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Abstract

Background: Although genome-wide association and genomic selection studies have primarily focused on
additive effects, dominance and imprinting effects play an important role in mammalian biology and development.
The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting
in a non-additive manner can be detected in genetic association studies remain controversial.

Results: To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701
genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction
traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component
GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results
showed a significant non-zero contribution from dominance to production traits but not to reproduction traits.
Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting
effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-
mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a
candidate gene that has been associated with milk production in mice. When adding non-additive effects into the
prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed.

Conclusions: Collectively, our results suggested that non-additive effects contributed a non-negligible amount
(more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with
non-additive effect is possible in GWAS using a large dataset.
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Background
Both dominance and imprinting play an important role
in mammalian biology and development [1]. Though
one may naturally assume that dominance and imprint-
ing effects affect economically important traits in plants
and animals, it remains controversial how much pheno-
typic variation can be attributed to these non-additive
effects, how many quantitative trait loci (QTL) follow
non-additive inheritance, and whether incorporating
non-additive genetic effects will benefit genomic predic-
tion [2–4]. Generally, contribution of non-additive gen-
etic effects varies for different types of traits. For

example, genetic variation associated with fitness-related
traits is due mostly to low frequency, deleterious vari-
ants, so these traits typically show relatively high non-
additive variance out of the total genetic variation [2].
Several studies have been conducted to decompose

dominance genetic effects from the total genetic vari-
ance of complex traits, theoretically [5–8] and empiric-
ally [9–12]. A few recent studies have tried to add
imprinting effects into the decomposition of total gen-
etic variation [13–16]. These studies indicated that non-
additive effects have a significant contribution to the
total genetic variance, but it is still questionable whether
or not this contribution can be robustly translated into
more accurate genomic prediction in real populations.
More recently, it was shown that mating programs in-
creased rates of genetic gain when non-additive genetic
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effects were included [17–19]. Further understanding of
the contribution of non-additive effects to the genomic
prediction and mating allocation programs will benefit
livestock production in the long term.
Gene mapping studies have primarily focused on genetic

variants with additive effects. Although many empirical
studies have reported non-negligible contributions from
non-additive effects to complex traits, QTLs with non-
additive effects are still difficult to identify in animal and
human gene mapping studies, largely due to the low statis-
tical power in the testing for non-additive effects of individ-
ual loci [20]. The large dairy genomics database maintained
by the Council on Dairy Cattle Breeding (CDCB) and the
USDA Animal Genomics and Improvement Laboratory
(AGIL; Beltsville, MD) represents a powerful dataset for
mapping QTLs with non-additive effects.
To empirically address questions related to dominance

and imprinting effects of complex traits, we analyzed a
large cattle dataset that consisted of more than 40 K
Holstein cows with SNP genotypes, pedigree informa-
tion, and eight yield deviation (YD) phenotypes (milk
yield, fat yield, protein yield, daughter pregnancy rate,
cow conception rate, heifer conception rate, somatic cell
score, and productive life). Both parents of these cows
were also genotyped to phase the parental inheritance of
SNPs of the cows. The aims of this study were to esti-
mate the relative contribution of additive, dominance,
and imprinting effects to dairy production and
reproduction traits, to identify QTLs with dominance or
imprinting effects, and to investigate whether adding
these non-additive genetic components improves the
prediction accuracy of genomic selection in real data.

Results
Variance decomposition of additive, dominance,
and imprinting effects
Using 42,701 Holstein cows with YD phenotypes, SNP
genotypes, and two genotyped parents, we decomposed

the total genetic value of eight dairy traits into additive,
dominance, and imprinting effects, estimating corre-
sponding variance components (Table 1). For the eight
traits analyzed, the number of animals with YD pheno-
type ranged from 12,911 (productive life) to 29,811
(milk, fat, and protein yields). Overall, production traits
(milk, fat, and protein yields) exhibited a different
pattern from reproduction traits (daughter pregnancy,
cow conception, and heifer conception rates). As shown
in Table 1, the broad-sense heritability (H2 = proportion
of total genetic variance in phenotypic variance) was
31.9–38.6% for production traits and 1.4–7.9% for
reproduction traits, respectively. The narrow-sense herit-
ability (h2 = proportion of additive genetic variance in
phenotypic variance) was 27.2–33.8% for production
traits and only 0.8–5.1% for reproduction traits, respect-
ively. Proportions of dominance variance in phenotypic
variance were significantly higher (P < 0.05) for produc-
tion traits (2.5%–4.0%) than for reproduction traits
(0.2%–1.1%), but the proportions in total genetic vari-
ance are higher for reproduction traits. The variance ex-
plained by imprinting effect was very low for all eight
traits, <1% of the phenotypic variance for production
traits and 1–2% for reproduction traits. However, these
imprinting effects were significantly larger than zero for
most production and reproduction traits (P < 0.05).
Moreover, for reproduction traits that have a low herit-
ability, imprinting effects explained a relatively large por-
tion of the total genetic variance (20.9% for daughter
pregnancy rate, 26.4% for cow conception rate, and
35.4% for heifer conception rate), which were signifi-
cantly higher than those for production traits (P < 0.05).
For comparison purposes, the total genetic variance

was decomposed into the genotypic imprinting value
plus either breeding value and dominance deviation
using a classical model that considered allele frequencies
[6] or additive and dominance effects that did not con-
sider allele frequencies (see Methods). As shown in

Table 1 Variance decomposition of genotypic additive, dominance, and imprinting values for eight dairy traits

Trait N Proportion in phenotypic variance (SE) Proportion in total genetic variance P-value of test for σ2 = 0

A D I H2 A D I A D I

MY 29,811 0.338 (0.009) 0.040 (0.005) 0.008 (0.002) 0.386 (0.009) 0.875 0.104 0.020 3.5 × 10−151 9.9 × 10−15 4.9 × 10−4

FY 29,811 0.312 (0.009) 0.025 (0.005) 0.004 (0.002) 0.340 (0.009) 0.917 0.073 0.010 3.9 × 10−145 1.1 × 10−7 0.04

PY 29,811 0.272 (0.009) 0.040 (0.005) 0.007 (0.002) 0.319 (0.009) 0.853 0.126 0.021 1.8 × 10−122 1.3 × 10−13 2.5 × 10−3

SCS 29,392 0.102 (0.007) 0.010 (0.006) 0.002 (0.002) 0.114 (0.007) 0.893 0.087 0.019 2.2 × 10−48 0.04 0.14

STPL 12,911 0.031 (0.007) 0.000 (0.011) 0.000 (0.004) 0.031 (0.010) 1.0 0.0 0.0 3.4 × 10−06 0.5 0.5

DPR 22,942 0.044 (0.006) 0.011 (0.007) 0.015 (0.004) 0.069 (0.008) 0.637 0.154 0.209 5.2 × 10−15 0.07 1.9 × 10−5

CCR 14,318 0.051 (0.008) 0.007 (0.011) 0.021 (0.005) 0.079 (0.011) 0.647 0.090 0.264 2.2 × 10−11 0.27 6.0 × 10−5

HCR 28,601 0.008 (0.003) 0.002 (0.005) 0.005 (0.002) 0.014 (0.005) 0.538 0.108 0.354 3.5 × 10−3 0.39 0.01

MY milk yield, FY fat yield, PY protein yield, SCS somatic cell score, STPL standardized productive life, DPR daughter pregnancy rate, CCR cow conception rate, HCR
heifer conception rate, N sample size, A additive effect, D dominance effect, I imprinting effect, SE standard error, H2 broad-sense heritability
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Additional file 1: Table S1, results from these two de-
composition models were consistent. It is worth noting
that estimated H2 from the two models was exactly the
same for all eight traits. In addition, the proportion of
variance explained by imprinting effects was the same
for the two models. These results were consistent with
theoretical expectations [6, 21]. In theory, the two vari-
ance decomposition models are equivalent to each other
with the same predicted phenotypic values and residuals.
First, the sum of additive and dominance genetic vari-
ances is equal to the sum of the variances of breeding
value and dominance deviation, under a few common
assumptions (see Methods). With a stronger condition,
the sum of individual breeding value and dominance de-
viation will be equal to the sum of individual genotypic
additive and dominance values. Second, individual geno-
typic imprinting values of the two models are the same,
asserting an equivalence of imprinting variance compo-
nents. We observed all of these results across all eight
traits, as shown in Fig. 1 for milk and Additional file 2:
Figure S1 for other traits. Additionally, we confirmed
that individual residual estimates of the two models are
the same (see the right panels in Fig. 1 and Additional
file 2: Figure S1).
Genomic relationship matrix (GRM) based variance

decomposition is highly dependent on the assumption of
polygenic genetic architecture, as genome-wide SNP ge-
notypes are used with equal weights. Existing GWAS
have provided evidence of a polygenic architecture of
additive effects in most complex traits [22]. However, we
have no such knowledge for dominance and imprinting
effects. To investigate the influence of this polygenic as-
sumption on variance components estimation, we per-
formed simulations to determine if our models have

biases when there are only a few dominance or imprint-
ing QTLs. Simulation results showed that GREML could
accurately estimate variances for genotypic dominance
and imprinting values for a moderate-heritability trait
like milk yield, even when only 10 dominance and im-
printing QTLs were simulated for a trait with polygenic
additive effects, respectively (Fig. 2a). For a low-
heritability trait like daughter pregnancy rate, GREML
also performed well for both lowly and highly polygenic
architectures of dominance and imprinting effects
(Fig. 2b). Using simulation, we demonstrated the ro-
bustness of our approach to the assumption of poly-
genic genetic architecture.

Genome-wide association study of dominance and
imprinting effects
We performed a whole-genome single-marker scan for
additive, dominance, and imprinting effects on all eight
traits. To increase computational efficiency, we used a
two-step approach to remove polygenic effects from the
data: 1) a mixed model with genomic relationship matri-
ces to generate residuals; followed by, 2) a GWAS scan
using residuals from the mixed model as the phenotype.
Although our two-step strategy has slightly lower power
than a single-step mixed model, we identified a novel
dominance signal on chromosome 23 that was associ-
ated with milk yield (Fig. 3). We then used a single-step
mixed model to re-analyze the SNPs near the dominance
signal, generating appropriate results for the associated
SNPs (Table 2). The top 2 SNPs, Hapmap48809-BTA-
55698 and BovineHD2300004730, showed a strong dom-
inance association with milk yield with P = 9.54 × 10−8

and P = 6.33 × 10−8, respectively. BovineHD2300004730
is 71 kb upstream of the RUNX2 gene. The RUNX2 gene

Fig. 1 Individual estimates of variance components with two decomposition models for milk. Each point indicates the component estimate for
each individual. Blue line indicates y = x. The x-axis shows the components from the model decomposing genetic effect to breeding value,
dominance deviation and genotypic imprinting value, while y-axis shows the components from the model decomposing genetic effect to
genotypic additive, dominance and imprinting values
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has been previously reported to be a novel regulator of
mammary epithelial cell fate in development and breast
cancer, and it has also been shown that exogenous trans-
genic expression of RUNX2 in mammary epithelial cells
blocked milk production [23].
We further used an independent validation data set

consisting of ~5500 younger cows with both geno-
types and milk yield phenotypes, which were collected
after the initial analysis, to validate the dominance
signal associated with milk yield. A mixed-model
based method was used to test the association be-
tween milk yield and 50 SNPs around the peak signal.
This validation analysis provided clear statistical evi-
dence for the dominance association at Bovi-
neHD2300004730 with milk yield (P = 7.41 × 10−4;
Fig. 4 and Additional file 3: Table S2). Additionally,
we found that the dominance effect was slightly larger
than the additive effect at BovineHD2300004730 in
both the discovery and validation data sets, suggesting
complete dominance or even over-dominance inherit-
ance of the underlying QTL.
We found no other significant non-additive effects for

any trait using a genome-wide significance level of
1 × 10−6 (Additional file 4: Figure S2). Nevertheless,
there were a few nominally significant peaks for domin-
ance or imprinting effects shown in the Manhattan
plots, such as the peak for imprinting effect on chromo-
some 6 for somatic cell score (Additional file 2: Figure
S2C) and the one at the end of chromosome 10 for cow
conception rate (Additional file 2: Figure S2F). Since a
one-step mixed model is more powerful than a two-step
scan, we selected 10 nominally significant non-additive
association signals and used a one-step mixed-model to

test the associations for the top three SNPs within each
peak. This one-step re-analysis found a genome-wide
significant dominance association on chromosome 10
with both fat and protein yields (Additional file 5: Table
S3). However, this dominance signal was not confirmed
in the validation data set (Additional file 6: Table S4).

Fine-mapping of the dominance GWAS peak near RUNX2
From our GWAS and validation analyses, we selected
BovineHD2300004730 (Chr23:18,600,456) as our tar-
get region for fine-mapping using sequence-based im-
putation. Based on the LD decay pattern between
BovineHD2300004730 and nearby variants derived
from the sequences of 443 Holstein bulls from the
1000 Bull Genomes project (Run 5.0) [24], we chose
the region of ±500 kb from the targeted SNP for fine
mapping to cover all the variants with a LD level of
r2 > 0.2 with BovineHD2300004730 (Fig. 5a). Using
the 443 Holstein sequences as reference, we then im-
puted sequence-level SNPs in the targeted region for
29,811 cows. After post-imputation quality control
(Additional file 7: Figure S3), a total of 652 variants
were included in a two-step association analysis for
milk yield.
The fine-mapping study identified 38 imputed variants

with a stronger association than BovineHD2300004730
(Additional file 8: Table S5 and Fig. 5b). The smallest P-
value for dominance effect (8.64 × 10−9) was found at
two variants, one in the first intron of RUNX2
(Chr23:18,676,057) and the other between SUPT3H and
RUNX2 (Fig. 5b). Although the 38 variants were all
modifiers (Additional file 8: Table S5), the fine mapping
analysis provided more evidence that the QTL is close

Fig. 2 Variance decomposition using simulated datasets. The dash line indicates expected value of corresponding variance component. a
Variance estimates of 100 simulated data sets for mimicking milk. b Variance estimates of 100 simulated data sets for mimicking DPR
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Fig. 3 Manhattan plots for associations of SNP effects with milk yield

Table 2 Top two SNPs associated with milk yield near the RUNX2 gene

SNP Chr Position MAF Model β_A (SE) P-value β_D (SE) P-value β_I (SE) P-value

Hapmap48809-BTA-55698 23 17,275,448 0.15 Two-step 153.4 (33.0) 3.33 × 10−6 197.1 (37.6) 1.56 × 10−7 −3.64 (18.0) 0.84

A 223.6 (51.8) 1.57 × 10−5 255.2 (44.7) 1.17 × 10−8 −1.54 (23.8) 0.95

A + D + I 212.7 (51.6) 3.82 × 10−5 241.7 (45.3) 9.54 × 10−8 −0.52 (25.5) 0.98

BovineHD2300004730 23 18,600,456 0.10 Two-step 207.3 (47.6) 1.31 × 10−5 273.5 (52.1) 1.54 × 10−7 10.31 (21.3) 0.63

A 206.2 (67.6) 2.29 × 10−3 353.6 (62.3) 1.43 × 10−8 −3.43 (28.8) 0.91

A + D + I 200.6 (67.5) 2.96 × 10−3 340.4 (62.9) 6.33 × 10−8 7.52 (30.8) 0.81

Chr chromosome, MAF minor allele frequency, β regression coefficient, SE standard error
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to the RUNX2 gene. Additionally, most of the variants
had a larger dominance effect than additive effect, which
was consistent with our original results supporting a
dominant or over-dominant mode of inheritance. To in-
vestigate whether or not the significant associations were
resulted from a single signal, we conducted a conditional
analysis by adding the top variant (Chr23:18,676,057) as a
covariate into the association test of each of the remaining
651 variants. This analysis revealed that the significant
additive associations disappeared while the dominance
signals remained (Additional file 9: Figure S4A). Condi-
tioning on both the additive and the dominance effects
eliminated all of the significant additive and dominance
associations, indicating a single underlying QTL respon-
sible for the association (Additional file 9: Figure S4B).
Since we imputed relatively low-density genotypes to

sequence genotypes, imputation accuracy was a concern
because poor imputation may result in smaller P-values
in our fine-mapping analysis. We examined the impact
of imputation accuracy (measured by AR2) on associ-
ation P-values and found that poorly imputed variants
tended to have a larger association P-value (Fig. 5c). This
trend reduced the chance of getting false positives from

low-quality imputation and provided additional support
for the dominance association signal at RUNX2 with
milk yield.

Genomic prediction incorporating dominance and
imprinting effects
We compared prediction performance of three models:
1) additive effect only (ADD), 2) additive and dominance
effects (ADD + DOM), and 3) additive, dominance, and
imprinting effects (ADD + DOM + IMP). Overall, the
three models showed similar prediction accuracy and
unbiasedness for all the eight traits (Fig. 6), even though
non-additive effects explained >30% of total genetic vari-
ance for the three reproduction traits (DPR, CCR, and
HCR). A small increase of prediction accuracy for three
production traits (<1%) was observed with the models
ADD + DOM and ADD + DOM + IMP compared to
the model ADD. Paired t-tests showed that the increases
were significant (P < 0.05). However, there was no sig-
nificant difference in prediction accuracy between the
models ADD + DOM and ADD + DOM + IMP for the
three traits.
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Fig. 4 Mixed-model based association analysis between milk yield and 50 SNPs around RUNX2 in the validation data set. The two vertical dash
lines indicate SNPs Hapmap48809-BTA-55698 and BovineHD2300004730, respectively
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Discussion
This study provided a systematic view of dominance
and imprinting effects through a comprehensive ana-
lysis of a large cattle data set, including variance de-
composition, GWAS, and genomic prediction. The
study of imprinting effects benefited from the large
size of the cattle data which included complete pedi-
gree, representing one of the largest pedigrees avail-
able in a mammalian species, to infer parent-of-origin
of alleles. The current study provided another demon-
stration of the power of dairy industry-oriented data
to facilitate biological research [25, 26].
In general, our results are consistent with previous

studies regarding the proportion of phenotypic variance
explained by dominance effects for complex traits in cat-
tle [10] and the low heritability of reproduction traits
[27]. The U.S. national evaluation includes a regression
on inbreeding to account for the effect of dominance on
the mean, not just the variance and covariance. Sun et
al. (2014) found a large advantage in predicting progeny
performance by multiplying this regression on inbreed-
ing by estimated genomic inbreeding of the calf, but
found only small additional advantage by including dom-
inance variance matrix. However, imprinting effects have
been rarely evaluated in livestock studies, and our ana-
lysis provided useful information on the contribution of

imprinting effects to dairy traits. First, despite their small
proportion relative to the total variance, imprinting ef-
fects had a significant, non-zero contribution to the
phenotypic variation for most of the traits investigated,
including all the three production traits and three
reproduction traits. Second, imprinting effects explained
a much larger proportion of the total genetic variance
for reproduction traits than for production traits. These
results raised two important questions: does imprinting
universally contribute to complex traits, and why are
reproduction traits more affected by imprinting? It is
worth mentioning that the reproduction traits consid-
ered here model pregnancy as a trait of the dam,
whereas pregnancy as a trait of the embryo might have a
stronger connection to dominance and imprinting.
In this study, we didn’t observe much improvement of

prediction accuracy by including dominance and im-
printing effects in genomic selection models. This obser-
vation can be attributable to a few things: 1) low
heritability of non-additive effects; and 2) lacking of full-
sib pairs between reference and prediction populations
because full-sibs are the primary source of non-additive
relationships but dairy data consist of mostly half-sibs.
Using a GWAS approach, we found a dominance

association signal and validated it in independent sam-
ples. The fine-mapping analysis further confirmed the

Fig. 5 Fine-mapping of the dominance association with milk yield near RUNX2. a LD between BovineHD2300004730 and adjacent variants.
b Association results of additive and dominance effects. The red dash line indicates the target SNP (BovineHD2300004730), while the two blue
solid lines indicate the two variants with the smallest P-value. c The influence of imputation reliability measured by AR2 on association P-values.
The black lines indicate the regression line of –log10(P) on AR2, and at the right-upper corner are the P-values for model fitting of the regression
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dominance QTL to be near RUNX2, but it was difficult
to distinguish causal variants from linked markers. Due
to a very small effective population size and a limited
number of haplotypes in the dairy cattle population, our
imputation works well, even from 50 k or less SNP data
to sequence-level variants, in our fine-mapping associ-
ation analysis.
Our study demonstrated the possibility of identifying

non-additive effects in GWAS using a large dataset.
Additionally, the power of the two-step GWAS approach
was comparable to a full mixed-model based method
(Table 1 and Additional file 5: Table S3). The two-step
method used in this study was an efficient alternative to
identify non-additive effects when fast implementations
of full mixed-models are not available. For genomic pre-
diction, we observed a very small but significant increase
of prediction accuracy for production traits, but no dif-
ference for reproduction traits, when non-additive ef-
fects were included. Due to possible sparseness of
dominance and imprinting effects, GREML may under-
perform for prediction and Bayesian models assuming a

few large QTLs may perform better. Future studies are
needed to develop more accurate prediction models for
non-additive effects.

Conclusions
In this study, we comprehensively evaluated the contri-
bution of dominance and imprinting effects to complex
traits in dairy cattle. We reported significant, non-zero
contributions from dominance and imprinting effects for
both production and reproduction traits. The imprinting
effects contribute a larger proportion to reproduction
traits that production traits. Using GWAS, we identified
and validated a dominance association signal with milk
yield near RUNX2. However, we observed minor in-
creases in prediction accuracy when including non-
additive effects in the genomic selection models.

Methods
Genotype and phenotype data
The large dairy cattle database maintained by CDCB and
USDA-AGIL includes more than one million genotyped

Fig. 6 Prediction performance of three models for eight dairy traits. a Prediction accuracy in 10-fold cross validation. b Regression coefficient of
YD on GEBV in 10-fold cross validation
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animals with complete pedigree. The data were collected
on a continuous basis, and this study included all the
Holstein data available until September, 2015. From the
database, we extracted 262,757 genotyped females whose
sire and dam were also genotyped. The genotypes were
generated from 16 different SNP arrays with SNP num-
ber ranging from 7 K to 50 K. The SNP genotypes of all
262,757 females were phased to determine the parent-
of-origin of each allele. We first used parent genotypes
to phase a SNP genotype of a cow [26]. If this step failed,
we then applied a population-based phasing approach
using FindHap version 3.0 [28]. After phasing, all indi-
viduals were imputed to 50 K SNP data. When building
genomic relationship matrices (GRMs), we further filled
a small portion of genotypes that were still missing after
imputation from FindHap by randomly sampling geno-
types from a multinomial distribution with probabilities
of the three genotypes derived under an assumption of
Hardy–Weinberg equilibrium.
Among the 262,757 Holstein cows, 42,701 of them

had yield deviation (YD) phenotypic data. YD pheno-
types were adjusted for appropriate covariates, including
farm, year, and season effects. Eight traits were analyzed,
including milk yield (MY), fat yield (FY), protein yield
(PY), somatic cell score (SCS; a measure of mammary
gland health), standardized productive life (STPL; a
measure of longevity), daughter pregnancy rate (DPR; a
measure of fertility), cow conception rate (CCR; a meas-
ure of fertility), and heifer conception rate (HCR; a
measure of fertility). Since many cows were not mea-
sured for all the phenotypes, the final sample size for the
eight traits ranged from 12,911 (STPL) to 29,811 (MY,
FY and PY), as shown in Table 1.

Variance decomposition with additive, dominance, and
imprinting components
Genetic effects of SNPs can be decomposed into three
components (i.e., genotypic additive, dominance, and
imprinting values), following their evident biological
meanings:
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where G12 is the genetic value for the genotype 12 with
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fect, d is dominance effect, i is imprinting effect, A is
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where R* is the overall mean after centering, p is the
frequency of allele 2 and q is the frequency of allele 1, and
A* (D*) is genotypic additive (dominance) value after
centralization. Note that in eq. (2), genotypic additive
value (A*) is not independent of genotypic dominance
value (D*), or Cov(A ,D ) ≠ 0. To address the issue, we
can use the extended natural and orthogonal interactions
(NOIA) model [21] under Hardy-Weinberg equilibrium,

G11

G12

G21

G22

2
664

3
775 ¼ R�� þ β

−2p
q−p
q−p
2q

2
664

3
775þ d

−2p2

2pq
2pq
−2q2

2
664

3
775þ i

0
−1
1
0

2
664

3
775

¼ R�� þ A�� þ D�� þ I;

ð3Þ
where R** is the overall mean and β is allele substitution
effect. Despite its similarity to eq. (2), eq. (3) results in
different variance decomposition. The three components
for β, d, and i correspond to breeding value (A**), dom-
inance deviation (D**), and genotypic imprinting value
(I), respectively.
The differences and relationships between eqs. (2) and

(3) have been thoroughly discussed in a previous study
[6], although that study did not include imprinting ef-
fects. The equation still holds when imprinting effects
are included because the genotypic imprinting value is
independent of the other two components in both eqs.
(2) and (3). In theory, the sum of individual breeding
value and dominance deviation in eq. (3) is equal to the
sum of individual genotypic additive and dominance
values in eq. (2); and when ignoring the covariance be-
tween additive and dominance effects, the sum of addi-
tive and dominance genetic variances resulting from the
decomposition by eq. (3) is equal to the sum of the vari-
ances of genotypic additive and dominance values result-
ing from the decomposition by eq. (2). Additionally,
individual genotypic imprinting value in eq. (2) is the
same as in eq. (3), thus asserting the equivalence of im-
printing variance components in the two equations. The
theory holds for multiple loci when assuming linkage
equilibrium and independent marker effects [6].
Although it is possible to directly fit SNP effects in a

model [29], fitting individual-level genetic components
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is more efficient, especially for a large dataset with many
SNP markers. In this study, we used the following model

y¼Xbþaþdþiþe with aeN 0; σ2
aA

� �
;deN 0; σ2dD

� �
;

ieN 0; σ2
pP

� �
; eeN 0; σ2eI

� �
;

ð4Þ
where the phenotypic value of individuals (y) was
decomposed into fixed effects (b), genotypic additive
value (a), genotypic dominance value (d), genotypic im-
printing value (i), and residual (e). Eq. (4) can be readily
solved by a multi-component restricted maximum likeli-
hood (REML) approach as implemented in GCTA [30],
as long as we know the covariance structures of the
three components, A, D, and P. Different forms of addi-
tive genomic relationship matrix (GRM) have been pro-
posed. We used a version with pooled variance across all
markers [31],

Aij ¼
X

k
Zik−2pkð Þ Zjk−2pk

� �
=
X

k
2pk 1−pkð Þ; ð5Þ

where Zik (Zjk) is the additive genotype code for marker
k of individual i (j) as shown in the vector corresponding
to a in eq. (1) and pk is the population frequency of al-
lele 2. Similarly, based on the equivalence of SNP-BLUP
and GBLUP [7, 32], we can obtain corresponding GRMs
for dominance (D) and imprinting (P), which are shown
as following:

Dij ¼
X

k
Hik−2pk 1−pkð Þ½ �

� Hjk−2pk 1−pkð Þ� �
=
X

k
2pk 1−pkð Þ

� 1−2pk 1−pkð Þ½ � ð6Þ

Pij ¼
X

k
SikSjk=

X
k
2pk 1−pkð Þ ð7Þ

where H and S are the genotype codes for dominance
and imprinting effects as shown in the corresponding
vectors in eq. (1), respectively. Equation (6) has been
used in previous studies [5, 10]. When building GRMs,
we used whole-genome markers with minor allele fre-
quency (MAF) ≥0.01. Finally, the software MMAP [33],
which efficiently implements REML, was used to fit
model (4).
For comparison purposes, we also performed variance

decomposition based on eq. (3). In this case, we need to
use a different dominance GRM (D*),

D�
ij ¼

X
k
H�

ikH
�
jk=

X
k
2pk 1−pkð Þð Þ2; ð8Þ

where H* is the dominance genotype code as shown in
the vector corresponding to d in eq. (3). Accordingly,
the total genetic variance is decomposed to classical
additive and dominance genetic variances and variance
of genotypic imprinting effect. We further compared the

two different kinds of variance decompositions regarding
estimates of individual effects and variance components
to verify the theory on their equivalence of explaining
phenotypes.

Simulation study for validating variance decomposition
Note that when building the GRMs, we assumed that
the traits are highly polygenic for the additive, domin-
ance, and imprinting effects. Although the polygenic
architecture of additive effects is commonly used for
complex traits [22], we have less knowledge on whether
dominance and imprinting effects are also polygenic. To
address this issue, we simulated a number of datasets to
investigate whether model (4) can capture dominance
and imprinting effects when there are a small number of
corresponding QTLs. Specifically, we first obtained a
random subsample of 10,000 from the 42,000 cows be-
ing analyzed, and then randomly selected markers from
the 50 k SNPs as additive, dominance, or imprinting
QTLs. We simulated QTL effects using a normal distri-
bution and added them up to obtain a, d, and i for each
of the 10,000 cows. Thereafter we calculated σ2

a ¼ var að Þ,
σ2d ¼ var dð Þ, and σ2p ¼ var ið Þ using corresponding simu-

lated genetic values. Based on the heritability we set to
simulate, we calculated σ2e and simulated e by sampling it
from N 0; σ2

e

� �
. The phenotype for each individual animal

was simulated by adding up a, d, i, and e.
To ensure realistic simulations, we picked variance of

the normal distribution for simulating effect sizes so the
variance decomposition was the same between simulated
and real data. Our simulation scenarios included two
representative traits, milk yield and DPR, separately.
Three scenarios were simulated for either trait by
varying QTL numbers, including 1000 + 10 + 10 (1000,
10 and 10 QTLs for additive, dominance, and im-
printing effects, respectively), 1000 + 100 + 100, and
1000 + 1000 + 1000. Simulation for each scenario
was repeated 100 times. We fitted model (4) for each
simulated data set and compared variance component
estimation between the three scenarios.

Genome-wide association study of non-additive effects
To increase computational efficiency, we used a two-
step strategy for genome-wide association study, similar
to the GRAMMAR approach [34]. First, we fitted model
(4), and obtained the residuals to adjust for polygenic ef-
fects. Second, we used the residuals as response variable
to fit a multiple linear regression model for each SNP,

e¼μþakZk þ dkHk þ ikSkþε; ð9Þ
where Zk, Hk and Sk are the genotype codes of marker k
for additive, dominance and imprinting effects, respect-
ively, as described in eqs. (5,6,7), and ak, dk, and ik are
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corresponding SNP effects. SNPs were filtered by
MAF ≥0.01 and P-value of Chi-square test for
Hardy–Weinberg equilibrium ≥1 × 10−6. Association
P-values were calculated from t-tests for the three
types of SNP effects.
For association signals with sufficient statistical evi-

dence from the two-step analysis, we further used the
full mixed model,

y¼μþakZk þ dkHk þ ikSkþaþ dþiþe

with aeN 0; σ2aA
� �

;deN 0; σ2
dD

� �
; ieN 0; σ2pP

� �
; eeN 0; σ2

eI
� �

;

ð10Þ

or its reduced version,

y¼μþakZk þ dkHk þ ikSkþaþ e with aeN 0; σ2aA
� �

and eeN 0; σ2
eI

� �
;

ð11Þ

to rerun the association analysis, depending on whether
the additive effects can explain a majority of total gen-
etic variance on the trait being analyzed. Here, the re-
sponse variables in eq. (10) and (11) are yield deviations.
Again, we applied the software MMAP [33] to fit the
mixed models.

Validation of non-additive association signals using
independent data
Our discovery GWAS used the data available until
September, 2015. From then to April, 2016, we assem-
bled a new dataset to validate the signal found in the ini-
tial GWAS. The validation data consisted of 5514 cows
with both genotypes and milk phenotypes. The geno-
types in the validation data were phased with the same
procedures as used for the discovery data set. With the
validation data, model (11) was used to analyze associa-
tions between milk and 50 SNP markers around the
RUNX2 signal. The GRM was built using all chip SNPs
except those on chromosome 23, which resulted in a
leave-one-chromosome-out analysis (LOCO) [35]. We
also built the GRM using all genome-wide SNPs and
compared it with the LOCO analysis. The validation
data were also used to analyze the significant dominance
associations around Chr5:107,000,000 with both fat and
protein. The three SNPs with the smallest discovery P-
value were analyzed with model (11) for fat and protein,
respectively.

Fine mapping for the RUNX2 dominance signal
First, we used the sequence data of 443 Holstein bulls
from the 1000 Bull Genomes project [24] (Run 5.0)
to check LD levels between the targeted SNP
(Chr23:18,600,456) and SNPs/biallelic indels around it.
Based on the LD decay pattern, we chose the region

of ±500 kb from the targeted SNP for fine mapping.
Then, we used the sequence genotypes of the 443
bulls as reference to impute the 50 k genotypes of
29,811 cows to sequence genotypes. Beagle version 4
[36] was used for the imputation with default param-
eters. To increase accuracy, our imputation covered a
larger region of ±1 Mb from the targeted SNP. After
imputation, we removed non-informative SNPs, i.e.
SNPs with a MAF <0.01, SNPs with a P-value of Chi-
square test for Hardy–Weinberg equilibrium <1 × 10−6

and SNPs with an allelic R2 (AR2) <0.05. AR2, reported by
Beagle software, is the estimated squared correlation be-
tween the most probable alternative allele dose and the
true alternative allele dose and serves as a good metric for
estimating imputation accuracy [37]. The analysis of asso-
ciations between milk and the imputed sequence variants
within the targeted region (Chr23:18,100,456–19,100,456)
was performed with a two-step method as described in
our GWAS section.

Genomic prediction
We estimated the values of the three effects for individ-
uals in the training population from fitting model (4) in
MMAP. The genomic predictions for new individuals
can be calculated by

ĝn ¼ α̂n þ d̂n þ în ¼ An�tA−1
t�t ât þDn�tD−1

t�td̂t

þ Pn�tP−1
n�t ît ð12Þ

where the subscripts n and t indicate the sets of new in-
dividuals and training population, respectively. Besides
model (4) (ADD + DOM + IMP), we also considered
two reduced models, the additive model (ADD) and the
additive-plus-dominance model (ADD + DOM), and
compared the prediction performance between the three
models. Ten-fold cross validation was used to assess
1) prediction accuracy, defined as the Person correlation
between genomic estimated breeding value (GEBV) and
phenotype, and 2) unbiasedness, defined as the regression
coefficient of phenotype on GEBV in the validation
population.
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