individual at the kth SNP of the second gene. The genetic
additive effect function βk(τl) is assumed to be equal to
βk(τ) = skβ(τ), where sk is randomly selected from 0.5 to
1.5, other parameters are defined in Model 2. A total of
100 pairs of genes were randomly selected under the
condition that both genes have significant main effect
and these gene pairs are not in the list of significant
interacted gene pairs in our results. The overall mean
function μ(τ), main effect functions α(τ) and β(τ), and
residual term εi(τ) were similarly generated as that in
Models 1 and 2.

Power evaluation
To evaluate the performance of the functional regression
model for testing epistatic effects on gene expression, we
estimated the power through simulations. We assumed
that there were k1 SNPs in the first gene and k2 SNPs in
the second gene. Thus, there were totally k1k2 SNP pairs
between these two genomic regions. For the hth pair of
SNPs, let Qh1 and qh1 be two alleles at the SNP in the
first gene, Qh2 and qh2 be two alleles at the SNP in the
second gene. Let uijkl

h denote her/his genotypes of the hth

pair of SNPs, where ij∈Qh1Qh1 ;Qh1qh1 ; qh1qh1 and kl∈Qh2

Qh2 ;Qh2qh2 ; qh2qh2 . Let ghuijkl τð Þ denote her/his genotypic

value in the hth pair of SNPs at genomic position τ influ-
encing gene expressions. Then we can use the following
multiple regression model to generate the function-
valued trait (RNA-seq) of the uth individual of the hth

pair of SNPs at the genomic position τ.

yu τð Þ ¼
Xk1k2

h¼1
ghuijkl τð Þ þ εu τð Þ; u ¼ 1;…; n; ð18Þ

ghuijkl τð Þ ¼ λhuijkl g τð Þ , λhuijkl is a risk parameter which is

determined by the gene interaction model (Additional
file 5: Table S2), the risk parameter r varies from 0 to 1,
and g(τ) is a common genotype coefficient function fitted
by the real RNA-seq data and εu(τ) is the error stochastic
process and estimated from the null model as that in null
distribution in the test statistics section.
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