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Abstract

Background: Technological advances have enabled transcriptome characterization of cell types at the single-cell
level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression

profiling are highly desirable.

Results: Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing
of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single
cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well
barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing
viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the
performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue
samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8
has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of
more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to
identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells.

Conclusions: Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells,
allowing researchers to decipher single-cell transcriptomes within complex biological samples.
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Background

Single-cell RNA sequencing (RNA-seq) has rapidly
evolved over the last few years, providing new under-
standing of cell composition and identity in normal
and diseased settings [1, 2]. Transcriptional profiling
at the single-cell level facilitates identification of new
cell types and understanding of cellular heterogeneity,
aids in lineage tracing, and elucidates hierarchical
relationships among cell types in the course of
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development or disease progression [2-7]. For ex-
ample, based on their transcriptome patterns, more
than 40 subtypes of neurons were identified in the
mouse cortex [7, 8]. Single-cell RNA-seq also identi-
fied a rare cell type in colon tissue [4].

Initial transcriptional profiling at the single-cell level
was done using fluorescence-activated cell sorting (FACS).
However, FACS-based techniques have limited through-
put and are not cost-effective. Recently, methods that
enable single-cell transcriptome and whole-genome se-
quencing without the need for FACS have been reported.
Notably, microfluidic-based single-cell isolation (e.g.
Fluidigm C1) and transcriptome analysis was performed
successfully, though the throughput and the ability to
capture a large range of cell sizes is limiting [6]. The
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Cl-based method does not employ molecular barcodes
for eliminating PCR duplicates during cDNA conversion
and can potentially lead to data bias [6, 9]. Recently, en-
capsulation of thousands of cells using droplet-based
microfluidic methods for single-cell RNA-seq have been
demonstrated [10, 11]. While droplet-based technology is
encouraging, further development of the experimental
technique and analysis tools are needed for its wider adop-
tion [9, 12, 13].

Nanowell-based deposition of single cells is another
promising approach for characterizing single-cell transcrip-
tomes [14]. In this study we assessed the performance and
utility of the ICELLS8 system for massively parallel single-
cell gene expression profiling (Fig. 1a). The ICELL8 system
uses a multi-sample nanodispenser (MSND) to dispense
single cells into a 5184-nanowell microchip. Imaging soft-
ware is used to select single-cell-containing wells that are
then processed to obtain single-cell transcriptome data. We
showed that the system has a low rate of cell multiplets and
high single-cell purity. In addition, we characterized
transcriptomes of more than a thousand cultured cells and
were able to identify representative cell subtypes from a
complex tissue sample.

Results

Microchip for single-cell isolation

The ICELL8 microchip is made of aluminum alloy
(41 mm?) and contains 5184 nanowells arranged in a
square layout (72 x 72 wells). Each nanowell holds
150 nl and contains preprinted oligonucleotides; each

Page 2 of 10

oligonucleotide includes an oligo-(dT30) primer, a
well-specific sequence (11 bp) used for cell barcoding
and a unique molecular identifier (UMI, 10 bp; Fig. 1).
The cell barcode is used to identify cDNA molecules
generated from an individual cell, while UMIs identify
individual mRNA molecules [15]. A similar microchip-
based technology has been used previously in targeted
sequencing applications [16, 17].

Cell suspensions were fluorescently labeled with live/
dead stain (Hoechst 33324/Propidium Iodide, see
Methods) prior to their dispensing into the microchip
nanowells using the MSND (Additional file 1: Figure
S1). The MSND is an 8-channel microsolenoid con-
trolled dispenser that delivers =30 nl volumes using
non-contact dispensing. The MSND dispenses up to
eight different samples (one sample per channel) into a
single microchip in approximately 12 minutes. To
minimize evaporation, the microchip is enclosed in a
controlled humidity and temperature chamber. Cross
contamination between nanowells due to dispense tip
misalignment was assessed using a checkerboard assay
(see Methods, Additional file 2: Figure S2). In a test
involving 11 MSND instruments we observed the aver-
age percentage of wells affected by misalignment to be
0.08%. Cells are dispensed by a limiting dilution; assum-
ing a Poisson distribution for the number of cells per
well, about one third of the 5184 nanowells contain a
single cell under optimal conditions.

Following cell dispensing, the microchip was centrifuged
to collect cells in a single plane and then imaged using a
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standard microscope with an automatic stage, a 4x object-
ive and a charge-coupled device (CCD) camera. After
imaging, the microchip was sealed and stored at —-80 °C
until ready for use (Additional file 1: Figure S1). Next we
used imaging software (CellSelect, see Materials and
Methods) to automatically and/or manually identify wells
that contain single cells (Fig. 1b). A file containing pos-
itional information on identified candidate wells (dispense
file) was then used to selectively deliver reverse transcript-
ase (RT) master mix to designated wells.

Single-cell barcoding and sequencing

Cells in the microchip were lysed by freeze-thaw (see
Methods). Under the directions from the dispense file, the
MSND dispensed RT master mix into selected wells and
c¢DNA synthesis was performed in those wells using the
Single Cell Barcoding and Sequencing method (SCRB-
seq) [18]. cDNAs from hundreds of cells were then pooled
into a single tube, purified and amplified by standard prac-
tices. The amplified cDNAs were subjected to transposon-
mediated fragmentation (“tagmentation”), PCR amplified
and converted to an Illumina-compatible NGS library
(Additional file 1: Figure S1). RNA-seq libraries were se-
quenced using paired-end sequencing where read 1
(25 bp) contained the well barcode and UMI and read 2
(50 bp) captured the cDNA sequence (Fig. 1c).

Sequencing data processing and quality control

To analyze sequencing reads generated from pooled
single-cell RNA-seq libraries we developed a computa-
tional pipeline shown in Fig. 2a. Reads from different
wells were demultiplexed based on a perfect match to
the expected barcode sequences. After mapping to a ref-
erence genome, per-gene transcript counts were inferred
based on the number of unique UMIs for each gene,
after correcting for errors in the UMI sequence and ex-
cluding singleton UMIs represented by a single read only
(see Methods). To assess data quality for a single-cell se-
quencing project, we inspected per-cell statistics as illus-
trated in Fig. 2b for 924 mouse Ba/F3 cells. Analyzed
statistics included (1) total number of sequenced reads,
(2) alignment rate, (3) number of mapped reads, (4) total
number of transcripts, (5) percentage of transcripts
corresponding to mitochondrial genes, and (6) num-
ber of detected genes. The percentage of unfiltered
reads that could be mapped uniquely to the reference
genome appeared constant across wells (~35%; Fig. 2b
and Additional file 3: Figure S3a). We observed that the
number of sequenced reads varied between nanowells
(median 862,220; inter-quartile range 643,100-1,197,000)
and increased linearly with the estimated number of cap-
tured transcripts (r = 0.99; Additional file 3: Figure S3b).
This indicated that variation across nanowells was likely
due to differences in cellular mRNA content or mRNA
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capture efficiency rather than variation in library construc-
tion or sequencing efficiency. Spatial plots of the number
of detected transcripts per well did not reveal systematic
effects due to well position (Additional file 4: Figure S4).
Previous studies reported that mitochondrial reads may
indicate poor-quality cells [19]. The percentage of mito-
chondrial transcripts was typically low (~6%); although we
observed a higher percentage for some solid tissue sam-
ples (data not shown). We noticed that cells with poor
quality data, having few detected genes and high mito-
chondrial content, were typically associated with low in-
ferred transcript counts. We therefore defined a quality
control criterion for processed cells by requiring a
minimum number of detected transcripts for each cell.
Appropriate cutoffs were determined separately for each
data set (Additional file 5: Figure S5).

Gene detection and reproducibility of single-cell
expression profiles

To assess the sensitivity of the platform and allow com-
parison with other single-cell systems, we down-sampled
reads for each cell and determined the median number of
detected genes and transcripts with increasing sequencing
depth (Fig. 2c and d). At an average sequencing depth of
100 K reads per cell we detected a median of ~2500 genes
in Ba/F3 cells. The number of detected genes increased to
>4000 at higher sequencing depths (Fig. 2¢).

To assess the reproducibility between cells when pro-
filing a relatively homogeneous sample type, we com-
pared per-gene transcript counts between pairs of Ba/F3
cells. Pairwise comparisons generally showed high cor-
relation with median r = 0.83 (Pearson correlation coef-
ficient) and interquartile range of 0.81-0.84; an example
is shown in Additional file 6: Figure S6a (r = 0.77).
When performing the same analysis using per-gene read
counts, we observed lower correlation (r = 0.69;
Additional file 6: Figure S6b), illustrating the advantage
of UMIs in reducing PCR amplification bias. Next we
asked whether single-cell gene expression data accur-
ately reflected expression profiles obtained from bulk
cells. We processed total RNA from bulk Ba/F3 cells
on the same microchip as Ba/F3 single cells and
found that the bulk expression profile was highly
correlated with the ensemble (average) of single-cell
profiles (r = 0.95; Additional file 6: Figure S6c).

Assessment of cell multiplet rate and single-cell impurity

An important determinant of the utility of a single-cell pro-
filing platform is its ability to accurately partition individual
cells, such that sequencing reads for each barcode are truly
derived from a single cell [20]. Possible issues include mul-
tiple cells tagged with the same barcode (referred to as cell
multiplets), and cross-contamination due to PCR chimera
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and/or free RNA from lysed cells (referred to as single-cell
impurity). To assess these factors we performed a mixed-
species experiment where a one-to-one mixture of human
K562 cells and mouse 3T3 cells (7 = 499), as well as K562
cells alone (n = 50) and 3T3 cells alone (n = 50), were proc-
essed on the same microchip (Fig. 3). We mapped the data
independently to the human and mouse genome and ex-
cluded ambiguous reads that mapped to both genomes
with <3 mismatches. The majority of cells from the one-to-
one mixture displayed strong enrichment for transcripts
specific to either one of the two species and were classified
as human (# = 247) or mouse (n = 243; see Methods). Six
cells (1.2%) had a high percentage of transcripts from both
species and thus were classified as cross-species multiplets.
Since the experiment only allowed us to identify mixed-
species multiplets, possible multiplets consisting of cells
from the same species remained undetected. Assuming that
same-species multiplets occurred at a similar rate as cross-
species multiplets, we estimated the overall multiplet rate

as ~2.4%. The low cell multiplet rate indicated that the
imaging software performed as expected and selected
mostly single cells. We also observed that cells classi-
fied as human or mouse had on average 97% and 94%
of transcripts corresponding to human and mouse, re-
spectively, indicating high single-cell purity.

Single-cell expression profiles of cultured cell lines

We next asked if the ICELL8 system is capable of distin-
guishing cultured cells derived from different tissue
sources. We separately dispensed eight cell suspensions
of five human (A375, HCT116, NCI-H2452, Miapaca2
and KU812) and three mouse (Beta-TC6, 307 and 307-
lung) cell lines across two microchips, obtaining a total
of 796 human and 242 mouse cells. Principal component
analyses based on the 500 most variable genes, as well as
hierarchical clustering based on the 100 most variable
genes, showed clear separation of different cell lines (Fig.
4a and b, Additional file 7: Figure S7). Interestingly,
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Fig. 3 Species-mixing experiment. Single-cell expression data from
one-to-one cell mixture of human K562 and mouse 373 cells, together
with single-cell data from cell suspensions of 3T3 cells and K562 cells
alone. Data were mapped independently to the human and mouse
genome. Reads mapping to both genomes with <3 mismatches were
excluded. For the one-to-one mixture, 247 cells and 243 cells were
classified as human and mouse, respectively, 6 cells were classified as
cross-species cell multiplets

mouse 307 and 307-lung cells showed more intra-cluster
variability likely due to the fact that these cells were de-
rived from tumors and have undergone minimal cultur-
ing, compared to the human cell lines which have been
passaged for many generations. The most variable genes
included many known markers of the cell line tissues of
origin. These include hemoglobin genes (HBB, HBGI,
HBG?2) in the peripheral blood-derived cell line KU812,
MIA (melanoma inhibitory activity) in the melanoma-
derived cell line A375 [21] as well as insulin (Insl, Ins2)
and islet amyloid polypeptide (Iapp) in the mouse pancre-
atic beta cell line Beta-TC6 (Additional file 7: Figure S7).

Identification of cell subtypes from pancreatic islets

Finally we determined whether the platform can distin-
guish cell types within a solid tissue sample. For this
purpose we profiled 468 cells from adult mouse pancre-
atic islets. Pancreatic islets consist of the endocrine cells
of the pancreas, with insulin-producing beta cells form-
ing the majority. The other three major cell types in-
clude glucagon (Gcg)-producing alpha cells, somatostatin
(Sst)-producing delta cells and pancreatic polypeptide
(Ppy)-producing gamma cells (also known as PP cells).
Hierarchical clustering based on known marker genes re-
vealed the four distinct cell populations (Fig. 4c) and the
relative abundance of cell types tracked the known com-
position of adult mouse pancreatic islets, including 38%
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beta cells (n = 179), 26% alpha cells (n = 124), 22% delta
cells (m = 101), and 14% PP cells (n = 64). Unsupervised
principal component analysis based on the 500 most vari-
able genes did not show clear clusters of four major islet
cell subtypes; however beta and alpha cells were largely
separated (Additional file 8: Figure S8).

Discussion

Transcriptome profiling of individual cells by single-cell
RNA-seq is a powerful approach for deciphering the
cell composition of complex tissues; however, broader
use of this method has been limited by its ease of use,
scalability, cost and turn-around time. Here we report a
novel system for high-throughput single-cell RNA-seq,
ICELL8, which uses nanowell-based cell capture and
relies on cell- and transcript-specific barcoding to obtain
transcript counts for individual cells. Although the
ICELL8 system uses similar chemistry for single-cell
RNA-seq library generation as other platforms, it
features unique components, including i) an MSND
instrument for dispensing single-cell suspensions into
nanowells, ii) software for automated identification of
hundreds to over a thousand of single-cell-containing
wells, and iii) UMI-based transcript counting. The ease
of dispensing cells of any size or shape into nanowells
with the MSND eliminates errors associated with
manual pipetting of viscous reagents into microfluidic
devices. Cells as large as cardiomyocytes (~100 pm) and
spheroids have been dispensed, imaged and processed
for single-cell RNA-seq using the system (data not
shown). The system also provides flexibility, allowing for
processing of up to eight samples on the same micro-
chip. Taken together, the ICELL8 system enables pro-
cessing of several chips per day, which translates to
processing tens of thousands of individual cells. Ease of
use and fast turn-around time are key features of the
system, which allow experiments with a variety of bio-
logical samples. Overall, it takes ~3 days on ICELL8 to
process one sample from cell dispensing to library QC
(see Additional file 1: Figure S1), compared to ~2 days
on the 10x Genomics system. The consumable cost
including chips, cell-handling reagents, enzymes and
primers is in a range similar to many current commer-
cial technologies.

Here we assessed the performance of the ICELL8 sys-
tem by profiling a mixture of human and mouse cell lines
to determine single-cell purity (94—97%) and cell multiplet
rate (<3%). Performance characteristics were comparable
to other single-cell RNA-seq platforms (e.g. multiplet rate
in 10x Genomics: ~1% at 1000 cell density and ~6% at
6000 cell density [22]). In this study we profiled panels of
human and mouse cell lines, as well as mouse pancreatic
islets. Unsupervised principal component analysis did not
show clear clusters of the four major islet cell subtypes
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[23]. Future versions of the ICELL8 system may benefit
from improvements in sample processing including min-
imizing ambient RNA.

The ICELL8 system adds to the growing number of
technologies that have been developed to understand
biology at the single-cell level and complements existing
microfluidic and droplet-based technologies. Besides en-
abling applications such as single-cell RNA-seq, it can
empower other high-throughput sequencing applications
that require imaging and selection to process only cells
of interest. The current configuration uses nanowells
with volumes of 150 nl. These wells can be configured
to larger dimensions for volumes as high as 1 pl. Thus
the ICELLS system is capable of accommodating appli-
cations that require several reagent additions such as
whole-genome amplification, combined readouts of
DNA and RNA, or RNA and protein. Future technology
improvements, including miniaturization that could re-
sult in a chip with >100 K nanowells, would enable enor-
mously parallel processing of single cells. In addition, we

have developed technologies where single cells can be
targeted to occupy each well, thereby generating occu-
pancy rates of >80% (http://www.freepatentsonline.com/
20160045884.pdf). Furthermore, imaging enables the selec-
tion of wells not only based on Hoechst/Propidium Iodide
staining but also based on fluorescent antibody staining.
Thus, cells sorted by FACS can be orthogonally validated
and selected and processed for single-cell RNA-seq and
other applications.

Conclusions

We demonstrated the performance and utility of a novel
nanowell-based single-cell RNA sequencing system, ICELLS,
which enables expression profiling of thousands of cells.
Based on single-cell expression profiling data generated by
ICELLS, we were able to identify representative cell types in
mouse pancreatic islets and discriminate between mixed
human and mouse cells. The technological advancements of
ICELLS enable more time- and cost-efficient transcriptome
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characterization of single cells, providing researchers with
deeper insight into complex biological samples.

Methods

Single-cell samples

Human (K562, A375, HCT116, NCI-H2452, Miapaca2
and KU812) and mouse (3T3, Ba/F3, Beta-TC6, 307 and
307-lung) cell lines were used for evaluating the ICELLS
single-cell RNA-seq system. The melanoma cell line
A375 was cultured in DMEM media with 10% fetal
bovine serum (FBS, Thermo Fisher); the colon cancer
cell line HCT116, mesothelioma cell line NCI-H2452,
pancreatic adenocarcinoma cell line Miapaca2, chronic
myelogenous leukemia (CML) cell line KU812 and K562
were cultured in RPMI 1640 media supplemented with
10% FBS. The mouse pancreatic beta cell line Beta-TC6
was cultured in DMEM media supplemented with 15%
FBS; the mouse fibroblast 3 T3 cell line was cultured in
DMEM supplemented with 10% FBS and 1 mM sodium
pyruvate; the mouse pro-B cell line Ba/F3 was main-
tained in RPMI 1640 supplemented with 10% FBS and
2 ng/ml mouse IL-3 (R&D Systems). 307 and 307-lung
cells were derived from a conditional Pik3ca knock-in
mouse model [24] and were cultured in Epicult B basal
medium (STEMCELL Technologies). All cell media con-
tain 2 mM L-glutamine (except for 307 and 307-lung),
100 U/ml penicillin, and 100 mg/ml streptomycin. Cells
were prepared as single-cell suspensions either by trypsi-
nization and gentle washing, for adhesive cells, or direct
washing, for suspension cells. Adult mouse pancreas was
first perfused with the Liberase solution through the
common bile duct, and then dissected and incubated at
37 °C for 10 min. Islets were separated from acinar
tissue using histopaque density centrifugation (Sigma).
Liberase solution was made by dissolving 5 mg Liberase
TL (Roche) in 20 ml 1xHBSS buffer containing 25 mM
HEPES (pH 7.2), 1.8 mM CaCl,, 10 pg/ml DNase and
0.1% BSA. Purified islets were dissociated into single cell
suspension using Accumax cell dissociation solution
(Innovative Cell Technologies) for up to 30 min at room
temperature.

Cell isolation by limiting dilution

Cells were stained with Hoechst 33324 and Propidium
Iodide (Thermo Fisher) for 20 min. The cell viability and
density was checked with ViCell XR (Beckman Coulter)
using Trypan Blue. Cells were diluted to achieve a density
of 1-2 cells per 50 nl in a final dispensing mix which con-
tained a diluent, RNAsin (New England Biolab) and 0.35X
PBS (without Ca** and Mg"", pH 7.4, Thermo Fisher). A
384-well source plate with 8 designated wells containing
cell suspensions, 1 well for positive control, 1 well for
negative control, and 1 well for fiducial mix (fluorescent
dye permitting image alignment confirmation) was placed
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in the MSND (WaferGen). Each of the 8 sample source
wells in the 384-source plate was sampled by 1 of the 8
channels in MSND. Cells, positive controls, negative con-
trols, and fiducial mix, were dispensed onto one chip
within 16 min. Each well received 50 nl of either cell mix,
positive control, negative control, or fiducial mix. Total
RNA (~10 pg) from K562 cells was dispensed into se-
lected nanowells and used as in-process positive controls.
For Ba/F3 data, total RNA (~10 pg) from Ba/F3 cells was
dispensed into selected nanowells and used as bulk in
analyses.

MSND quality testing

For each tested MSND, cross contamination between
nanowells was measured using a checkerboard assay per-
formed on a single microchip (Additional file 2: Figure S2).
First negative control master mix (no template DNA) was
dispensed into wells located on one half of the microchip
(NTC wells, n = 2520). The percentage of wells that
showed signal was considered background unrelated to
misalignment of the dispensing tips. In the second half of
the chip, lambda DNA master mix (Positive wells,
n = 1024) and negative control master mix (Test wells,
n = 1496) were dispensed in an alternate checkerboard
pattern. The dispensed chip was sealed with a film,
centrifuged and a real-time PCR analysis was performed. If
the dispenser tip is misaligned, lambda DNA master mix is
inadvertently added to test wells, resulting in Ct values
indicative of cross contamination. Ct values were used to
determine the number of Test wells and NTC wells that
showed signal. To ensure that only intended PCR products
were quantified, a melt-curve analysis was performed. Test
wells and NTC wells with melting temperature 3 standard
deviations outside of the mean melting temperature for
Positive wells were excluded. Percentage of misalignment
was calculated as the difference between the percentage of
Test wells with signal minus the percentage of NTC wells
with signal (i.e. % misalignment = % Test wells that show
signal - % NTC wells that show signal).

Microchip imaging and selection of single-cell-containing
nanowells
After dispensing, each chip was sealed and centrifuged
at 300 g for 5 min at 4 °C before imaging with a Leica
microscope (Leica). A total of 288 images, 144 each for
Hoechst 33,342 and for Propidium Iodide were captured.
Each image comprised the picture of 36 wells. Following
imaging (~7 min), the microchip was stored at —80 °C
for at least 45 min or until ready for further processing.
Microchip images were analyzed using CellSelect
software (WaferGen) to determine the viability and
number of cells present in each nanowell. Briefly, to
identify cells in an image, a Laplacian of Gaussian (LoG)
image was calculated with a user-selectable scale. The
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LoG image was then segmented using auto-provided or
user-defined thresholds. The resulting shapes were then
classified by user-defined size and shape. Objects that do
not meet the criteria were rejected. These steps eliminate
many artifacts that may appear in the microscope images.
This segmentation and classification process was performed
for images obtained using both Hoechst 33324 (channel 1)
and Propidium Iodide (PI, channel 2) images. In the default
configuration, cells visible in channel 2 indicate PI
positive (dead cells) which are auto-excluded from
further processing. Using the default configuration,
CellSelect identified all nanowells that have one cell
in channel 1 (Hoechst) and no cells in channel 2 (PI).
Nanowells that had one bright cell and additional dim
cells or debris were further excluded. In summary,
nanowells that contained only one cell were selected
as candidates and additional visual inspection was
performed to confirm the presence of single viable
cells. After selecting the highest confidence candidate
cells, the software auto-generated multiple files used
to streamline the downstream processing (e.g. sample-
barcode file, filter file for dispensing reverse transcription
mix, cell dispense and Poisson summary statistics).

Single-cell cDNA generation

Microchips were removed from -80 °C and left at room
temperature for 10 min. Cells were lysed by freeze-thaw
at this step. Chips were then centrifuged at 3800 g for
5 min at 4 °C and transferred to a thermocycler with a
program of 72 °C for 3 min and 4 °C hold to anneal
preprinted oligonucleotides to polyA mRNAs. The mi-
crochips were centrifuged as previously and were placed
back into the MSND. A separate 384-well source plate
containing reverse transcription (RT) reagents (1 mM
dNTP, 1 uM E5 Oligos, Maxima H Minus RT buffer and
12 U/ul of Maxima H Minus reverse transcriptase) in 4
wells was used in the MSND, which delivered 50 nl of
reverse transcription mix to selected nanowells. The
microchips were spun down and transferred to a ther-
mocycler with a program of 42 °C for 90 min and 4 °C
hold to perform RT. Post reaction chips were inverted
and centrifuged (3800 g 10 min at 4 °C) to simultan-
eously collect and pool well contents into a single
microcentrifuge collection tube. Double-stranded cDNA
was cleaned by the DNA Clean & Concentrator™-5 kit
(Zymo Research). Eluate was treated with Exonuclease I
(37 °C for 30 min, 80 °C for 20 min). A PCR program of
95 °C for 1 min, 18 cycles of 95 °C for 15 s, 65 °C for
30 s, 68 °C for 6 min, and 1 cycle of 72 °C for 10 min
and 4 °C hold was performed using Advantage 2 poly-
merase. Amplicons were purified using Agencourt
AMPure XP magnetic beads (Beckman Coulter). cDNA
quality was assessed using a Bioanalyzer High Sensitivity
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DNA chip (Agilent Technologies) and quantity was de-
termined by a Qubit High Sensitivity kit (Thermo Fisher
Scientific).

RNA-seq library construction and sequencing

One ng of cDNA was used for library construction using
the Nextera XT kit (Illumina) according to manufacturer’s
instruction. A custom-made Nextera P5 (WaferGen) and
a P7 index primer provided by the Nextera XT kit
(Ilumina) were used to amplify the “tagmented”
fragments. Libraries were purified and size selected using
Agencourt AMPure XP magnetic beads (Beckman
Coulter) to obtain an average library size of 500 bp. A typ-
ical yield for a library comprised of ~1500 cells was
~15 nM. Libraries were sequenced on either a HiSeq2500
or HiSeq4000 (Illumina) to obtain on average ~ 1-2
million 25 x 50 bp reads per cell.

RNA-seq data processing

Read pairs were de-multiplexed requiring a perfect
match between the first 11 bases of read 1 and one
of the expected barcodes. The second read was then
mapped to the reference genome using GSNAP [25]
retaining the UMI sequence for each aligned read.
Only uniquely mapping reads were considered. After
mapping, the number of captured transcripts per gene
was inferred based on UMIs. Read pairs with UMIs
containing Ns were excluded. To avoid inflation of
transcript counts due to errors in UMI sequences, we
clustered UMIs with similar sequences for each gene
(allowing for 1 mismatch). To remove low-abundance
UMIs that may be the result of chimeric PCR
products (Additional file 9: Figure S9), we only con-
sidered UMI clusters represented by at least two
reads. Per-gene transcript counts were based on the
number of distinct UMI clusters. For downstream
analyses, per-gene transcript counts were normalized
by dividing the counts for each cell by a cell-specific
scale factor, calculated as the total transcript count
for a given cell, divided by the median total transcript
count across cells. No additional normalization was
performed between microchips.

Read depth simulation

We assessed the effect of sequencing depth on the
number of detected genes and transcripts using Ba/F3
data. Ba/F3 cells were sequenced at an average read
depth D of ~1 M reads per cell. To simulate an
average read depth d < D, for each cell we sampled a
fraction d/D from the subset of reads aligning to
annotated genes, and recalculated the number of
detected genes and transcripts as described above.
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Species-mixing experiment

Sequence reads were mapped independently to the
human and mouse genomes. Reads that mapped to both
genomes with <3 mismatches were excluded. In Fig. 3
the total number of detected mouse transcripts was plot-
ted against the total number of detected human tran-
scripts for each cell. Cells that had more than 2925
human transcripts were classified as human (n = 247).
Cells that had more than 1955 mouse transcripts were
classified as mouse (1 = 243). Cells that were classified
as both human and mouse were considered cross-
species multiplets (n = 6). Cells that were not classified
as either species were excluded from the analysis (1 = 3).
The cutoff for human (mouse) cells was determined by
considering cells with more transcripts mapping to
mouse (human) and computing the median plus five
times the inter-quartile range of the number of human
(mouse) transcripts. Single-cell purity estimates for
human (mouse) cells were obtained by considering cells
classified as human (mouse), dividing the number of
transcripts detected in human (mouse) by the sum of
transcripts detected in either species, and taking the
median across cells.

Clustering analysis

Most variable genes were determined based on the vari-
ance of normalized transcript counts after logy(x + 1)
transformation. PCA and hierarchical clustering was per-
formed based on normalized transcript counts after
logo(x + 1) transformation and mean-centering genes.
Hierarchical clustering was performed with 1 - Pearson
correlation as distance metric and average linkage using
the R package NMF.

Additional files

Additional file 1: Figure S1. Overview of single-cell RNA-seq workflow
on the ICELL8 system with detailed information on each processing step,
including the time required for completion. (PDF 80 kb)

Additional file 2: Figure S2. Checkerboard assay. (a) Image of a microchip
where the right half contains negative control master mix (NTC wells,

n = 2520) and the left half contains lambda DNA master mix master (Positive
wells, n = 1024) and negative control master mix (Test wells, n = 1496) in a
checkerboard pattern. (b) Number of Test wells with signal, number of NTC
wells with signal, and calculated misalignment rate for 11 MSNDs and 19
microchips. (PDF 1288 kb)

Additional file 3: Figure S3. Well-to-well variation in the number of
reads and detected transcripts for Ba/F3 cells. (@) Number of mapped reads
plotted against number of sequenced reads for each well. (b) Number of
detected transcripts plotted against number of sequenced reads for each
well. (PDF 237 kb)

Additional file 4: Figure S4. Heatmaps illustrating the total number of
detected transcripts for each well selected for downstream processing.
Data are for three microchips, each with 5184 wells arranged ina 72 X 72
square layout. Microchips 72,618 and 72,598 were used for profiling human
and mouse cell lines (names of cell lines indicated in the plot). Microchip
72,625 was used for profiling pancreatic islets. For microchips with multiple
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dispensed samples, the dispense area for each sample is indicated.
(PDF 93 kb)

Additional file 5: Figure S5. Percentage of mitochondrial transcripts
plotted against total number of detected transcripts for mouse Ba/F3
cells (@), human cell lines (b), mouse cell lines (c), and pancreatic islets (d).
Dashed lines indicate the minimum number of detected transcripts
required as a cell QC filter for each data set. (PDF 409 kb)

Additional file 6: Figure S6. Cell-to-cell variability and comparison of
single-cell ensemble versus bulk expression. (a) Scatter plot of per-gene
transcript counts for two Ba/F3 cells. (b) Scatter plot of per-gene read
counts for two Ba/F3 cells shown in (a). (c) Scatter plot of per-gene transcript
counts for bulk cells versus ensemble of single cells. (PDF 272 kb)

Additional file 7: Figure S7. Hierarchical clustering of (a) human and
(b) mouse cell lines based on 100 most variable genes. (PDF 1272 kb)

Additional file 8: Figure S8. Unsupervised principal component analysis
(PCA) for mouse pancreatic islet cells based on the 500 most variable genes.
Circles correspond to cells and are colored by (a) microchip (n = 116 for
72574, n = 352 for 72625) and (b) transcript counts of cell type markers
(Ins1, Geg, Ppy, and Sst). (PDF 139 kb)

Additional file 9: Figure S9. Effect of requiring a minimum number of
reads per UMI on single-cell purity. Shown are data for the species-mixing
experiment when considering UMIs supported by a minimum of 1, 2 or 3
reads. Single-cell purity estimates are shown in each panel. Otherwise as
Fig. 3. (PDF 94 kb)
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