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Abstract

Background: Genomic studies such as genome-wide association and genomic selection require genome-wide
genotype data. All existing technologies used to create these data result in missing genotypes, which are often then
inferred using genotype imputation software. However, existing imputation methods most often make use only of
genotypes that are successfully inferred after having passed a certain read depth threshold. Because of this, any read
information for genotypes that did not pass the threshold, and were thus set to missing, is ignored. Most genomic
studies also choose read depth thresholds and quality filters without investigating their effects on the size and quality
of the resulting genotype data. Moreover, almost all genotype imputation methods require ordered markers and are
therefore of limited utility in non-model organisms.

Results: Here we introduce LinkImputeR, a software program that exploits the read count information that is
normally ignored, and makes use of all available DNA sequence information for the purposes of genotype calling and
imputation. It is specifically designed for non-model organisms since it requires neither ordered markers nor a
reference panel of genotypes. Using next-generation DNA sequence (NGS) data from apple, cannabis and grape, we
quantify the effect of varying read count and missingness thresholds on the quantity and quality of genotypes
generated from LinkImputeR. We demonstrate that LinkImputeR can increase the number of genotype calls by more
than an order of magnitude, can improve genotyping accuracy by several percent and can thus improve the power of
downstream analyses. Moreover, we show that the effects of quality and read depth filters can differ substantially
between data sets and should therefore be investigated on a per-study basis.

Conclusions: By exploiting DNA sequence data that is normally ignored during genotype calling and imputation,
LinkImputeR can significantly improve both the quantity and quality of genotype data generated from NGS
technologies. It enables the user to quickly and easily examine the effects of varying thresholds and filters on the
number and quality of the resulting genotype calls. In this manner, users can decide on thresholds that are most
suitable for their purposes. We show that LinkImputeR can significantly augment the value and utility of NGS data sets,
especially in non-model organisms with poor genomic resources.
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Background
A primary goal in current genomic research is to establish
relationships between genotypes and phenotypes. Among
other uses, establishing phenotype-genotype associations
can improve our understanding of human disease (e.g. [1])
and accelerate the breeding of agriculturally important
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crops [2, 3]. The availability of large, high quality genome-
wide genotype data is required for these studies.
All existing methods for acquiring genome-wide geno-

type data using next-generation DNA sequencing, includ-
ing RADseq [4, 5], Genotyping-by-Sequencing (GBS) [6]
and whole-genome sequencing [7], result in a final data set
containing missing genotypes. Especially in non-model
organisms, methods like GBS and RADseq are becom-
ing increasingly popular because they routinely enable
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thousands of genetic markers to be discovered and geno-
typed across a large number of samples in a single step
(e.g. [8]). However, these methods also result in signifi-
cant amounts of missing genotype data when compared to
previous technologies like SNP arrays [9].
Nearly all studies that make use of genome-wide geno-

type data first fill in the missing genotypes using geno-
type imputation [10]. By inferring missing genotypes, not
only does imputation result in a more complete table
of genotype data, but it can also improve the power of
downstream analyses, such as Genome-Wide Association
Studies (GWAS) [11].
Most existing genotype imputation methods, includ-

ing MaCH [12], fastPhase [13], IMPUTE2 [14] and our
existing method, LinkImpute [15], use patterns from
known genotypes to impute missing genotypes. These
known genotypes are usually inferred prior to imputa-
tion using separate genotype calling software such as
GATK [16], SAMtools [17, 18] or TASSEL [19]. These
pipelines only infer a genotype when, due to the quan-
tity and quality of the sequence reads, there is sufficient
confidence in the inferred genotype (e.g. [8]). In cases
where confidence in the genotype call is not sufficient,
a genotype is not inferred, and the genotype is set to
missing. Thus, although genotypes set to missing may
have supporting sequence reads that provide some infor-
mation about the correct genotype, this information is
ignored and excluded from down-stream analyses, includ-
ing imputation.
It has been demonstrated that the use of sequence

reads can improve imputation accuracy and the exploita-
tion of this information has been incorporated into
several imputation packages including Beagle [20], find-
hap [21] and STITCH [22]. However, all of these soft-
ware packages require markers to be ordered and are
thus restricted to organisms with high-quality reference
genomes.
Here we introduce LinkImputeR, a novel imputation

method that exploits sequence read information to per-
form both genotype calling and imputation. Like its pre-
decessor, LinkImpute [15], it is designed for non-model
organisms since it requires neither ordered markers nor
a reference panel of known genotypes. Most importantly,
LinkImputeR enables the user to investigate the effects
of missingness and read depth thresholds on the size
and accuracy of the resulting genotype table. We pro-
vide several metrics supporting the quality and speed of
our algorithm using genome-wide SNP data from apple,
cannabis and grape.

Implementation
In order to incorporate read count information into
imputation, LinkImputerR first infers genotypes from
read counts using a simple likelihood calculation. It then

uses the LD-kNNi algorithm [15] to impute the genotypes
that fall below a chosen read count threshold. Finally,
LinkImputeR combines information from the likelihood
calculation and imputation result to produce a called
genotype. LinkImputeR optimizes the parameters used in
each of these steps to maximize accuracy. Each of these
steps is described in more detail below.
Each step produces a probability for each of the three

possible genotypes at a bi-allelic marker in a diploid
organism which we refer to as the “inferred probabili-
ties”, the “imputed probabilities” and the “called proba-
bilities”, respectively. We refer to the genotype with the
greatest probability in each case as the “inferred geno-
type”, the “imputed genotype” and the “called genotype”,
respectively.
In this work we only consider biallelic markers, although

themethods introduced here could be generalized to work
with multiallelic SNPs. Whenever we refer to linkage dis-
equilibrium (LD) we are referring to LD calculated using
a simple r2 correlation.

Inferring genotypes
We use the calculation from TASSEL 5 [19] to infer geno-
types from read counts. For each genotype, g ∈ {0, 1, 2},
we calculate the likelihood, Lg , of seeing the observed read
counts if that is the true genotype:

L0 = f (rR; rR + rA, 1 − e) (1)
L1 = f (rR; rR + rA, 0.5) (2)
L2 = f (rA; rR + rA, 1 − e) (3)

where rR is the number of reference reads, rA is the num-
ber of alternative reads and e is the error rate. f (k; n, p) is
the probability mass function of the binomial distribution.
For this study we set the error rate, e, to 0.01, the same as
TASSEL 5.
From the likelihoods we calculate the probability of each

genotype, png :

pnq = Lg
L0 + L1 + L2

(4)

Imputing genotypes
In our previous paper [15] we introduced LD-kNN Impu-
tation. Here we modify this algorithm to produce a prob-
ability for each genotype, rather than only the most likely
genotype. We infer genotypes for those with a read depth
greater than a threshold, d, and then use these to impute
the remaining genotypes.
To impute a genotype at SNP a in sample b, LD-kNNi

first uses the l SNPs most in LD with the SNP to be
imputed in order to calculate a distance from sample b to
every other sample for SNP a (see [15] for full details of
this step). The algorithm proceeds by picking the k near-
est neighbours to b that have an inferred genotype at SNP
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a and then scoring each of the possible genotypes, cg , as a
weighted count of these genotypes:

cg =
∑

s∈N

1
dl(b, s)

I(h(s, a) = g) (5)

where N is the set of k nearest neighbours and dl(b, s) is
the distance between the sample b and a nearest neigh-
bour s. h(s, a) is the known genotype at SNP a in sample
s and I(h(s, a) = g) is an indicator function that takes the
value 1 if h(s, a) = g and 0 otherwise.
From the score of each genotype, we calculate the impu-

tation probability, pmg , as:

pmg = cg
c0 + c1 + c2

(6)

As in LinkImpute, LinkImputeR optimizes the values of
k and l so as to obtain the greatest accuracy. Details on
accuracy estimation are below.

Calling genotypes
We make final genotype calls by combining the inferred
and imputed genotype probabilities. We calculate the
called probability of genotype g, pcg , as:

pcg = wpmg + (1 − w)png (7)

where w is a weighting factor controlling for how much
the inferred and imputed genotypes should be weighted.
wwill depend on the sample. For example, if the data were
collected from a large number of closely related samples,
genotype accuracy may be higher if the imputation proba-
bilities were weighted, higher since the imputation is likely
of higher quality.
LinkImputeR optimizes the value of w by testing values

between 0 and 1 in increments of 0.01 in order to obtain
the greatest accuracy.When optimizing the value of w, the
set of masked SNPs employed is different from that used
to optimize the values of k and l used in the imputation
step. Investigation of the effect of w showed that the effect
on accuracy was not unimodal and as such more efficient
search algorithms may not find the true optimum (data
not shown).
We only impute SNPs with fewer reads than the thresh-

old, d, and therefore combining inferred and imputed
probabilities has no effect for genotypes with more reads
than the threshold.

Accuracy estimation
To estimate accuracy we mask read counts from ‘known’
genotypes (10 000 for apple and cannabis; 5 000 for grape)
at random from across the dataset without replacement.
We consider a genotype to be known if it has a read
depth ≥ 30, in which case its known genotype is also the

inferred genotype using the abovemethodology. Accuracy
is then defined as the proportion of masked genotypes
where the ‘known’ and called genotypes are the same.
To ensure that the read depth distribution of the geno-

types we mask reflects the read depth distribution in the
data set, we perform the following sampling procedure.
First, we calculate the distribution of read depths for geno-
types with a read depth ≤ da . This depth threshold, da,
is different from the depth used elsewhere in this study,
d, to allow a fair comparison between different values of
d. For example, if we compare results from d = 2 to
d = 8, we need to compare our accuracy for genotypes
with read depths up to and including 8. From the dis-
tribution, we draw a depth at random. We uniformally
sample reads to be removed at random until this depth
is achieved for the masked genotype. We repeat this pro-
cess for each masked genotype, ensuring that the read
depth distribution of the genotypes used in our accu-
racy calculation will be the same as in the data set as a
whole.We thenmask and impute each of the chosen geno-
types individually, keeping all the other chosen genotypes
unmasked.
For simplicity, when calling genotypes, we assume that

genotypes with a read depth > da are inferred correctly
when calculating accuracy. For this study we set da to 8 as
this is the maximum value of d we test. We reason that,
at read depths greater than this threshold, the inferred
genotype is always more likely to be the correct genotype
when different from the imputed genotype. However, it
may be that the inferred genotype is incorrect, so we use
a much higher threshold (30 in this case) when choosing
genotypes to mask.
The accuracies reported by LinkImputeR are calculated

using a different, test, set of SNPs to the training sets used
to optimise k/l and w. Since the datasets being called are
different for every case different test and training sets are
used.
It is worth noting that the SNPs used to calculate

accuracies are different from the SNPs used to opti-
mize k, l and w. Also, although we report accuracy
here, we also calculate the correlation between imputed
and actual genotypes where both are centred to alleviate
the effects of MAF [23]. LinkImputeR reports both the
accuracy and correlation regardless of which is used for
optimization.

Data
Here we analyze apple [24] and grape [25] GBS data from
our previous study [15] and also include GBS data from
cannabis [26].
We use the TASSEL 5 pipeline [19] to generate SNPs

from all three datasets since TASSEL 5 infers genotypes
using the same method as we do in this study. We use
default TASSEL 5 parameters throughout and use bwa
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[27] as the aligner using the parameters recommended
in the TASSEL documentation. The reference genomes
used were theMalus domestica reference genome version
1.0p [28], canSat3 C. sativa reference genome assembly
[29] and the 12X V. vinifera reference genome [30, 31].
It is likely that 10–20% of SNPs in the apple data set
have the wrong physical coordinates because of the
poor quality of the apple reference genome [8] and the
cannabis genome sequence employed here remains largely
unassembled. LinkImputeR is well-suited for these cases
since it does not require ordered genetic markers. Simi-
larly, it is well suited for use in cases where SNPs are called
without the use of a reference genome (e.g. [32]). Table 1
summarizes the number of SNPs and samples for each
dataset.

LinkImputeR
As well as performing the inference, imputation and call-
ing steps described above, LinkImputerR also allows the
user to examine the effects of various read depth thresh-
olds, d, and additional data quality filters. It will then
calculate accuracy for each combination of filters and read
depth.
The filters implemented in LinkImputerR are minor

allele frequency, missingness by both SNP and sample and
deviation from Hardy-Weinberg equilibrium using a sim-
plified version of the method from [33]. Further details on
the implementation of each of these filters can be found in
Additional file 1.
Once accuracy has been calculated for each combi-

nation of filters and depth, a summary file is produced
reporting the accuracy as well as the number of SNPs and
samples for each case. A more detailed output can also be
requested. The user can apply one, or more, of these cases
to their dataset
For this study, we first applied a MAF filter of 0.05 using

a read depth threshold of 8 and aHardy-Weinberg equilib-
rium test with an error rate of 0.01 and a significance level
of 0.01 corrected for multiple testing using the Bonferroni
correction.
LinkImputeR was run on the Glooscap cluster operated

by ACENET (http://www.ace-net.ca/). This cluster con-
sists of Dual-core, Quad-core and 8-core AMD Opterons
with 32, 64 or 128 GB of RAM. All machines run Red Hat
Enterprise Linux 6.4.

Table 1 Properties of the datasets before any filtering

Dataset Number of SNPs Number of samples Accuracy run time

Apple 660 214 678 6 h 48 m

Cannabis 444 821 192 8 h 43 m

Grape 830 833 96 13 h 32 m

The run time to calculate accuracy for all the cases considered is also listed. 10 000
SNPs were masked for the apple and cannabis datasets, 5 000 for the grape dataset

Read depth andmissingness thresholds
To investigate the effect of read depth and missingness
thresholds on imputation accuracy, we tested read depth
thresholds between 2 and 8 and missingness thresholds
between 0.1 and 0.7 in increments of 0.1. We set sample
and SNP missingness to be the same for each case and
filtered for SNP missingness before filtering for sample
missingness. A genotype is considered non-missing, for
the purpose of the missingness filters, if it has more reads
than the read depth, d. For genotypes with a read depth
> d, we do not calculate an imputed genotype but rather
assign it the inferred genotype. Due to the small size of the
resulting dataset it was not possible to test a missingness
value of 0.1 on the grape dataset.
For the remainder of this paper we will refer to a single

case using the format read depth threshold/missingness
threshold. For example, 8/0.2 refers to the case where the
read depth threshold is set to 8 and both SNP and sample
missingness are set to 0.2.

Genome-wide association study (GWAS)
We aimed to ensure that using low read counts and high
levels of missingness would not result in spurious results
when performing genetic mapping. To investigate this, we
perform a GWAS on apple skin color for four extreme
cases (2/0.2, 2/0.7, 8/0.2 and 8/0.7).
We used publicly available phenotype data for skin color

intensity in Malus domestica to perform GWAS. Pheno-
type data were downloaded from the USDA Germplasm
Resources Information Network (GRIN) website [34].
Skin color was measured as the percentage of overcolor
(generally red) on a fruit. We retained a single aver-
age value for clonally related accessions and combined
measurements across years as in [24].
Genome-wide association was performed using

EMMAX [35]. The k-matrix was generated in EMMAX
using the default command given in the documentation.
We corrected for relatedness using the k-matrix without
any additional covariates.

Results
Read depth andmissingness thresholds
We first calculated accuracy for each of the different
cases, i.e. combinations of read depth and missingness
thresholds, for all three datasets. Displaying every possible
case graphically resulted in plots that were too cumber-
some to interpret. Thus, for each dataset, we include
only “good cases”, where there is no other case with at
least the same number of SNPs and samples and a higher
accuracy.
Figure 1 summarizes the good cases for the apple

dataset. Cases with a combination of high read depth
threshold and low missingness threshold generally give
the highest accuracy, but also result in the lowest number

http://www.ace-net.ca/
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Fig. 1 Number of SNPs, number of samples and accuracy for every good case for the apple dataset. A good case is defined as one where there is no
other case with at least the same number of SNPs and samples and a higher accuracy. Points are marked labelled by with the read depth and
missingness threshold used, e.g. 8/0.2 means a read depth of 8 and a missingness threshold of 0.2

of SNPs and samples. By relaxing the read depth and
missingness thresholds, larger numbers of SNPs and sam-
ples are retained, however accuracy decreases. Of the 13
good cases, 4 have a missingness threshold of 0.7, while
one has a missingness threshold of 0.1. Results using
correlation rather than accuracy show a similar pattern
(Additional file 2).
Additional file 3 shows the equivalent figure for the

cannabis dataset. The same trade-off occurs in both
cannabis and apple: as read depth threshold and miss-
ingness thresholds are relaxed, accuracy decreases while
the number of SNPs and samples retained increases. In
this instance, of the twenty good cases, four have a miss-
ingness threshold of 0.7 and two have a threshold of 0.2.
The equivalent figure for the grape dataset is visible in
Additional file 4. As in apple and cannabis, when the
read depth threshold decreases, the number of SNPs and
samples increases and accuracy decreases. All seven good
cases have a missingness threshold of 0.7.

For the remainder of this paper, we focus on missingi-
ness levels of 0.2 and 0.7 and compare results between
these two extreme missingness levels. We chose a high
missingness level of 0.7 since it frequently occurred in the
groups of good cases and because it is unlikely that users
will want to include SNPs or samples with >70% missing
data when calling and imputing SNPs. We chose a miss-
ingness level of 0.2 for comparison because it commonly
occurs in the group of best cases in the apple dataset,
and it is a frequently chosen threshold in other studies
(e.g. [8, 36]). We did not include 0.1 due to the results
in apple and grape that made the resulting figures diffi-
cult to interpret. Full results for all cases are in Additional
files 5, 6 and 7.

Final dataset size
We find that the filters chosen have significant effects
on the resulting number of SNPs and samples retained
for downstream analyses. In both the cannabis and apple
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datasets, the case with the largest number of SNPs has
approximately 12 times the number of SNPs than the
case with the smallest number of SNPs. For the grape
dataset, there is a 162 fold difference in number of SNPs
between the most stringent and lenient genomic filters
examined.
The number of samples remaining after applying the

filters presents a more complicated pattern than the
number of SNPs, likely due to the use of the SNP
missingness filter prior to applying sample thresholds.
The difference between the number of samples retained
at a missingness-by-sample threshold of 0.7 was only
1.13, 1.23 and 1.20 times higher than the missing-
ness threshold of 0.2 for apple, cannabis and grape,
respectively.

Accuracy
The genotype calling accuracy behaved similarly across
missingness thresholds in both the cannabis and apple
datasets. In both cases, a missingness threshold of
0.2 results in a higher accuracy than a threshold of
0.7. This result is reversed in grape where a thresh-
old of 0.7 has the highest accuracy. For all three
datasets, no consistent result is seen for read depth
threshold. The result from the grape dataset is consis-
tent with that previously reported for soybean [9] where
allowing SNPs and samples with higher levels of miss-
ingness did not result in a decrease in genotype calling
accuracy.
As the result from the grape dataset is not in line with

the results from the apple and cannabis datasets, we inves-
tigated how the grape dataset may differ from the other
two datasets in a way that could affect calling accuracy.
Additional file 8 shows the average LD of the SNP of
interest with each of the twenty SNPs in highest LD with
it, which is a crucial value likely to affect the calling
accuracy. Indeed, the profile for the grape dataset dif-
fers rather dramatically from the profile of the other two
datasets.

Read count effect
Figure 2 summarizes the accuracy obtained by sim-
ply inferring genotypes (regardless of read depth), by
imputing genotypes with fewer reads than the threshold,
and by calling genotypes by combining the inferred and
imputed probabilities. It is worth noting that, due to the
way the inferred and imputed results are combined, it is
unlikely, within the bounds of sampling error, that the
called accuracy is less than either the inferred or imputed
accuracies. This is because it is possible for the called
genotype to be based entirely on the inferred (w = 1)
or imputed (w = 0) genotype if this is the optimal solu-
tion. Again results using correlation show a similar pattern
(Additional file 9).

Fig. 2 Inference (green), imputation (purple) and calling accuracy (red)
for each dataset. Results are shown for missingness thresholds of 0.2
and 0.7 and for read depth thresholds from 2 to 8

For the apple and cannabis datasets the called geno-
types show a noticeable increase in accuracy over either
the imputed or inferred genotypes. This increase is more
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noticeable at higher read depths with increases of several
percent at a read depth of 8 (apple - 8/0.2 = 2.9%, apple -
8/0.7 = 2.5%, cannabis - 8/0.2 = 3.4%, cannabis - 8/0.7 =
3.6%).
Results for grape are different than for the other datasets

with imputed genotypes having nearly identical accuracy
to the called genotypes. The likely cause of this differ-
ence is the different LD profile in grape discussed pre-
viously (Additional file 8). Finding SNPs in high LD is
a key element of LD-kNNi so it is not surprising that
different LD profiles would have a significant effect on
imputation accuracy. For the other levels of missingness,
results are similar across all three datasets (Additional
files 10, 11 and 12).

GWAS
Figure 3 shows the results of a GWAS for apple skin
color on chromosome 9 across four different combina-
tions of missingness and depth thresholds. As the num-
ber of total SNPs included in the analysis increases, the
number of “hits” (i.e. SNPs with a significant associ-
ation with the phenotype) also increases. These addi-
tional SNPs are all close to the known locus for apple
skin color around position 32.8 MB on Chromosome
9 [8, 37].
Figure 3 suggests that use of a greater number of SNPs

and thus an increase in the use of imputation, does
not result in spurious associations for apple skin color.
However, the GWAS results across all chromosomes

Fig. 3 Genome-wide association of apple skin color. Results are shown for chromosome 9 and the known locus for skin color at 32.8 Mb is indicated
with a dotted red vertical line. The dotted black horizontal line indicates the genome-wide Bonferonni-corrected significance threshold at P = 0.05
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(Additional file 13) show a possible spurious hit on
chromosome 3 for skin color, where no locus for skin
color is known to exist. Further investigation of this hit
revealed that it likely resulted from a misassembled ref-
erence genome sequence: the SNPs involved are in high
LD with the SNPs on chromosome 9 that are close to
the known locus and in low LD with nearby SNPs on
chromosome 3 (Additional file 14). Past studies have
found between 10–20% SNPs are incorrectly anchored
to the apple reference genome used in the present
study [8, 38].

LinkImputeR performance
Table 1 shows the time required to compute the accu-
racy across all read depth and missingness thresholds for
all three datasets. The observed values varied between
approximately 6.8 h for apple and 13.5 h for grape.
Figure 4 shows the time required to call the complete

dataset for each case. Run time varies between 2 min
(cannabis – 8/0.2) and 17 h (grape – 2/0.7). Run time is
under an hour and a half for every apple and cannabis case
examined. The relatively slow runtime of grape is likely
due to the relatively large number of imputed SNPs.
The core imputation algorithm of LinkImputeR has a

run time that scales with the square of both the number
of SNPs and the number of samples. However, due to the
other parameters involved, for example the effect of the
filters on the dataset or the number of neighbours used in
the imputation algorithm, run time is likely to be variable
even between datasets with similar numbers of SNPs and
samples.
Direct comparison with other imputation methods is

difficult as LinkImputeR performs steps that are normally
carried out before imputation. In the cases reported here,
it filters for missingness, infers and imputes genotypes.
However run times compare favorably to those reported
for LinkImpute and Beagle [15].

Discussion
To call genotypes from the read counts generated by NGS,
a read depth threshold is needed below which we cannot
confidently call a genotype. Most studies use a threshold
on the number of reads, although there is no consensus
on what the threshold should be. For example, previous
work on apple required a minimum read depth of 6 [8],
cannabis used a depth of 10 [26], while work on alfalfa
used a threshold of 30 [39].
NGS also produces data with a large amount of miss-

ing data. It is standard to remove samples or SNPs with a
large amount of missing data, however there is no consen-
sus on what missingness thresholds should be used. For
example, previous work on cannabis and apple filtered for
SNPs with greater than 20% missingness by SNP [8, 26],
while work on sorghum filtered SNPs with more than

40% missing data [40]. Some efforts have been made to
reduce the amount of missing data from GBS using spe-
cific combinations of restriction enzymes [41], but even
highly optimized assays will produce significant amounts
of missing data in the resulting genome-wide genotype
data.
A previous study by Torkamaneh and Belzile [9] investi-

gated the effect of missing data thresholds on imputation.
However, this work was performed on a single species
and exploited a reference panel of genotypes for the pur-
poses of imputation. Reference panels are not available for
most species including those studied here. LinkImputeR
also offers the advantage of not requiring a high qual-
ity reference genome, making it suitable for non-model
organisms.
The desired quality and size of a genome-wide genotype

data set will differ according to the type of analysis to be
performed, the genetics of the organism under study and
the preferences of the researcher. For some downstream
analyses, a large number of low quality markers may
be preferred, whereas a smaller number of high-quality
markers may be more important in other cases. Cur-
rently, there is no rapid and simple way to study the effect
of different thresholds on dataset size and imputation
accuracy without repeating the entire filtering and impu-
tation pipeline. With large datasets, this process would be
prohibitively time consuming.
Using LinkImputeR, we compare three datasets and find

that it is difficult to generalize across organisms what fil-
ters should be used before imputation. For both the apple
and cannabis datasets, imputation wasmost accurate after
a low missingness threshold filter was applied, but the
reverse was true for grape (Figs. 1 and 2, Additional files 3
and 4). The contrasting behavior between datasets is likely
due to the different LD profiles of the organisms studied
here (Additional file 8). An additional complication when
deciding on the desired size and quality of the resulting
genotype data is that different downstream analyses may
have different requirements.
LinkImputeR allows for the effects of different thresh-

olds on the quality and size of a genotype table to be
calculated quickly (Table 1) and then allows the user
to select whatever thresholds they find most suitable
for their purposes (Fig. 2). After selecting thresholds,
the process of imputation in LinkImputeR proceeds at a
speed that is comparable to existing algorithms. More-
over, the results of performing a GWAS (Fig. 3, Additional
files 13 and 14) suggest that, even on datasets with
high levels of missingness, imputation is not introduc-
ing spurious genotype-phenotype associations. In fact,
we anticipate that in many applications, imputing large
numbers of genotypes will enable more precise localiza-
tion of causal loci by enabling an increase in mapping
resolution.
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Fig. 4 Accuracy, number of SNPs, number of samples and imputation run-time for each dataset. Results are shown for missingness thresholds of 0.2
(dotted line) and 0.7 (solid line) and for read depth thresholds from 2 to 8

Incorporating read depth information often improves
the performance of LinkImputeR (Fig. 4, Additional files
10, 11 and 12). The effect of improvement depends cru-
cially on the read depth threshold implemented: the effect
is most noticeable at high read depth thresholds. The rea-
son for this observation lies in the difference between
the information about the true genotype contained in
the reads used to infer the genotype versus the informa-
tion from other samples used to impute the genotype.
For example, for genotypes with a read count above the
read depth threshold, we simply used the inferred geno-
type. Only genotypes with a number of supporting reads
falling below the read depth threshold were called using
a weighted combination of the inferred and imputed

probabilities. Since genotypes with a small number of
supporting reads provide only a small amount of informa-
tion about the true genotype, we observe no significant
increase in accuracy when the read depth threshold is
low. The increase in accuracy afforded by LinkImputeR is
therefore more significant when the read depth threshold
is higher.
LinkImputeR allows optimization based on correlation

rather than on accuracy. A similar pattern of results is
found using both methods (Figs. 1 and 2, Additional files
2 and 9).
While LinkImputeR provides users with the ability to

investigate the effects of various thresholds on the accu-
racy and size of their genotype data, it does not implement
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a fully probabilistic algorithm in its current form. Also,
LinkImputeR can currently be applied only to bi-allelic
markers. These two limitations warrant further investi-
gation since overcoming them promises to improve even
further the number and quality of genotypes that can be
generated from NGS technologies.

Conclusions
All existing genotyping methods produce missing geno-
type data and filling in these missing genotypes via impu-
tation is a crucial step in nearly all genomic studies. Most
existing genomic studies use arbitrary quality and read
depth thresholds without investigating how these filters
affect the quality and size of the resulting genotype data.
We have shown that the effect of these filters can be signif-
icant and can vary considerably between sets of samples
with varying degrees of genetic diversity, LD and popula-
tion structure. Using LinkImputeR, researchers can now
investigate a range of quality thresholds prior to imputa-
tion and determine what set of parameters best suit their
research needs. In addition, LinkImputeR exploits read
count information that is usually ignored, which increases
the accuracy of the resulting genotype data. Thus, LinkIm-
puteR is a valuable tool for generating large, high-quality
genome-wide genotype data, especially from non-model
organisms.

Additional files

Additional file 1: Filters implemented in LinkImputeR. (DOCX 9 kb)

Additional file 2: Number of SNPs, number of samples and correlation for
every good case for the apple dataset. A good case is defined as one where
there is no other case with at least the same number of SNPs and samples
and a higher correlation. Points are marked by the read depth and
missingness threshold used, e.g. 8/0.2 means a read depth of 8 and a
missingness threshold of 0.2. (TIF 371 kb)

Additional file 3: Number of SNPs, number of samples and accuracy for
every good case for the cannabis dataset. A good case is defined as one
where there is no other case with at least the same number of SNPs and
samples and a higher accuracy. Points are marked by the read depth and
missingness threshold used, e.g. 8/0.2 means a read depth of 8 and a
missingness threshold of 0.2. (TIF 356 kb)

Additional file 4: Number of SNPs, number of samples and accuracy for
every good case for the grape dataset. A good case is defined as one
where there is no other case with at least the same number of SNPs and
samples and a higher accuracy. Points are marked by the read depth and
missingness threshold used, e.g. 8/0.2 means a read depth of 8 and a
missingness threshold of 0.2. (TIF 346 kb)

Additional file 5: Full apple results. (DOCX 13 kb)

Additional file 6: Full cannabis results. (DOCX 13 kb)

Additional file 7: Full grape results. (DOCX 11 kb)

Additional file 8: LD profiles for two cases for each of the three datasets.
SNPs are ranked according to LD, with the SNP most in LD with the
imputed SNP ranked one. Average LD is the average, across the whole
dataset, of the SNP of interest and the ranked SNP. (TIF 350 kb)

Additional file 9: Inference (green), imputation (purple) and calling
correlation (red) for each dataset. Results are shown for missingness
thresholds of 0.2 and 0.7 and for read depth thresholds from 2 to 8.
(TIF 697 kb)

Additional file 10: Inference, imputation and calling accuracy for the
apple dataset for each case. (TIF 906 kb)

Additional file 11: Inference, imputation and calling accuracy for the
cannabis dataset for each case. (TIF 917 kb)

Additional file 12: Inference, imputation and calling accuracy for the
grape dataset for each case. (TIF 832 kb)

Additional file 13: Manhattan plot of GWAS results for apple skin color
from four different cases in the apple dataset. Each dot represents a SNP
and the strength of its association with skin color is indicated as its position
along the Y axis. The horizontal dotted line represents the Bonferonni-
corrected P value significance threshold. Each case is indicated above the
plot, with the read depth and missingness thresholds (e.g. 8/0.2), followed
by the number of SNPs included in the anlaysis in parantheses. (TIF 897 kb)

Additional file 14: Genome-wide association of apple skin color using
genotypes called with a read depth of 2 and a missingness of 0.7. The
dotted black horizontal line indicates the genome-wide
Bonferonni-corrected significance threshold at P = 0.05. The vertical dotted
red line shows the location of a possible spurious hit introduced by
imputation while red dots show the locations of the 50 SNPs in highest LD
with that hit (calculated with unimputed data). Thirty seven of these 50
SNPs are on chromosome 9 and are clustered around the known causal
locus at position 32.8 Mb. Only two of these SNPs are on the same
chromosome as the possible spurious hit and both are nominally within 45
base pairs of it. These observations suggest that the signal on chromosome
3 is due to misassembly of the reference genome, i.e. these SNPs are
actually located on chromosome 9 but are anchored incorrectly due to
reference genome error. (TIF 254 kb)
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