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Abstract

Background: Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively
regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive

changes in cis-regulatory regions remains unclear.

Results: Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and
use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding
changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to

detect correlations.

Conclusions: Consistent with previous studies, we find little correlation between gene expression and adaptive
noncoding changes at the level of individual genes; however, we do find significant correlations at the level of
biological function ontology groups. The types of function include processes regulated by specific transcription
factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system.
Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent
themes include cancer, particularly epithelial cancers, and neural development and function.
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Background

The evolutionary mechanisms responsible for divergence
in gene expression between species are poorly under-
stood. To begin with, expression level is for most genes
a high-dimensional phenotype: almost without exception
it differs among cell types, across the life cycle, and in
response to numerous environmental factors [1, 2]. This
makes it challenging to link positive selection on
regulatory sequences to any particular aspect of a gene’s
expression. In addition, populations often harbor
significant levels of genetic variation that influences gene
expression [3], confounding attempts to distinguish
between-species divergence from within-species vari-
ation. Finally, the full complement of cis-regulatory ele-
ments is rarely known, constraining attempts to carry
out comprehensive scans for natural selection. Perhaps
unsurprisingly, it has proven difficult to detect a clear
relationship at a genomic scale between the distribution
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of positive selection on noncoding sequences and diver-
gence in gene expression, particularly in multicellular
organisms [4].

The question is whether this result is a true or false
negative. One way to move beyond a quest for simple
correlations is to carry out joint analysis of genes that
contribute to related phenotypes. During human origins,
for instance, many of the same functional categories of
genes show enrichments for signatures of positive selec-
tion [5-8] and for changes in tissue-specific expression
level [9-14], even though on a gene-by-gene basis no
correlation is evident. This overlap in enrichments hints
at cause-and-effect or common-effect relationships. For
example, two genes whose products are part of the same
biological process might both experience positive selec-
tion to change expression levels because they both alter
the same quantitative organismal trait in the same
direction. The clearest examples come from metabolic
pathways [15-17], but in principle this relationship
could apply to any set of genes that contribute to the
same trait or set of traits. Working with functionally re-
lated sets of genes rather than single genes should, in
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principle, improve our ability to detect relationships
between signatures of positive selection and gene ex-
pression change.

To test this concept, we measured transcript abun-
dance in five tissues in humans and chimpanzees, and
then used the results to assess the relationship between
gene expression and positive selection. We chose tissues
informative to understanding the evolution of metabol-
ism, namely adipose tissue, cerebellum, cortex, liver, and
skeletal muscle. These tissues provide an opportunity to
explore the “expensive tissue” hypothesis that a major
shift in energy allocation among tissues occurred during
human evolution in order to support the remarkable
expansion of the metabolically expensive human brain
[14, 18-21]. We analyzed our measurements of tran-
script abundance from all tissues together in a single
statistical model so as to maximize our power to detect
expression differences. We then looked at correlations
between differential gene expression and the results
from three noncoding DNA datasets. These included a
combination of human accelerated regions (where there
are significantly more changes on the human branch in
a highly-conserved regions in other organisms, anywhere
in the genome) [7, 8]; as well as rapidly evolving putative
cis-regulatory regions upstream of coding sequences (as
compared to changes in local introns) [6]. As expected,
we find little correlation between gene expression
changes and adaptive noncoding (putative cis-regulatory)
changes at the level of individual genes; however, we did
find appreciable correlations between the two for several
informative kinds of biological functions. Our results
demonstrate the utility of considering functional cat-
egories when studying the evolution of gene expression
and provide novel insights into the genetic basis for
human origins.

Results

Measurements of gene expression

We used RNA-Seq to measure expression of 14,341
genic regions in at least one of white adipose tissue, lat-
eral cerebellum, frontal cortex, liver, and skeletal muscle
sampled from four male humans and four male chim-
panzees (see Additional file 1: Table S1 for details).
Using a multi-factor Generalized Linear Model (GLM)
to analyze our measurements of all tissues together [22],
we identified 4828 genes whose expression differs be-
tween humans and chimpanzees (q-value <0.05, 5%
FDR). This proportion, 34% (4828 of 14,341), is greater
than in previous studies that analyzed different tissues in
separate models [9, 13, 23, 24]. GO analyses of overall
differential expression show significant expression
differences in categories related to cell signaling, neural
processes, ion transport and development (Fig. 1). In
keeping with many previous studies [25-27], cluster
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Fig. 1 Boxplot of the ~log10(gvalue) distributions from the GLM
examining the Tissue (left, orange) and Species (right, green) effects

analysis revealed a greater overall similarity in expression
by tissue than by species; the tissue term in our GLM on
average explained a greater fraction of differential
expression (Kolmogorov-Smirnov test, D = 0.16069,
p-value <2.2e-16) than did the species term (Fig. 1).

Changes in expression divergence and tissue specificity

We then examined the trends of genes that have
diverged in expression levels between humans and chim-
panzees in individual tissues. We calculated a specificity
score for differential expression (human vs. chimpanzee)
in a given tissue relative to the rest of our gene expres-
sion data [as in 6, 28]. This score is not based on the
magnitude of expression levels, but rather on the distri-
bution of expression over tissues. A gene that is mainly
differentially expressed in one tissue (even if at low
numbers) between humans and chimpanzees will have a
specificity score closer to one, and genes not showing
changes in expression will have scores closer to 0. We
found a strong correlation of tissue specificity and chan-
ging gene expression between humans and chimpanzees
in all five tissues (adipose: rho = 0.962,liver: rho = 0.828,
cerebellum: rho = 0.708, rho = cerebral cortex: 0.833,
rho = skeletal muscle: 0.757; all 5 p-values <2.2e-16)
(example tissue shown in Fig. 2). These results suggest
that the more tissue specific a gene’s expression, the more
likely its expression is to change over evolutionary time,
even during the short divergence time between the human
and chimpanzee lineages. In contrast, the categories of
genes we found enriched for similar expression levels
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Fig. 2 Correlation between tissue specificity and gene expression
divergence between humans and chimpanzees. There is a significant
correlation between higher specificity to a tissue and expression
divergence (adipose tissue as an example here)

across the tissues we measured here are mainly comprised
of housekeeping processes, such as “transcription regula-
tion” and “DNA binding”. This is consistent with the idea
that tissue-specific selection pressures are more easily ac-
commodated by changes in cis-regulation than by changes
in protein structure, because the latter are more likely to
have deleterious pleiotropic effects [2, 29].

Functions of differentially expressed genes across

humans and non-human primates

Considering just the large (>50 genes) Gene Ontology
categories (Fig. 3) we see themes of metabolism, signal-
ing, development, and nervous system as differentially
expressed between humans and chimpanzee (Fig. 3).
These results are intriguing, but only represent bio-
logical processes functioning in normal tissue.

To further understand the implications of these ex-
pression differences, we analyzed their distribution over
multiple gene sets using the Molecular Signatures Data-
base (MSigDB) [30, 31]; see “Methods” for details).
MSigDB consists of 10,348 sets grouped into 20 collec-
tions representing broad aspects of gene function and
organization. The collections form a shallow, partially
hierarchical, tree structure. One of the challenges in
interrogating these large gene ontology sets is the
redundancy in, and heterogeneous size of, these gene set
ontologies [32]. For example, the C3:All collection is the
union of the C3:MIR and C3:TFT collections with no
deeper branching. Therefore, we considered only 16 leaf
(of the tree structure) collections (e.g., C3:MIR and
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C3.TFT but not C3:All). In order to emphasize broad
trends among changes in gene expression between humans
and chimpanzees, we restricted attention to sets containing
at least 50 genes whose expression we measured.

Table 1 lists the 20 (of 5247) MSigDB gene sets most
enriched with genes scoring high for overall differential
expression between humans and chimpanzees (see
Additional file 2: Tables S2a-S2f for full results, both
overall and per tissue). One of the most unexpected and
striking patterns is the clustering of statistically
differentially expressed genes at specific cytogenetic
bands (Fig. 4, Table 1). Some of these regions have inter-
esting evolutionary histories in primates, and have im-
portant links to human disease. There is a common
inversion in chromosome 17ql11.31 that segregates
within human populations [33] and is correlated with a
number of neurological conditions, such as Parkinson’s
[34] and intellectual disabilities [35] and intercranial vol-
ume [36]. This region is also bounded by a segmental
duplication that seems to have been under positive se-
lection in the primate lineage [37], and contains genes
such as MAPT and BRCA1. The 17q11 region is associ-
ated with a number of immune conditions, such as
tuberculosis and leprosy in human populations [38], and
has an expanded repertoire of cytokines [39], while the
12q13 region is associated with Type I diabetes [40]. Add-
itionally, the 17q11 and 12q13 cytogenetic bands have gene
clusters that have expanded during primate evolution [41].
There is previous evidence of positive selection in regions
with duplications, both in coding [42] and in regulatory se-
quence [37], which we discuss below. Additionally, Table 1
shows that differentially expressed genes between humans
and chimpanzee across all five tissues are enriched for pro-
cesses related to neural signaling [43, 44] and pathways in
cancer [45-47], based on the data from those studies.

We then went on to examine whether the differentially
expressed genes between humans and chimpanzees have
roles in human disease or dysregulation. The KEGG path-
ways that show enrichments are clearly related to two
general groups of processes: neuronal function and cancer
(Table 1, Additional file 3: Table S3). There are a number
of categories related to “neuronal signaling.” For processes
related to cancer, the signal appears to be coming from
differential gene expression in processes related to cell sig-
naling and adhesion (e.g. “Focal adhesion”, “Gap Junction”,
and “ECM Receptor Interaction”). This is suggestive that
healthy differential gene expression between humans and
chimpanzees overlaps with gene also involved in some
late-onset disease susceptibilities.

Genic correlations between differential expression and
noncoding adaptation

Four thousand five hundred eighty-one genes whose
expression we measured were also analyzed in our
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previous study of noncoding (putative cis-regulatory) re-
gions immediately upstream from transcription start
sites [6]. Consistent with that study, the correlation be-
tween our current scores for overall differential expres-
sion between humans and chimpanzees (q-value <0.05)
and our previous scores for adaptive sequence changes
during human evolution is negligible (rank correlation
r, = 0.0074, one-tailed p = 0.32 via permutation test with
10,000 permutations). The tissue with the highest correl-
ation between scores for per-tissue differential expres-
sion and scores for adaptive sequence changes is
cerebral cortex, but the correlation is weak (r, = 0.031,
p = 0.032). Similar analyses using scores for adaptive se-
quence changes from two other studies of noncoding re-
gions [7, 8] vyield similar results (see Additional file 4:
Table S4, with total, and by tissue, tabs for full results).
Thus, per gene, the relationship between gene expression
and adaptive noncoding changes is apparently weak.
Beyond the possibility of noise or errors in the scores,
this finding is unsurprising for several reasons explained
above. We measured expression in only a few tissues
from healthy adults, giving us a limited view of this

high-dimensional expression phenotype. For these and
other reasons, we had not expected to see a strong rela-
tionship between gene expression and adaptive noncod-
ing changes at the level of individual genes.

There are correlations between differential expression
and adaptation at the level of ontology categories
However, we hypothesized that there might be a stronger
relationship at the level of biological function than at the
level of individual genes. Conceivably, both genes whose
expression differs between humans and chimpanzees and
genes near noncoding regions whose sequences changed
adaptively during human evolution might tend to affect
the same biological functions. Of course, biological func-
tion is an extremely broad notion. As the diversity of
MSigDB collections attests, genes can be categorized in
many different ways, from their molecular characteristics
through their contributions to normal development and
physiology to their involvement in pathologies such as
cancer. Accordingly, our question amounts to whether
there is some type of biological function with respect to
which there is a stronger relationship between gene
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Table 1 Functions of overall differentially expressed genes

Set Collection # genes r_rb SE(r_rb)
chr17g11 CTAll 66 0.88 0.021
chr1i2q13 CTAll 152 0.84 0.026
NIKOLSKY BREAST CANCER 17Q11 Q21 AMPLICON C2:.CGP 80 0.84 0.033
chr17g21 CTAll 164 0.69 0.033
chrdg21 CrAll 61 0.62 0.066
chrip13 CTAll 79 0.59 0.06
GNF2 DNM1 C4:.CGN 63 041 0.046
RICKMAN HEAD AND NECK CANCER A C2.CGP 77 0.34 0.06
LEIN NEURON MARKERS C2:.CGP 50 0.34 0.052
CAHOY NEURONAL Ce:All 84 033 0.053
GCM MAP1B C4.CGN 53 033 0.076
ANASTASSIOU CANCER MESENCHYMAL TRANSITION SIGNATURE C2.CGP 53 033 0.069
SABATES COLORECTAL ADENOMA UP C2:.CGP 86 033 0.049
GNF2 CCNA2 C4:.CGN 52 0.32 0.065
KRAS.KIDNEY UPV1 UP Ce:All 113 0.32 0.047
VOLTAGE GATED CATION CHANNEL ACTIVITY C5:MF 57 0.31 0.061
NAKAYAMA SOFT TISSUE TUMORS PCA2 UP C2:.CGP 71 0.31 0.053
GCM MAPK10 C4:CGN 71 0.31 0.059
CERVERA SDHB TARGETS 1 UP C2:.CGP 95 03 0.052
VOLTAGE GATED CHANNEL ACTIVITY C5:MF 63 03 0.058

The 20 (of 5247) MSigDB gene sets most enriched with genes scoring high for overall differential expression between humans and chimpanzees are listed.
Collection is the MSigDB collection containing the set (one of 16). genes is the number of genes whose expression we measured in the set (at least 50). r,, is the
rank-biserial correlation between scores for differential expression and membership in the set; sets are ordered by decreasing r,,. SE(r,,) is the standard error of r,y,

via bootstrapping with 10,000 replicates

expression and adaptive noncoding changes. We ad-
dressed this question using the commonly accessed
MSigDB gene ontology collections [30, 31].

For each MSigDB gene set delineated above and for
each previous study of noncoding regions mentioned
above [6-8], we computed a rank-biserial correlation
(see Materials and Methods) of the kind presented in
Table 1 for enrichment with genes scoring high for

adaptive sequence changes in putatively regulatory
regions of the human genome. As in our previous meta-
analysis of such studies [5], we combined these rank-
biserial correlations across the studies to obtain one
rank-biserial correlation for each set, restricting atten-
tion to sets represented in at least two of the studies,
with correlations not significantly heterogeneous across
these studies, and containing at least 50 genes analyzed

the chromosomal enrichment regions in Table 1)

Fig. 4 Ideogram of clustering of significant differentially expressed genes in humans compared to chimpanzees across tissues (red bars highlight
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on the average over these studies (see “Methods” for
details). For each MSigDB collection delineated above,
we then computed the correlation over gene sets in the
collection between enrichment rank-biserial correlations
for differential expression, either overall or per-tissue,
and enrichment rank-biserial correlations for noncoding
adaptation. Interpreting these correlations is compli-
cated by overlap among sets within a collection—a
typical gene is a member of several sets—which tends to
inflate the correlations. Thus, for each correlation, we
corrected by computing a p-value using a form of per-
mutation testing that accounts for overlap among sets.
Table 2 lists the results for overall differential expres-
sion (see Additional file 5: Tables S5b—S5f for per-tissue
results). The most significant correlations represent
several types of function with respect to which there is
appreciable congruity between gene expression and
adaptive noncoding changes. The C3:TFT collection
contains sets of genes with binding sites for a transcrip-
tion factor according to the TRANSFAC database. The
sets most co-enriched with both overall differential
expression and noncoding adaptation include targets of
FOXM1, POU3FI and POUS3F2, GATAI, and NKX2-5,
which are regulators of the cell cycle, neuron development,
erythrocyte development, and cardiomyocyte development,
respectively [48-51]. The C2:CGP collection contains sets
of genes whose regulation is altered in response to a
genetic or chemical perturbation. The most co-enriched
sets include MOHANKUMAR_TLX1 TARGETS DN
[52], genes down-regulated by TLX1 in a breast cancer cell
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line; POOLA_INVASIVE_BREAST_CANCER_UP [53],
genes up-regulated in tissues from patients with vs. with-
out breast cancer. Beyond these three collections, the
most co-enriched sets include C4:CGN:MORF_THPO
and MORF_EPHA7 [54], genes in the expression neigh-
borhoods of the cancer-associated genes THPO and
EPHA7, respectively; and C5:BP:SYNAPTIC TRANS-
MISSION and NERVOUS_SYSTEM_DEVELOPMENT,
genes involved in these biological processes according to
the GO database [55]. There are prominent themes here,
notably cancer and neural development and function.

Discussion

The correlations that we detected between positive se-
lection and changes in gene expression are significant,
but not strong. There are several plausible reasons for
this, beyond whatever noise exists in the expression
measurements and selection scores. It is possible, for
instance, that some expression differentiation is neutral or
even deleterious, and that some of the adaptation hap-
pened along the chimpanzee rather than human lineage.
It is also important to bear in mind that both datasets
contain only a subset of all possible genes and tissue types
over the four individuals. Additionally, several recent
studies have shown the importance of looking over
multiple tissue types to gain a clearer understanding of
important cis-regulatory effects within human popula-
tions, where eQTLs differ among or across environments
[56-58]. Including more expression data would also likely
improve the correlation between expression differences

Table 2 Functional correlations between overall differential expression and noncoding adaptation

Collection # sets r_r p(r_r) q(r_n
C3:TFT (transcription factor targets) 472 0.35 < 0.0001 < 0.0005
C2:CGP (chemical and genetic perturbations) 645 0.28 < 0.0001 < 0.0005
C7:All (immunologic signatures) 1723 0.14 < 0.0001 < 0.0005
C4:CGN (cancer gene neighborhoods) 88 0.5 0.012 0.045
C6:All (oncogenic signatures) 109 022 0.019 0.057
C4:CM (cancer modules) 87 029 0.036 0.09
C5:CC (GO cellular components) 37 033 0.14 0.27
C3:MIR (microRNA targets) 109 0.11 0.14 027
CT:All (positional gene sets) 9 017 034 0.53
H:All (hallmark gene sets) 25 0.089 0.35 0.53
C2:.CP:Reactome (Reactome gene sets) 39 0.058 04 0.55
C2:CPKEGG (KEGG gene sets) 11 -0.17 0.7 0.88
C2:CP:Other (other canonical pathways) 6 -0.49 08 0.93
C5:BP (GO biological processes) 123 —0.28 0.95 0.96
C5:MF (GO molecular functions) 44 —-041 0.96 0.96

All MSigDB collections we considered are listed except for C2:CP:BioCarta, in which no gene set contained at least 50 genes analyzed in a previous study of
adaptive noncoding changes. # sets is the number of gene sets we considered in the collection. r, is the rank correlation between rank-biserial correlations for
enrichment with differential expression (each of which is a rank-biserial correlation as in Table 1) and rank-biserial correlations for enrichment with noncoding
adaptation (each of which is likewise a rank-biserial correlation). p(r,) is the one-tailed p-value of r, via permutation test with 10,000 permutations; collections are
ordered by increasing p(r,), which reflects r,, # sets, and patterns of overlap among gene sets in the collection
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and the scans for selection in our study as well as in other,
more distal putative enhancer regions [7, 8].

Nevertheless, there are other studies that support the
idea that one can detect the effects of adaptation on cis-
regulation on human traits. A correlation between
expression divergence in other tissues and mutations in
short core promoter regions has been reported [12].
More recently, an analysis of positive selection across
the human genome using human population genomic
data (1000 Genomes Project [59]) found that signatures
of adaptation are common in regulatory regions (as
defined by open chromatin) [60]. These are signals of
more recent positive selection than were detected in
Haygood et al. [[6]], suggesting that these regulatory
regions are continuing to adapt to novel challenges and
environments, and, presumably, this correlates with
changes in gene expression.

The enrichments for differential expression between
humans and chimpanzees by cytogenetic band was
somewhat unexpected. For example, the category
C4:CGN (cancer gene neighborhoods, q-value = 0.045,
Table 2), shows up as significant in our correlations be-
tween noncoding adaptation and differential expression.
It is possible there are more global regulators of expres-
sion for these regions that differ between species. Com-
pared to the genomic regions highlighted in [37, 42, 61],
there does seem to be an overlap between these regions
and regions where segmental duplications have occurred
in the human genome. This could influence some of our
signal of positive selection due to orthology issues; how-
ever, there is previous evidence of positive selection in
regions with duplications, both in coding [42, 61] and in
regulatory sequence [37].

We also found a strong correlation between tissue spe-
cificity and shifting gene expression between species.
This makes sense in the light of pleiotropic concerns,
where genes with a greater degree of tissue specificity
can change expression pattern or levels over relatively
short evolutionary time spans.

One important question is whether there are pleio-
tropic consequences of these adaptive changes in gene
expression that have accrued during human evolution.
We find that disease pathways involved in signaling and
certain forms of cancer are enriched in the genes that
show differential expression between humans and chim-
panzees. There appears to be a substantial difference in
the frequency of epithelial derived cancers, such as
breast, ovary, and prostate between humans and non-
human primates: incidence of cancer is significantly
higher in humans compared to non-human primates in
captivity [62-65], reviewed in [66] and human fibro-
blasts also show reduced apoptotic ability as compared
to chimpanzees and other non-human primates [67].
Although much of this difference is likely driven by
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environmental and dietary factors, some of the differ-
ence may be due to genomic differences between the
species. It will take functional studies to understand how
these gene expression differences are driving the differ-
ences in organismal phenotypes between humans and
our closest relatives, and to understand how much of
the differences in gene expression we see are due to gen-
etic as opposed to environmental factors.

Conclusions

We find that adaptation in regulatory regions may have
driven many of these changes in gene expression, but
that may have also had other attendant consequences re-
lated to human disease states. In looking at changes
across tissues and evolutionary time, we see that shifting
specificities across tissues show how gene expression
can be the raw material for selection. These data present
a window into how positive selection has worked to
change gene expression between humans and chimpan-
zees at the level of larger groups of changing gene ex-
pression. These changes underlie the more obvious
changes in phenotype, but may have the important side
effect of also underling differential disease susceptibil-
ities that may not have been visible to selection.

Methods

Sample preparation and sequencing

We obtained samples of white adipose tissue, lateral
cerebellum, frontal cortex, liver, and skeletal muscle
from four male humans and four male chimpanzees.
The small sample size is due to the limited resources of
chimpanzee post-mortem tissues, all from the same indi-
vidual. Our experimental design was to match the num-
ber of individuals across the two species. All samples
were obtained through opportunistic sampling of indi-
viduals that died of causes unrelated to this research.
We obtained human samples from BioChain (Newark,
CA) and the NICHD Brain and Tissue Bank for
Developmental Disorders and non-human primate
samples from the Southwest Foundation for Biomedical
Research, and the New Iberia Research Center. We
matched samples from each individual across tissues, so
that all samples labeled, for example, “human 1” repre-
sent the same trans environment.

All brain samples from non-human primates were dis-
sected by the same researcher in order to maintain
consistency. We stored samples at —-80 °C. For more
information, see Additional file 1: Table S1.

We isolated total RNA from the samples using RNeasy
kits (Qiagen, Valencia, CA), including a DNase I treat-
ment step. Ten micrograms of RNA became the starting
material for an RNA-Seq library per sample. We con-
structed libraries using SOLiD Total RNA-Seq kits
(Ambion, Austin, TX), which yield strand-specific reads.
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Libraries were sequenced at the Duke University
Sequencing and Genomic Technologies Shared Resource
(http://genome.duke.edu/cores-and-services/sequencing-
and-genomic-technologies/). Sequencing yielded ap-
proximately 70 million 50-35 bp paired-end sequences
per library.

Sequence mapping and count analysis

We mapped sequences into the human and chimpanzee
genomes (hgl9, panTro3) using Tophat version 1.4.1
[68]. We constructed orthologous gene models using the
Primate Orthologous Exon Database, version 2 (http://
precedings.nature.com/documents/7054/version/1). We
filtered them using Ensembl (http://useast.ensembl.org/
index.html), removing homology types one2many and
many2many while retaining homology types one2one
and apparentone2one (human-chimpanzee). We also re-
moved ribosomal genes in the RPL, RPS, MRPL, and
MRPS families, which include many paralogs with un-
clear homologies.

We derived counts per gene using HT-Seq [69]. We
analyzed them using edgeR [70], defining a multi-factor
Generalized Linear Model (GLM) with tissue, species,
and species-within-tissue-interaction effects [22]. As a
score for differential expression of a gene, we used the
negative of the natural logarithm of the adjusted p-value
for the appropriate contrast of the GLM. The positional
information in Fig. 4 was plotted using the Genome
Decoration Page at NCBL

Tissue specificity analysis

We defined the specificity score of the gene for a tissue as
the square of the cosine of the angle between the vector
and the axis corresponding to the tissue [as in 6, 28]. This
measure depends on the distribution of expression over
tissues, but not the overall magnitude of expression. A
highly specific gene to one tissue has specificity scores
near 1 for this tissue and near 0 for others, whereas house-
keeping genes, for example, might be highly expressed in
all tissues, and have specificity values around 0.

Analyses of gene ontology groups and comparisons
between studies of adaptation and gene expression

We used the Molecular Signatures Database (MSigDB)
version 5.0 [30, 31]. More specifically, we used the 15
leaf collections in the tree of all 20 MSigDB collections,
with one addition. One MSigDB collection, the C2:CP
(canonical pathways) collection, is neither a leaf nor
strictly an internal node of the branching pathways,
because it includes not only the union of the
C2:CP:BioCarta, C2:CP:KEGG, and C2:CP:Reactome
collections but also 253 other gene sets. Therefore,
we treated these 253 sets as an additional leaf collec-
tion, the C2:CP:Other collection.
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As a rank-biserial correlation for enrichment of a gene
set with genes scoring high for differential expression,
either overall or per-tissue, we used the rank-biserial
correlation, r,,, over genes whose expression we mea-
sured between scores for differential expression and
membership in the set. R; measures association be-
tween an ordinal variable and a dichotomous variable
[71]. It is proportional to the standard (Pearson) correl-
ation between the ranks of the ordinal variable and any
two values, say, 0 and 1, for the dichotomous variable. It
is a linear function of the Mann-Whitney U statistic, and
a test of ry, = 0 is equivalent to a Mann-Whitney test,
which was used to test for categorical enrichment in
several previous studies of adaptive sequence changes
[6, 28, 72, 73]. An important advantage of r,, for our
purposes is that there are well established procedures for
combining it across studies [74]. We estimated the
standard error of r,,, SE(r,;,), as the standard deviation of
7 over 10,000 bootstrap replicates.

Similarly, as a rank-biserial correlation for enrichment
of a gene set with genes scoring high for adaptive se-
quence changes according to any one of three previous
studies of noncoding regions [6-8], we used the rank-
biserial correlation between scores for adaptive sequence
changes and membership in the set. As in standard
fixed-effects meta-analyses [74], we combined r,, across
studies to obtain its weighted mean, WM(ry,) = X; w;
(ra);, where w; = (1/SE(rw),)? / % (1/SE(rrb),»)2. Under
the null hypothesis (r.,); = (r); for every i and j
from 1 to n, the heterogeneity statistic Q = X; w;
((r); = WM(r))? has approximately the chi-squared
distribution with n — 1 degrees of freedom, where
the set is represented in n studies. We restricted at-
tention to sets with » > 2 and Q not significantly
different from 0 (x2_; p > 0.05). All code is available
upon request.

Functional correlations between noncoding adaptation
and gene expression

The data for noncoding adaptation (Additional file 4:
Table S4) are from Haygood et al. [5]. That was a meta-
anaylsis of adaptation in coding and noncoding DNA.
The three noncoding DNA datasets included a combin-
ation of human accelerated regions (where there are sig-
nificantly more changes on the human branch in a
highly-conserved regions in other organisms, anywhere
in the genome) [7, 8] and rapidly evolving putative cis-
regulatory regions near coding sequence (as compared
to local introns) [6]. In each survey, we mapped the
regulatory regions to the nearest genes with UniProt
[75] identifiers and then to MSigDB categories. For each
category, we computed the rank-biserial correlation, rrb,
between the score for positive selection and membership
in the category.
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What we term the functional correlation between dif-
ferential expression, either overall or per-tissue, and
noncoding adaptation for an MSigDB collection is the
rank (Spearman) correlation, r, over gene sets in the
collection; this is a correlation between enrichment
rank-biserial correlations for differential expression (5%
FDR g-value <0.05) and enrichment rank-biserial corre-
lations for noncoding adaptation, restricting attention to
sets containing at least 50 genes whose expression we
measured. Additionally, noncoding categories have to be
represented in at least two of the three previous studies
of noncoding regions, with rank-biserial correlations for
adaptation not significantly heterogeneous across these
studies, and containing at least 50 genes analyzed on the
average over these studies.

Gene sets overlap, so the enrichment rank-biserial cor-
relations of different sets are not necessarily independent,
which tends to inflate the correlations. Standard permuta-
tion testing, permuting rank-biserial correlations among
sets within a collection, would be inappropriate. There-
fore, instead, we permuted scores for differential expres-
sion and for adaptive sequence changes among genes, and
for each permutation, we recomputed every enrichment
rank-biserial correlation. These rank-biserial correlations
represent a null hypothesis of no association between dif-
ferential expression or adaptive sequence changes and
membership in any gene set. Nonetheless, for any given
permutation, they may exhibit correlations, not only by
chance but also due to overlap among sets, which is pre-
served in their construction. For each collection, we esti-
mated the one-tailed p-value of r, p(r.), as the fraction of
10,000 permutation replicates in which the replicate r, for
the collection was no less than the observed r, for the col-
lection or as <0.0001 if there were no such replicates. In
Table 2 (and Additional file 5: Tables S5a—S5f), we list not
only p-values but also g-values, which adjust for multiple
comparisons [76], although we are performing correla-
tions on already adjusted g-values.

Additional files

Additional file 1: Table S1. Details of individuals and samples.
(XLSX 36 kb)

Additional file 2: Table S2. Functions of genes expressed differentially
overall MSigDB gene sets. These sets are listed from most to least
enriched with genes scoring high for differential expression between
humans and chimpanzees overall. Collection is the MSigDB collection
containing the set (one of 16). # genes is the number of genes whose
expression we measured in the set (at least 50). rrb is the rank-biserial
correlation between scores for differential expression and membership in
the set; sets are ordered by decreasing rrb. SE(rrb) is the standard error of
rrb via bootstrapping with 10,000 replicates. (XLSX 1260 kb)

Additional file 3: Table S3. A list of KEGG functions of overall differentially
expressed genes. This list is restricted to KEGG pathways (i.e, MSigDB's
C2:CP:KEGG collection) and restricted to sets containing at least 50 genes.
(XLSX 13 kb)
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Additional file 4: Table S4. Genic correlations between differential
expression and noncoding adaptation. Correlations are over genes whose
expression we measured that were also analyzed in the studies of
noncoding regions by Haygood et al. [6], Pollard et al. [7], and Prabhakar
et al. [8]. # genes is the number of genes with appropriate scores. rr is
the rank correlation between scores for differential expression between
humans and chimpanzees, either overall or per-tissue, and scores for
adaptive sequence changes during human or chimpanzee evolution,
according to a study of noncoding regions. p(rr) is the one-tailed p-value
of rr via permutation test with 10,000 permutations. (XLSX 49 kb)

Additional file 5: Table S5. Functional correlations between differential
expression overall and noncoding adaptation. All MSigDB collections we
considered are listed except for C2:CP:BioCarta, in which no gene set
contained at least 50 genes analyzed in a previous study of adaptive
noncoding changes. # sets is the number of gene sets we considered in
the collection. rr is the rank correlation between rank-biserial correlations
for enrichment with differential expression and rank-biserial correlations
for enrichment with noncoding adaptation. p(rr) is the one-tailed p-value
of rr via permutation test with 10,000 permutations; collections are
ordered by increasing p(rr), which reflects rr, # sets, and patterns of
overlap among gene sets in the collection. (XLSX 63 kb)
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FDR: False discovery rate; GLM: Generalized linear model; MSigDB: Molecular
signatures database
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