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Abstract

Background: Long read technologies have revolutionized de novo genome assembly by generating contigs orders
of magnitude longer than that of short read assemblies. Although assembly contiguity has increased, it usually does
not reconstruct a full chromosome or an arm of the chromosome, resulting in an unfinished chromosome level
assembly. To increase the contiguity of the assembly to the chromosome level, different strategies are used which
exploit long range contact information between chromosomes in the genome.

Methods: We develop a scalable and computationally efficient scaffolding method that can boost the assembly
contiguity to a large extent using genome-wide chromatin interaction data such as Hi-C.

Results: we demonstrate an algorithm that uses Hi-C data for longer-range scaffolding of de novo long read genome
assemblies. We tested our methods on the human and goat genome assemblies. We compare our scaffolds with the
scaffolds generated by LACHESIS based on various metrics.

Conclusion: Our new algorithm SALSA produces more accurate scaffolds compared to the existing state of the art
method LACHESIS.
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Background
The advent of massively parallel sequencing technologies
has made the generation of billions of reads possible at
a very low-cost per sequenced base. Despite the progress
made in de novo assembly algorithms, quality of short
read assemblies is far from what is necessary for effec-
tive further analysis due to the fundamental limit - the
read length is shorter than repeat lengths for the major-
ity of repeat classes [1, 2]. For example, short read de novo
assemblies of the human genome are highly fragmented
compared to the chromosomes of the H.sapiens reference
[3, 4]. Thus, high throughput sequencing technology has
reached a point where increasing sequencing coverage of
short reads does not significantly improve assembly qual-
ity. Recent advances in single-molecule sequencing tech-
nologies have provided reads almost 100 times longer than
second generation methods [5]. Most prominently, Pacific
Biosciences’ single molecule real time (SMRT) sequenc-
ing delivers reads of lengths up to 50 Kbp [6] whereas
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Oxford Nanopore’s nanopore sequencing can deliver read
lengths greater than 10 Kbp [7]. Since these reads are
likely to be longer than most common repeats, they dras-
tically reduce the complexity caused by repeats during
the assembly process. However, such long reads suffer
from low accuracy which requires new algorithms for
their assembly. It has been shown that SMRT long reads
follow a random error model [8, 9] , due to which near
perfect assembly is possible despite the high error rate
[10]. Hence by sampling the genome at sufficient coverage,
SMRT sequencing has been used to produce assemblies
of unprecedented contiguity [11–14]. Although long read
technologies have made the resolution of highly repeti-
tive regions possible, the contigs generated from long read
assembly do not always span a complete chromosome or
even an arm of the chromosome. To get chromosome
scale scaffolds, various strategies have been explored to
increase the contiguity of de novo genome assemblies.
Some of these strategies rely on end sequencing of fosmid
clones [3], fosmid clone dilution pool sequencing [15],
optical mapping [16–19], linked-read sequencing [20, 21]
and synthetic long reads [22–24]. The central principle
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of all these strategies is to find linkage information con-
necting distant regions of the chromosome and use that
information to orient and order contigs with respect to
each other. Some of the newer technologies like Hi-C use
proximity ligation and massively parallel sequencing to
probe the three-dimensional structure of chromosomes
within the nucleus and capture interactions by paired-end
sequencing [25, 26]. In the data generated by the Hi-C
protocol, the intrachromosomal contact probability is on
average much higher than the interchromosomal contact
probability [27, 28]. Regions separated by several hundred
megabases on the same chromosome are more likely to
interact than regions on different chromosomes, though
it is important to note that the interaction probability
rapidly decays with increasing genomic distance [25]. The
main advantage of Hi-C over previous methods is the
ability to capture interactions over much larger genomic
distances thereby producing scaffolds which can span a
complete arm of the chromosome.
Several efforts have been made to use Hi-C data to

scaffold the ‘draft stage’ short read assemblies. Burton
et al. [27] developed a computational approach in their
tool LACHESIS that combined Hi-C data with short read
assemblies to generate chromosome level scaffolds. They
used their methods to scaffold de novo assemblies of
human, mouse and fruitfly. LACHESIS uses the Hi-C
reads alignments to contigs to cluster contigs into one
cluster per chromosome with hierarchical clustering. To
order the contigs in each cluster, it first finds the maxi-
mum spanning tree for the graph corresponding to each
cluster. It then finds the longest path in the spanning tree
which represents the initial contig ordering. After this, it
reinserts contigs which are not part of the initial ordering
into the longest path yielding the final contig ordering for
each cluster. Once the ordering is computed, it constructs
a weighted directed acyclic graph (WDAG) encoding all
possible ways in which contigs can be oriented, with score
assigned to each orientation. Finally, it finds the heaviest
path through this WDAG describing the optimal orienta-
tion assigned to the ordered contigs in each cluster. The
primary drawback of LACHESIS is that it needs the num-
ber of clusters to be pre-specified. This method can not
be applied to scaffold the contigs of genomes when the
number of chromosomes in the organisms are unknown.
Kaplan et al. [28] developed a method for scaffolding
based on statistical techniques. Their method uses the
hierarchical clustering method similar to LACHESIS, but
it predicts the number of clusters. The major drawback
of their method is that they do not orient the contigs
in each cluster, thereby not providing complete informa-
tion needed for scaffolding. Also, most of the experiments
performed using their method used simulated contigs of
equal size, except for the scaffolding of chromosome 14.
Due to this, it is unclear how their method would perform

in the case of long read assemblies where contig lengths
can have large variance. Since both of these methods rely
on hierarchical clustering, it is expensive to compute all
vs all link scores for all the contigs, causing scalability
issues. Another drawback of both methods is that they
do not detect and correct misassemblies before scaffold-
ing. If assembly errors are not corrected, it could result in
erroneous scaffolds and may also propagate errors across
multiple scaffolds causing misjoins. Marie-Nelly et al. [29]
developed a probabilistic method called GRAAL to gen-
erate scaffolds from Hi-C data. However, their validation
was limited to a single chromosome (Chr 14) of the human
genome and we were unable to run it on full vertebrate
genomes. Hence, it is unclear how their method performs
in terms of runtime and accuracy for the scaffolding of all
chromosomes of the human genome.
In our work, we address the issues in the previous

methods. We make use of genome-wide chromatin inter-
action data sets generated by the Hi-C protocol to linearly
orient and order assembled contigs along entire chro-
mosomes. We develop a scaffolding tool SALSA (Simple
AssembLy ScAffolder) based on a computational method
that exploits the genomic proximity information in Hi-
C data sets for long range scaffolding of de novo genome
assemblies. We tested SALSA on its ability to reconstruct
the human and goat genome. Our method can produce
centromere to telomere scaffolds of chromosomes inmost
cases and telomere to telomere scaffolds in best cases.

Results and discussion
Contact probability of hi-C data
We aligned Hi-C reads from NA12878, a human genome
used in the 1000 Genomes project [30, 31], to the
GRCh38 human reference genome [32] using BWA mem
(version - 0.7.13) [33] with default parameters. If both
mates in the read pair align to the same chromosome, it
implies an intrachromosomal contact. For each chromo-
some, we count how many read pairs have both mates
mapped to that chromosome and how many reads have
just one of the mates mapped to that chromosome. Using
this information, we compute the intrachromosomal and
interchromosomal contact probability for each chromo-
some. It can be seen from Fig. 1 that the probability of
intrachromosomal contact is much higher than that of
interchromosomal contact.

Scaffolding assemblies of two genomes
We tested the effectiveness of our approach, at the chro-
mosome scale, on the de novo assembly of two genomes.
We used two assemblies, one was NA 12,878 with scaffold
NG50 of 26.83 Mb [30, 31] and the other was the genome
of Capra hircus (goat) with contig NG50 of 3.86 Mb [34].
After aligning Hi-C reads to both assemblies, we used
our algorithm to construct the scaffold graph and later to
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Fig. 1 The probability of contact calculated based on read mapping
to GRCh38 reference

orient and order the contigs. For the NA12878 assembly,
it generated 1555 scaffolds with NG50 of 60.02 Mb. For
the Capra hircus assembly, it generated 127 scaffolds with
NG50 of 58.64 Mb. Table 1 summarizes the statistics of
the contig and scaffold assemblies.

Comparison of SALSA with LACHESIS
To assess the quality of the scaffolds, we aligned them
to their respective reference genomes using nucmer pro-
gram (parameters : -c 1000 -l 100) in MUMmer package
[35]. To evaluate the accuracy of NA12878 scaffolds, we
used the (GRCh38) human reference genome. To evaluate
accuracy of the goat scaffolds, we used the recently pub-
lished goat reference genome (BioProject PRJNA290100)
[34]. The alignment quality was assessed using dnadiff
[36], a program which evaluates draft assemblies based
on a set of metrics by aligning the scaffolds to the refer-
ence genome.We focused on four metrics: 1) The number
of breakpoints, defined as the number of gap between
pairs of mutually consistent alignments that did not occur
due to the end of a sequences, which also include gaps
(stretches of N) in the assembly scaffolds. 2) The num-
ber of relocations, defined as the number of breaks in
the alignment caused by consecutively aligned sequences

Table 1 Contig and Scaffold statistics for NA 12878 and Capra
hircus

Metric NA12878 Capra hircus

Number of contigs 18903 33767

NG50 26.83 Mb 3.86 Mb

Number of scaffolds 1555 127

Scaffold NG50 60.02 Mb 58.64 Mb

Total bases 2.77 Gb 2.94 Gb

belonging to the same chromosome in an incorrect order.
This accounts for the ordering differences in the scaffold
construction. 3) The number of translocations, defined
as the count of the number of breaks in the alignment
where consecutively aligned sequences belong to different
chromosomes. This accounts for the inter-chromosomal
join errors in the scaffold. 4) The number of inversions,
defined as the number of breaks in the alignment caused
when a contig in the scaffold is inverted relative to it’s
orientation implied by the reference genome.
Table 2 shows the comparison of scaffolds generated

by SALSA and LACHESIS for NA12878 assembly. The
number of relocations is higher in LACHESIS implying
that LACHESIS produced many differences while order-
ing contigs belonging to a particular chromosome [34].
Also, LACHESIS scaffolds contain 66 more inversions
compared to SALSA scaffolds. The number of break-
points is higher in SALSA scaffolds compared to LACH-
ESIS scaffolds. Since the NA12878 genome likely has true
structural differences from the GRCh38 reference [31, 37],
some of the differences are shared by both the assemblies.
These are more likely to be true variations. In contrast,
differences present in only one of the assemblies are more
likely errors introduced by the scaffolder. We identified
10,526 breakpoints common to both scaffolders, indicat-
ing that a third of breakpoints are likely true variations.
To differentiate the scaffolding errors from the structural
variants, we found out the errors unique to SALSA and
LACHESIS scaffolds. If an error is not present in both
the scaffolds, then it is more likely an artifact of errors
introduced by the scaffolding method. We found that
SALSA had 94 relocations, 282 inversions and 64 inter-
chromosomal joins unique to it whereas LACHESIS had
331 relocations, 348 inversions and 47 inter-chromosomal
joins unique to it. Therefore, considering just differences
unique to a scaffolder, LACHESIS still has a higher count
that SALSA.
To further understand the locations on the chromosome

where both SALSA and LACHESIS have misassemblies,

Table 2 Evaluation of scaffolds generated by SALSA and
LACHESIS for the human NA12878 assembly

Metric SALSA LACHESIS

Number of scaffolds 1555 23

Total bases 2.92 Gb 2.79 Gb

NG50 60.02 Mb 143.802 Mb

% Aligned bases 94.52% 94.72%

Breakpoints 33079 26288

Relocations 136 373

Translocations 96 79

Inversions 408 474
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we generated a density plot of number of differences com-
pared to the reference as a function of the location on the
chromosome. Regions such as centromeres and telomeres
of the human chromosomes are repetitive and difficult
to resolve unambiguously, thus generating more differ-
ences compared to other regions. Figure 2 shows the
density plot for chromosome 19 and chromosome X. It
can be observed that for chromosome 19, most of the
differences generated by SALSA are concentrated near
telomeres, whereas differences generated by LACHESIS
are uniformly spread across the p-arm of chromosome 19.
For chromosome X, the differences generated by SALSA
are concentrated near centromere and telomeres and have
very low density in the remaining regions. However, the
differences generated by LACHESIS are evenly spread
across the entire chromosome with a slight peak near
the telomere of the q-arm. Thus, it shows that SALSA
generates better scaffolds than LACHESIS outside of low-
complexity regions (centromeres and telomeres).
Table 3 shows the comparison of scaffolds generated

by SALSA and LACHESIS for the Capra hircus assem-
bly. While both SALSA and LACHESIS scaffolds have a

similar proportion of aligned bases to reference, LACH-
ESIS produced many more inversions and relocations
compared to SALSA. SALSA produced 105 inversions
and 67 relocations compared to 439 inversions and 374
relocations produced by LACHESIS. SALSA also pro-
duced fewer inter-chromosomal mis-join errors (213)
compared to LACHESIS(601). To normalize the errors
for the assembly size difference between LACHESIS and
SALSA, we also computed the errors made by LACHESIS
scaffolds only in the regions covered by SALSA scaffolds.
In these regions, LACHESIS made 432 inversions, 363
relocations and 592 inter-chromosomal join errors. The
majority of differences generated by LACHESIS occur
in the genomic region covered by both LACHESIS and
SALSA.
Figures 3 and 4 show the alignment dotplots for the

human and goat scaffolds respectively when aligned
to their respective reference genomes. In the case of
NA12878 scaffolds, it is observed that (Fig. 3a) the scaf-
folds generated by LACHESIS are highly fragmented.
On the other hand, the scaffolds generated by SALSA
(Fig. 3b) are more contiguous, contain fewer inversions

a

b

SALSA LACHESIS

Fig. 2 Density plot for misassemblies as a function of the position on the chromosome. a For chromosome 19, most of the errors generated by
SALSA are concentrated near telomeres, whereas the errors generated by lachesis are uniformly spread across the p-arm. b For Chromosome X, the
errors generated by SALSA are heavily concentrated near centromere and telomeres, but the errors generated by LACHESIS are spread uniformly
across the entire chromosome X with a peak near telomere



Ghurye et al. BMC Genomics  (2017) 18:527 Page 5 of 11

Table 3 Evaluation of scaffolds generated by SALSA and
LACHESIS for the Capra hircus assembly

Metric SALSA LACHESIS

Number of scaffolds 127 990

Total bases 2.44 Gb 2.62 Gb

NG50 46.64 Mb 88.79 Mb

% Aligned bases 99.88% 99.85%

Breakpoints 8514 14035

Relocations 67 374

Translocations 213 601

Inversions 105 439

and relocations and are more consistent with the refer-
ence than the LACHESIS scaffolds. Dot plots, displaying
the alignments for each chromosome can be found in
the (Additional file 1: Figure S1). In the case of the goat
scaffolds, although LACHESIS produced more contigu-
ous scaffolds, it incurred many large scale inversions and
relocations (Fig. 4a). In contrast, SALSA is able to produce
contiguous scaffolds with fewer orientation and order-
ing errors compared to LACHESIS thereby producing
scaffolds that are highly consistent with the reference.

Scaffolding optical map scaffolds
We used the goat genome assembly scaffolded with opti-
cal map data to test the accuracy of SALSA [34]. The
initial scaffold assembly had 1575 scaffolds with NG50 of
20.62 Mb which is much more contiguous than the long

read assembly. After scaffolding with the optical maps,
SALSA produced 90 scaffolds whereas LACHESIS pro-
duced 596 scaffolds. We evaluated these scaffolds using
the metrics described before and the results are shown
in Table 4. It is observed that even though the NG50 of
the input assembly is high, LACHESIS is still prone to
relocations compared to SALSA. However, in this case,
SALSA produced 3.17%more inversions than LACHESIS.
There were fewer differences produced by LACHESIS in
this case for a couple of reasons. First, the misassem-
blies in the original assembly were corrected with the
optical map data. This helped LACHESIS, since it does
not have a built-in misassembly detection method like
SALSA. Second, the scaffold assembly with optical maps
was highly contiguous compared to the original assem-
bly (20.62 Mb vs 3.86 Mb NG50, respectively) which
improved the scaffold quality generated by LACHESIS.
Using the uncorrected input contigs, SALSA’s assembly
had fewer differences than LACHESIS and did so without
the need for further error correction by another scaffold-
ing technology. The dotplots for both assembly’s scaffolds
aligned to reference genomes are shown in the (Additional
file 1: Figure S2).

Validation using RHmapping
Radiation hybrid (RH) mapping [38] uses X-ray breakage
of DNA to determine distance and order between DNA
markers on the chromosome. This validation is useful
because it spots errors in the scaffolds without the refer-
ence genome. We used the RH map for the goat genome
generated by Du et al. [26] to validate scaffolds generated

Fig. 3 a The alignment dotplot for NA12878 scaffolds generated by SALSA. b The alignment dotplot of Lachesis scaffolds for NA12878
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Fig. 4 a The alignment dotplot for Capra hircus scaffolds generated by SALSA. b The alignment dotplot of Lachesis scaffolds for Capra hircus

with SALSA and compared it with LACHESIS. In particu-
lar, we focused on three types of errors. First is orientation
errors, which occur when the orientation of contigs in a
particular scaffold is different than the RH map implied
orientation. Second is the incorrect chromosome error,
which occurs when for a particular scaffold, a contig in
that scaffold is assigned to a different chromosome than
the chromosome assigned to themajority of the contigs by
RH map. The third is ordering errors, which occur when
the ordering of contigs in a scaffold is not the same as the
ordering implied by RH map.
Table 5 shows the errors produced by SALSA and

LACHESIS scaffolds generated from the long read assem-
bly and optical map scaffolds when validated with RH
map. In the scaffolds from the long read assembly, SALSA

Table 4 Evaluation of scaffolds generated by SALSA and
LACHESIS for Capra hircus assembly generated using optical map
data

Metric SALSA LACHESIS

Number of scaffolds 90 596

Total bases 2.22 Gb 2.61 Gb

NG50 87.74 Mb 87.34 Mb

% Aligned bases 97.00% 99.91%

Breakpoints 10718 14741

Relocations 118 167

Translocations 185 407

Inversions 130 126

produced 146 orientation errors compared to 600 orien-
tation errors produced by LACHESIS. SALSA also pro-
duced far fewer ordering errors compared to LACHESIS.
However, SALSA produced more incorrect chromosome
errors(52) compared to LACHESIS(32). When optical
map scaffolds were used, SALSA produces 63 ordering
and 33 orientation errors whereas LACHESIS produced
78 ordering and 31 orientation errors. In this case, LACH-
ESIS assigned correct chromosome to all the scaffolds,
whereas SALSA failed to assign a correct chromosome
to 21 scaffolds. It can be seen that, for both the scaf-
folds, SALSA produces far fewer orientation and ordering
errors compared to LACHESIS, but LACHESIS is bet-
ter at assigning correct chromosomes to the scaffolds.
This is because, when the number of clusters is speci-
fied for LACHESIS, it has an advantage on the accuracy
of the contig to chromosome assignment. However, for
most of the newly sequenced genomes, the correct num-
ber of chromosomes is not known in a prior. In such
case, if LACHESIS is run with an approximate number

Table 5 RH map evaluation of scaffolds generated by SALSA and
LACHESIS for Capra hircus assembly

Metric SALSA LACHESIS SALSA-OM LACHESIS-OM

Orientation errors 146 600 33 31

Incorrect chromosome
errors

52 32 21 0

Ordering errors 152 552 63 78

SALSA-OM and LACHESIS-OM stands for the scaffolds generated on optical map
scaffolds by SALSA and LACHESIS respectively
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of chromosomes as an input, it can generate clustering
errors which can further produce orientation and order-
ing errors in the final scaffolds [34]. This reference inde-
pendent validation of scaffolds confirms the effectiveness
of our methods.

Conclusion
In this work, we used genome-wide interaction data
sets like Hi-C to orient and order contigs into scaf-
folds and compare with previous method. Since long read
assemblies were used, most of the issues cause by repeats
were solved. We also use a weight function to normalize
the scores of Hi-C links which reduces the length biases
inherent in long contigs. Due to the large variance in
contig length from long read assemblies, edge weight nor-
malization plays an important role in generating correct
scaffolds. We also provide a method to correct mistakes
in the assemblies so that these errors do not propagate
through the scaffolding process. In the tests performed on
the human and goat genomes, our method showed sig-
nificant improvements over LACHESIS, the current state
of the art tool in this emerging field. The primary ben-
efit of SALSA over LACHESIS is the independence on
the number of chromosomes. This is especially useful as
the exact number chromosomes may not be available or
the chromosme size distribution may skew the cluster-
ing algorithm. However, designing a clustering method
that clusters the contigs without knowing the actual num-
ber of desired clusters is required to estimate the number
of chromosomes. Most of the orientation and ordering
errors in our method occured in the repetitive regions
near centromeres and telomeres. One potential solution
to overcome this problem is to do pairwise alignment of
all the contigs and trim the contigs to mask these repeti-
tive regions [39]. However, such an approach incurs higher
computational cost. Our method requires manual tun-
ing of parameters to achieve optimal results. We plan
to incorporate automatic parameter detection at runtime
to remove the onus of parameter tuning from the user.
Our method can be extended to leverage other chromatin

interaction datasets such as Dovetail Chicago libraries
[40] and can adapt to their chromosomal contact model.
As most of the errors in the scaffolds were mistaken inver-
sions, we are planning to use graph output of genome
assemblers [41] in future versions of SALSA to mitigate
these types of errors.

Methods
Aligning Hi-C Reads
Hi-C reads were aligned to long read assemblies using
BWA [33] (version - 0.7.13) with default parameters.
Reads with mapping quality ≤ 30, which included the
reads mappedmore than once were removed from further
analysis. Also, only the read pairs with both reads in the
pair aligned to contigs are considered for scaffolding.

Detection of Mis-assemblies
Contigs may contain mis-assemblies [36]. We provide a
method to detect and correct these misassemblies sim-
ilar to the one described in [40] using the mapping of
Hi-C data to the assembled contigs. For each read pair,
its physical coverage is defined as the total bases spanned
by the sequence of reads and the gap between the two
reads when mapped to contigs (Fig. 5). We also define,
per base physical coverage for each base in the contig as
the number of read pairs’ physical coverage it is part of.
Using these definitions, we compute the physical cover-
age for each base of all the contigs in the assembly. The
misassembly can be detected by the sudden drop in per-
base physical coverage in a contig. A particular threshold
below which if per base physical coverage falls for con-
tiguous regions in the genome, we call it a misassembly
and break contigs at that point. To do this efficiently,
we use a variation of Kadane’s algorithm for maximum
sum subarray problem [42]. We find the subarray in the
array of physical coverage where coverage is consistently
low compared to the adjacent regions and use that as
the signal for misassembly. (Additional file 1: Figure S3).

Contig

Read Pair 1

Read Pair 2

Physical coverage 
of read pair 1

Physical coverage 
of read pair 2

Fig. 5 Physical coverage induced by Hi-C read pair. The solid arrows denote the read pair and dotted line denote the gap between the reads in the pair
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We performed misassembly detection on the contigs for
goat genome assembly. For other datasets, bionano optical
maps performs contig error correction and breaking so
we did not run our error correction method on those
datasets.

Graph construction and link scoring
We use an idea similar to the string graph formulation in
[43] to construct the scaffold graph. The scaffold graph
G(V ,E,W ) consists of nodesV which represent the end of
contigs, edges E representing the linkage implied by Hi-C
read pairs between ends of two contigs and weight func-
tion W to assign weight to each edge. The ends of each
contig are annotated by two tags, B and E where B stands
for the beginning of the contig and E stands for the end of
the contig. Using this concept of node, there are 4 types of
edges in the graph, BE joining beginning of first contig to
end of second, EB joining end of the first contig to begin-
ning of second, BB joining beginning of the first contig to
beginning of second contig and EE joining end of the first

contig to end of second (Fig. 6a). Using raw counts of Hi-
C read pairs shared between ends of two contigs is not the
correct way to score the edges because of length biases.
Since two long contigs with a large genomic distance tend
to share more read pairs compared to two short or one
long and one short contig with much lesser genomic dis-
tance. To address this issue, we define an edge weight
function in such a way that it reduces such length biases.
We define a length cutoff l and consider the read pairs
mapped in the region of length l at both ends (B and E)
of contigs. Our edge weight normalization is based on
how many times the restriction enzyme used in Hi-C pro-
tocol cuts the region of length l and divide the counts of
read pairs by this number. Putting all this together, the
edge weight function is expressed as:

W (E) = links(C1,C2)
RE(C1) + RE(C2)

where C1 and C2 are the contigs yielding the edge,
links(C1,C2) is the number of Hi-C links present within

B

B

B

B B

B B

E E

E E B

E E

EE

B BE E

1:E 2:B 1:E 2:B

B E E B

2:E 3:E

B BE E

1:E 2:B

2:E 3:E

3:B

B BE E

1:E 2:B

2:E 3:E

3:B 4:B

1:E 2:B

2:E 3:E

3:B 4:B

1:B

4:E

a

b c

d e f

Score = 13.8 Score =8.9

Score = 7.3 Score = 5.3

1 2 2 3

1 3 3 4

Fig. 6 SALSA graph construction method. To construct the graph, links are considered in decreasing order of their score. a Types of links present
between contigs. The link types can be BB, BE, EB and EE depending on the orientation of the contigs in the link. b For each end of the link, a node is
created in the graph. In this case 1:E and 2:B nodes are created in the graph with an edge added between them. c Similar to b, nodes 2:E and 3:E
with an edge between them are added to the graph. d In this case, node 1:E already has an edge associated to it. So link between 1:E and 3:B is not
added to the graph e The edge between node 3:B and 4:B is added to the graph since both of them are not present in the graph. f After all links are
considered, edges are added between B and E nodes of same contigs. This completes the graph construction



Ghurye et al. BMC Genomics  (2017) 18:527 Page 9 of 11

the region of length l from the end of contigs and RE(C1)
and RE(C2) is the number of sites cut by the restriction
enzyme in the region l at the end of C1 and C2. This
gives us the normalized edge weights which we use for
scaffolding. Once we calculate the edge weights, we con-
struct the graph G as follows. We first sort all the edges in
decreasing order of their weights given by W. After this,
we remove all the edges which have very low number of
read pairs associated to them which mostly account for
sequencing errors. Once edges are sorted and filtered, we
construct G according to Algorithm 1. We greedily add
edges to G only if both the nodes comprising an edge
are not present in G. Finally, we add edges between B
and E ends of same contigs to G which completes the
graph construction. Figure 6 shows the intermediate steps
involved in graph construction. In some cases, G can con-
tain a cycle. Consider the following scenario. Suppose
while constructing G, we add edges ‘X : B - Y : B’ and
‘X : E - Y : E’. After we scan through all the links, we add
‘X : B - X : E’ and ‘Y : B - Y : E’ edges to G. This cre-
ates a cycle of length 4 in G. However, this kind of cycle
can easily be removed by removing the lower cost edge
among BB and EE edges. Once we remove cycles from G,
we get the final scaffold graph which we use for further
analysis.

Algorithm 1 Scaffold graph construction
1: procedure CONSTRUCT(L) � L is the list of links

sorted by their scores
2: G = () � Scaffold Graph to be returned
3: while L is not empty do
4: l is the current link
5: u, v,w = l.source, l.target, l.weight
6: if G.has_node(u) == False and

G.has_node(v) == False then
7: G.add_edge(u, v,w)

8: L.remove(l)
9: for c ∈ C do � C is the set of all contigs

10: G.add_edge(c_B, c_E)

11: return G

Scaffold construction
Before explaining the scaffold construction algorithm,
we prove following lemmas to understand the properties
of G.

Lemma 1 G has no nodes with degree greater than 2.

Proof While constructing G, we add edges at most
twice for each node. First when we have no edge asso-
ciated to that node and second when we add an edge

between B and E ends of the contig associated with
that node. If some node has degree greater than 2,
it would mean that we added an edge to that node
apart from the cases described previously, which is a
contradiction.

Lemma 2 Each connected component of G has exactly
two nodes of degree 1.

Proof We know from the construction of G that G has
no cycles. We can prove this for some connected com-
ponent C of G and the argument can be applied to all
connected components. SinceG has no cycles, C will have
at least one node with degree 1. In the first case, sup-
pose C has exactly one node of degree 1. This implies
that we have at least two edges originating from all other
nodes in C. It would mean that there exists at least one
node in C with a degree at least 3. This is a contradiction
because of Lemma 1. In the second case, suppose C has
more than two nodes of degree 1. It wouldmean that there
exists at least one node in C with degree 3. This is again a
contradiction due to Lemma 1.

Knowing these properties about G we construct scaf-
folds as described in Algorithm 2. First, a threshold Nth
is decided for a scaffold to qualify as a seed scaffold. If
a scaffold has a number of contigs greater than Nth, it is
marked as seed scaffold. For each connected component
of G, we first find out two nodes u and v with degree 1.
We will always find such nodes due to Lemma 2. After
this, the path connecting u and v is found in the con-
nected component. In the context of G, we define a path
as an alternating sequence of nodes and edges. The edges
can be either between the ends of same contigs (con-
tig edge) or the ends of different contigs (Hi-C implied
edge). Since all the nodes in the connected component
have degree either 1 or 2, there will always be just 1
path connecting u and v. It can also be observed from
Lemma 1 and 2 that, all other nodes in the connected
component lie on the path connecting u and v. If this path
has the number of contigs greater than Nth, we mark this
path as a seed scaffold, otherwise, it is marked as a small
scaffold.
Even after edge weight normalization, there can still

exist some length biases, omitting some of the small
contigs from the seed scaffolds. To account for this, we
develop a method to insert the contigs in small scaffolds
into seed scaffolds. First, for each contig in small scaf-
folds, exactly one seed scaffold is assigned to it based on
the total edge weight of the edges in the original scaf-
fold graph connecting this contig to all the contigs in
seed scaffold. After this, each contig is tested for insertion
into its corresponding seed scaffolds in both the orienta-
tions at all possible position. It is inserted at the position
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where it maximizes the total weight of the scaffold. Once
all the contigs are inserted into seed scaffolds, it leaves
us with the final scaffolds. The algorithm is sketched in
Algorithm 2.

Algorithm 2 Scaffold construction
1: procedure GET-SEED-SCAFFOLD(G) � G is scaffold

graph
2: C = Connected_Components(G)

3: S = List of seed scaffolds
4: T = List of small scaffolds
5: for c ∈ C do
6: u, v = nodes with degree 1 in c
7: path = c.find_path(u, v)
8: if path.length ≥ Nth then � path.length is the

number of contigs in path
9: S.add(path)

10: else
11: T .add(path)
12: return S,T
13: procedure GENERATE-SCAFFOLD(G) � G is scaffold

graph
14: S,T = Get-Seed-Scaffold(G)
15: for t ∈ T do
16: Assign seed scaffold from S for contigs in t
17: for t ∈ T do
18: for c ∈ t do � c is contig in t
19: Sc = seed scaffold of c
20: Place c on Sc so that sum of edges in of Sc

is maximized
21: Return updated seed scaffolds as final scaffolds

Additional file

Additional file 1: Supplementary Figures. Figures for dot plots for each
chromosomes of NA12878 for LACHESIS and SALSA scaffolds, dot plots for
scaffolds of goat optical map scaffolds and coverage plot for misassembled
contig. (DOCX 664 kb)
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