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Abstract

Background: Transversions (Tv's) are more likely to alter the amino acid sequence of proteins than transitions (Ts's),
and local deviations in the Ts:Tv ratio are indicative of evolutionary selection on genes. Whether the two different
types of mutations have different effects in non-protein-coding sequences remains unknown. Genetic variants
primarily impact gene expression by disrupting the binding of transcription factors (TFs) and other DNA-binding
proteins. Because Tv's cause larger changes in the shape of a DNA backbone, we hypothesized that Tv's would

have larger impacts on TF binding and gene expression.

Results: Here, we provide multiple lines of evidence demonstrating that Tv's have larger impacts on regulatory
DNA including analyses of TF binding motifs and allele-specific TF binding. In these analyses, we observed a
depletion of Tv's within TF binding motifs and TF binding sites. Using massively parallel population-scale reporter
assays, we also provided empirical evidence that Tv's have larger effects than Ts's on the activity of human gene

regulatory elements.

Conclusions: Tv's are more likely to disrupt TF binding, resulting in larger changes in gene expression. Although
the observed differences are small, these findings represent a novel, fundamental property of regulatory variation.
Understanding the features of functional non-coding variation could be valuable for revealing the genetic
underpinnings of complex traits and diseases in future studies.
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Background

There are millions of candidate gene regulatory ele-
ments across diverse human cell types, tissues, and en-
vironmental conditions (e.g. [1-4]). Genetic variation
in those candidate regulatory elements contributes
heavily to the variation in gene expression between in-
dividuals and, in turn, to the heritability of complex
human traits and diseases [5—7]. Determining the spe-
cific genetic contributions to both molecular and or-
ganismal traits remains a major challenge, however.
That challenge persists, in part, because it is difficult
to predict the effect that a given variant or set of vari-
ants is likely to have on gene regulation. Overcoming
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that challenge is important for both basic and transla-
tional studies of the genetics of gene regulation [8, 9].
A wide variety of studies have now investigated the
genetic contributions to human gene expression. Stud-
ies of the associations between genotype with gene ex-
pression has revealed genetic contributions to nearly
every human gene and across diverse cell types and
tissues [10]. Meanwhile, studies of the allele-specific
binding of transcription factors (TFs) suggest that
noncoding variants can alter gene regulation by sev-
eral mechanisms: disrupting TF binding directly, dis-
rupting complexes of regulatory factors, and
disrupting the underlying chromatin state [11-14]. A
challenge the above studies face is that genotypes near
each other in the genome are highly correlated due
predominantly to limited and non-random sites of
meiotic recombination across the human genome (i.e.
linkage disequilibrium). As one solution to that chal-
lenge, investigators have used reporter gene
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expression assays to measure the effects of genetic
variation on the activity of regulatory elements across
the genome [15, 16]. In a standard reporter gene ex-
pression assay, a regulatory element drives expression
of a visually observable reporter gene such as a fluor-
escent or chemiluminescent protein. By assaying regu-
latory elements with different genotypes, it is possible
to identify genetic variants that directly alter the activ-
ity of those elements. Recently, high-throughput ver-
sions of those assays have been developed to measure
the regulatory effects of many genetic variants and
mutants at once [17-20]. In such assays, the regula-
tory elements drive expression of DNA-encoded bar-
codes that allow for readout with high-throughput
sequencing.

While there are many ways to investigate how gen-
etic variants influence gene regulation, performing
those studies in the primary cells and tissues that are
most relevant to organismal biology remains challen-
ging. For that reason, understanding which variants to
prioritize for testing will be highly valuable. More gen-
erally, determining which types of mutations are most
likely to influence gene regulation will also be import-
ant for studying role of regulatory variation in evolu-
tion. As a step towards that long-term goal, we focused
on testing whether there are effect differences between
the two types of genetic mutations, transitions (Ts’s)
and tranversions (Tv’s). Transitions are DNA muta-
tions that maintain the same number of rings in the
nucleotide base, specifically exchanging a one-ring pyr-
imidine with another pyrimidine, or a two-ring purine
for another purine. Transversions, in contrast, are mu-
tations that change the nucleotide base from a purine
to a pyrimidine or vice versa. It is well known that Ts’s
are enriched over Tv’s in protein-coding regions of the
human genome. One of the reasons that Tv’s are
thought to be depleted in exons is that they are more
likely to result in an amino acid substitution. That dif-
ference between the rate of Ts’s and Tv’s is a founda-
tional principle for studies of the molecular basis for
evolution [21-23]. In contrast, the different effects that
Ts’s and Tv’s have in the non-coding genome has not
been as well studied. One of the major ways the genetic
mutations alter regulatory element activity is by influen-
cing the affinity of TFs to the genome [15, 16, 24]. TFs
bind DNA based on both sequence and shape [25]. Here,
we show that Tv’s are more likely than Ts’s to alter local
DNA structure, TF binding and, in turn, regulatory elem-
ent activity. To do so, we integrated data from numerous
orthogonal studies of the genetic effects on DNA
structure, TF binding, and regulatory element activity.
While much remains to be understood, our findings
enhance understanding of the effects of genetic variation
on human gene regulation.
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Results

Tv's alter DNA minor groove width and roll more than Ts’s
We first hypothesized that Tv’s have a greater impact on
the shape of DNA than Ts’s. We tested that hypothesis
using an empirically-based model of the effect of DNA
sequence on DNA shape [26] that has been used previ-
ously to investigate the shape readout of TFs [27]. We
used that model to predict the effect of Tv’s and Ts’s em-
bedded in the center of 501 bp DNA sequences on four
DNA shape parameters: minor groove width (MGW),
propeller twist (ProT), helical twist (HelT), and roll
(Fig. 1). Transversions had substantially greater effects
on minor grove width (2 A vs 1.3 A, an increase of 1.5x)
and on roll (10.2° vs 4.4°, an increase of 2.3x). In con-
trast, the Ts’s had greater effects than Tv’s on HelT and
ProT, but the magnitude of the effects was much smaller
(1.09x and 1.14x, respectively). Overall, these results in-
dicate that Tv’s overall have a greater impact than Ts’s
on DNA shape, and disproportionately alter the minor
groove width and roll of DNA.

Tv's have greater impacts on predicted and experimentally-
measured TF binding

We next hypothesized that Tv’s also have greater effects
on TF binding than Ts’s. We first evaluated whether Tv’s
have a greater predicted effect according to computa-
tional and statistical models of the TE:DNA interaction.
To do so, we calculated the change in the position
weight matrix (PWM) score of every possible single
nucleotide mutation in every TF binding motif in the
JASPAR database [28]. Briefly, a PWM quantifies the
affinity of a TF to each nucleotide in a potential binding
site. The center of the TF binding motif is typically more
specific than either edge of the motif and, similarly, mu-
tations near the center of the motif typically had greater
impacts on the PWM score. Across all motifs, Tv’s had a
significantly greater effect on TF binding score both in
the center of the motif and in the flanking regions
(Fig. 2a). The effect was most pronounced at motif posi-
tions with moderate nucleotide specificity (i.e. informa-
tion content [29]), suggesting that degeneracy in TF
binding motifs more often accommodate Ts’s than Tv’s
(Fig. 2b). Together, these results indicate that, across all
TFs, Tv’s are predicted to have a greater impact on TF
binding than Ts’s.

To test whether the computational predictions are re-
alized in the genome, we next investigated whether there
were also greater differences in TF binding between al-
leles at Tv’s than at Ts’s. To do so, we analyzed publicly
available allele-specific ChIP-seq data for 42 TFs in the
fully-sequenced diploid lymphoblastoid cell line (LCL)
GM12878, and for CTCF across six LCLs [30]. In both
instances, SNPs with evidence of allele-specific TF bind-
ing were subtly but significantly enriched for Tv’s when
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Fig. 1 Tv's have greater effects on DNA shape. Each plot shows the estimated effect of Ts's and Tv's placed in the center of random 500 bp
nucleotide sequences on (a) minor groove width, (b) roll, (c), propeller twist, and (d) helical twist, as estimated by DNAshapeR. Each plot shows
data for all four possible variants of 100,000 random sequences, for a total of 400,000 random sequences analyzed
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Fig. 2 TV's are depleted at TF binding sites. a, b Changes to PWM scores for JASPAR TFs caused by Ts's (grey boxplots) and Tv's (white boxplots) ordered
by normalized position (above) and information content (below). For each position in each consensus sequence, we calculated the position specific
scoring matrix (PSSM) score of having every possible nucleotide at that position and, subsequently, the change in PSSM score when mutating any
nucleotide to any other nucleotide at that position. Black squares are changes >1.5x above the interquartile range. P-values for parameter estimates
were calculated using a t test, and are reported without adjustment for multiple hypothesis testing. We tested 11 and 20 hypotheses in Fig. 2a and b,
respectively. Applying a Bonferroni correction to a nominal p-value threshold of a = 0.05 gives a significance threshold of a = 0.005 and a = 0.0025 for
2A and 2B, respectively
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compared to the other SNPs tested (39.33% vs 34.16%
for TFs in GM12878 cells, 37.4% vs 34.16% for CTCF in
LCLs; Z test p<2.2 x- 107'%, 2.86 x 107% respectively,
Fig. 3). These results suggest that Tv’s have larger effects
on TF binding, resulting in their depletion within TF
binding motifs and sites.

Tv's have greater impacts on functional regulatory
element activity
Based on our results showing that Tv’s have greater ef-
fects than Ts’s on TF binding, we next hypothesized that
Tv’s would also have greater effects on regulatory elem-
ent activity. Because non-coding variation is expected to
be a major contribution to human traits and diseases,
we focused our analysis on variants on a region on
chromosome 3 in which we previously found genetic
variants associated with birth weight and fetal adiposity
[31-33]. We chose that region as a representative ex-
ample of a region of the human genome that is associ-
ated with a complex human trait or disease. Within that
region, we focused specifically on 104 regions that are
hypersensitive to digestion by DNasel (i.e. DNase hyper-
sensitive sites, or DHS’s) (Additional file 1: Figure S1,
Additional file 2: Table S1). DHS are strongly indicative
of TF binding and regulatory element activity, and are
also strongly enriched for gene regulatory SNPs associ-
ated with human traits [34—36]. By focusing our experi-
ments on DHS at a trait associated locus within a
population, we increased our likelihood of capturing ex-
pression modulating variants that are relevant to a hu-
man phenotype.

To measure the regulatory activity of diverse haplo-
types of the 104 DHSs, we used a high-throughput
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population-scale self-transcribing active regulatory re-
gion sequencing (STARR-seq) reporter assay that we call
POP-STARR [37]. Briefly, in POP-STARR, candidate
regulatory elements from a population of individuals are
cloned into the 3’ untranslated region (UTR) of the
STARR-seq reporter gene [38]. From that position, each
regulatory element control expression of a reporter gene
in which it is embedded. For example, once the library is
transfected into cells, the regulatory elements with a
high level of activity are found frequently in the pool of
expressed reporter gene mRNA relative to the regulatory
elements with low activity. One can then measure the
abundance, and therefore activity, of all regulatory ele-
ments in the library by using massively parallel DNA se-
quencing. Importantly, genotype is observed by DNA
sequencing as well. The result of that measurement,
therefore, is an allele-specific measure of regulatory
element activity across the captured regulatory elements
and across the population of from which the regulatory
elements were captured.

To test our hypothesis that Tv’s have a greater effect
on regulatory element activity than Ts’s, we use POP-
STARR to assay the activity of 104 DHSs captured from
the genomes of 760 donors (Fig. 4a). In total, we assayed
1153 unique haplotypes comprised of 942 variants. Of
those variants, 634 were Ts’s and 308 were Tv’s (Add-
itional files 3 and 4: Tables S5-S6). To then test if Tv’s
alter the activity of regulatory elements more than Ts’s,
we classified haplotypes by whether they contained a Tv
or a Ts relative to a reference haplotype. We then used a
multiple linear regression model to test if the presence
or absence of a Tv or Ts correlated with changes in regu-
latory activity between haplotypes. The presence of a Tv
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was correlated with greater changes in regulatory activity
(t test, p=0.09 £0.033 s.e.m., p =0.006), while the pres-
ence a Ts was not (t test, = 0.007 + 0.036 s.e.m., p = 0.86)
(Fig. 4b). This observation suggests that haplotypes within
regulatory elements that contain Tv’s are more likely to
impact activity. Next, we expanded the model to account
for the total number of Ts’s and Tv’s between haplo-
types. The total number of Tv’s was significantly corre-
lated with the magnitude of changes in regulatory
activity (t test, p = 0.001) whereas the total number of

Ts’s was not (t test, p =0.054). Furthermore, the effect
of additional Tv’s on the magnitude of changes in
regulatory element activity was double that of add-
itional Ts’s (fp=0.12+0.035 s.em vs 0.06 +0.03 s.e.m.)
(Fig. 4c). Since TF binding is enriched at the center
of DHS’s, we hypothesized that that relative magni-
tude of effect between Tv’s and Ts’s would increase
near the middle of DHS’s. When the same analysis
was limited to haplotypes that overlapped the middle
third of DHS’s, the effect of Tv’s was substantially
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larger (B =0.07+0.031 s.em.), the effect of Ts’s was
unchanged (f=0.0150.025 s.e.m.), and the ratio of
the effect sizes increased to 4.6-fold (Fig. 4d).

To confirm that our results are not specific to our
model system or the 3q25 locus, we performed a similar
analysis on a study that used saturation mutagenesis to
evaluate the effect of every possible mutation on the ac-
tivity of three enhancers [19]. In that study, Patwardhan
et al. used massively parallel reporter assays to measure
the effect of every possible single nucleotide change to
three known enhancer regions. The saturation mutagen-
esis approach allowed for quantification of the effects of
every possible mutation on regulatory activity. As in our
POP-STARR results, Tv’s had greater effects on activity
than Ts’s, and that difference was greater near the center
of each regulatory element (Fig. 4e, Additional file 1:
Table S7). Together, these results confirm the results of
our POP-STARR assays in an alternative high-
throughput reporter system, providing further empirical
evidence that Tv’s have larger impacts on regulatory
element activity than Ts’s for both naturally occurring
variants and artificially generated mutations.

Discussion

Although the impacts of Ts’s and Tv’s have been exten-
sively studied in coding sequences, differences in their
effects in non-coding DNA has remained largely over-
looked. Here, we have shown that there are functional
differences in the effects of Ts’s and Tv’s in non-coding
regulatory elements. Specifically, our results show that
Tv’s are more likely to alter DNA shape, to disrupt TF
binding, and to have larger effects on regulatory element
activity than Ts’s. These findings represent a novel, fun-
damental property of regulatory variation.

The observed overall effects of Tv’s and Ts’s on regula-
tory element activity are modest. That finding is as ex-
pected considering earlier results showing that most
genetic mutations or variants have modest effects on
regulatory element activity [16, 19, 37]. Our estimates of
the differences between Ts’s and Tv’s on regulatory activ-
ity are conservative for several reasons. We did not limit
our analyses to mutations or variants that influence
regulatory activity, nor did we restrict our analysis to
binding sites for TFs that are more sensitive to Tv’s. We
also did not remove from our analysis any regulatory el-
ements with low activity. Our highly inclusive and con-
servative approach is important to demonstrate that
there is a differential overall effect of Tv’s and Ts’s on
regulatory element activity, but leaves to future studies a
detailed understanding of the specific circumstances
when Tv’s disproportionately alter that activity. We ex-
pect that elucidating those circumstances will improve
prediction of the effects of noncoding variants on both
molecular and organismal phenotypes.
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Several mechanisms may explain the stronger effects
of Tv’s. TFs may recognize the purine or pyrimidine
structure rather than the specific nucleotide or, alterna-
tively, Tv’s may disproportionately alter the DNA back-
bone, impacting the binding of TFs that recognize
backbone shape [39, 40]. One demonstration of that
principle comes from the Hox family of TFs that bind
DNA by recognizing both sequence and shape inde-
pendently of each other [25]. Many previous analyses
have also suggested that TFs may bind through both
sequence direct recognition and indirect recognition
[41-45]. Direct recognition occurs when a protein inter-
acts directly with the amino acid sequence of the DNA.
Conversely, indirect recognition occurs when proteins
interact with the DNA structure. Moreover, some groups
have shown that including DNA structure and physio-
chemical features significantly improves predictions of
TF binding across the genome [41, 44]. The importance
of DNA shape and structure corroborates the results
presented in our study, and provides a potential
mechanism explaining why Tv’s have larger impacts on
TF binding and regulatory activity than Ts’s.
Understanding those principles of TF recognition may
further inform whether specific classes of TFs are
particularly impacted by Tv’s.

Conclusions

In this work, we demonstrate that transversions have a
greater impact on regulatory element activity than tran-
sitions. A likely mechanism is that transversions alter
the minor groove width and roll of DNA more than
transitions, leading to a greater impact on TF binding.
These findings provide new insights into the ways that
different types of genetic variation can have distinct ef-
fects on gene regulation, and suggests that considering
whether a variant is a transversion or a transition may
be valuable for studying the genetics of gene regulation
in many contexts.

Methods

Predicted effects of mutations on DNA shape parameters
To estimate the effects of Ts’s and Tv’s on DNA shape pa-
rameters, we generated a set of random DNA sequences
that differed by a single nucleotide, and then used a com-
putational model to predict DNA shape for each se-
quence. Specifically, we generated 100,000 random 503 bp
DNA sequences. We then converted the middle nucleo-
tide in each sequence to all other possible nucleotides,
thus yielding 400,000 sequences. We then predicted the
minor groove width, roll, propeller twist, and helical twist
across each sequence using DNAshapeR [26]. To estimate
the effect of Ts’s and Tv’s on those shape parameters, we
summed the absolute difference in each parameter be-
tween pairs of sequences that differed by a single Ts or Tv,



Guo et al. BMC Genomics (2017) 18:394

respectively. We compared the effect of Ts’s and Tv’s on
each parameter using a linear regression model that in-
cluded the identity of the starting sequence as a covariate.

Predicted effects of mutations on TF binding

The set of all non-redundant TF binding position
frequency matrices (PFMs) were retrieved from the
JASPAR database [28]. For each PFM, a pseudocount of
0.1 was added to every element, and the PFM was con-
verted to a position specific scoring matrix (PSSM). The
most likely (i.e. consensus) binding sequence was deter-
mined for each PSSM. We defined the PSSM score for a
given DNA sequence as the sum of the corresponding
positions in the PSSM. Then, for each position in each
consensus sequence, we calculated the PSSM score of
having every possible nucleotide at that position and,
subsequently, the change in PSSM score when mutating
any nucleotide to any other nucleotide at that position.
The final values along with covariates such as the
JASPAR motif ID and the position in the motif data
were output as a table that was used for statistical ana-
lysis. PSSM generation and mutation scoring was
performed using BioPython libraries, and statistical
analysis was performed in R.

Effects of transitions and transversions in saturation
mutagenesis (Patwardhan et al.) dataset

Data from saturation mutagenesis of three regulatory el-
ements were collected [19] and reformatted to give the
effect of every possible mutation at every position
assayed. Effects from replicate experiments were aver-
aged. A series of linear regression models was then used
to evaluate the effect of Ts’s and Tv’s on regulatory elem-
ent activity while accounting for differences in regulatory
element activity between elements and location of the
mutation within each element. The specific models used
along with coefficients and test statistics are provided in
Additional file 1: Table S7. All analysis was performed
using R.

Allele specific binding analysis

We analyzed two publicly available allele-specific bind-
ing datasets, one based on the binding of multiple 42
TFs to the diploid personal genome sequence of
NA12878, the other based on the binding of CTCF to
SNPs discovered through ChIP-seq in 6 different LCLs
[30]. We computed the Tv frequency in allele-specific
variants and in all variants tested and compared the
two frequencies by transforming the assumed binomial
distribution to a standard normal and performing a
two-tailed Z-test. We pooled allele-specific variants
across TFs or across cell lines, making sure to collapse
redundant variants. We were ignorant of the overlap of
all tested SNPs across cell lines and for simplicity used
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the mean number of SNPs tested as the null model
sample size for that dataset.

Custom amplicon design and capture

Custom amplicon design and capture were performed as
described in Vockley, Guo, & Majoros et al. [37] with
the following difference: The number of individuals was
increased from 95 to 760.

Variant calling and phasing

Variant calling and phasing was performed as described
in Vockley, Guo, & Majoros et al. [37] with the following
difference: The number of individuals was increased
from 95 to 760.

POP-STARR-seq

Population STARR-seq libraries and haplotype effect
size calculations were conducted as previously pub-
lished by Vockley, Guo, & Majoros et al. [37]. In total,
we captured 104 DHSs from the genomes of 760
donors via multiplex PCR (Additional files 2, 5 and 6:
Tables S1-S3). We sequenced the captured DNA, and
called variants using the Genome Analysis Toolkit
(GATK) according to Best Practices recommendations
[46-48] (Additional file 7: Table S4). The custom
amplicon libraries were combined into eight pools (95
individuals per pool) in equimolar ratios. These pools
were then amplified and cloned into the STARR-seq
backbone. Each pool was transformed into Stellar
chemically competent cells per manufacturer protocol.
Transformations were recovered for 1 h in SOC
medium while shaking (225 rpm at 37 °C) and then in-
cubated for 16 h in 250 mL of LB while shaking (225
rpm at 37 °C). The resulting plasmid reporter input li-
braries were isolated using a MaxiPrep Kit (Promega).
The 8 purified libraries were then pooled in equimolar
ratios to create a single plasmid input library. This li-
brary was then transfected into T-175 flasks containing
HepG2 cells at ~70% confluency with Fugene HD
(Promega) at a 5.5:1 ratio of Fugene:DNA. In total, 3
replicate transfections were performed. RNA was har-
vested after ~48 h Primer sequences for library con-
struction are included in Additional file 1: Table S8.

Comparing effects of Ts’s and Tv’s on regulatory element
activity

To determine the number of Ts’s and Tv’s between hap-
lotypes, we grouped haplotypes by amplicon. This en-
sured that each haplotype was compared to only those
with the exact same length and start/stop coordinates.
For each amplicon, we designated one haplotype at ran-
dom as the “reference haplotype”. For each group of
haplotypes, we counted the number of Ts’s and Tv’s that
differed between each haplotype within the group and
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the reference haplotype. The change in effect magni-
tudes between the haplotypes in each amplicon group
were calculated as follows: ||log, (effect size of haplotype)
| — | log, (effect size of reference haplotype)||

Amplicon groups which did not contain at least one
haplotype with an effect size p-value < 0.05 were ex-
cluded from the analysis. Linear regressions were per-
formed using the Im() function in R. When performing
regressions we included amplicon number as a variable.

Additional files

Additional file 1: Figure S1. and Tables S7. and S8. Figure S1.
Amplicons targeting DHS and active histone markers in multiple cell lines. In
total, 104 DHS were captured using 174 amplicons. Amplicons were tiled
across target regions and also captured at least 50 bp upstream and
downstream of each DHS. Amplicon are ~400-425 bp in length. Table S7.
Effects of Tv's on regulatory element activity in Patwardhan et al. dataset.
Table S8. Population STARR-seq primer sequences. (DOCX 255 kb)

Additional file 2: Table S1. DHS coordinates at 3925
(BED format). (XLSX 11 kb)

Additional file 3: Table S5. Haplotype Sequences
(FASTA format). (XLSX 154 kb)

Additional file 4: Table S6. Haplotype Effects. (XLSX 64 kb)

Additional file 5: Table S2. Custom Amplicon Coordinates
(BED format). (XLSX 12 kb)

Additional file 6: Table S3. Custom Amplicon Probe Sequences
(BED format). (XLSX 21 kb)

Additional file 7: Table S4. Variant Calls in 760 Individuals
(VCF format). (XLSX 2056 kb)
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