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Abstract

Background: Cell elongation and expansion are significant contributors to plant growth and morphogenesis,
and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important
phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell
expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large
size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and
targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by
PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about

PIN-FORMED (PIN) efflux carriers in cotton is known.

Results: In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium
hirsutum (G. hirsutum) genome. We found that PIN7-3 and PIN2 genes originated from the At subgenome
were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes
are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN
genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were
significantly up-regulated by exogenous hormone treatment.

Conclusions: Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including
phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study
sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.
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Background

The plant phytohormone auxin (indole-3-acetic acid,
IAA) plays an essential role in plant morphogenesis,
organogenesis, apical dominance, embryo formation,
vascular differentiation, and light and gravity perception
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[1, 2]. Two critical pathways, including auxin transport
and auxin signaling, are vital for plant development,
playing a major role in both phototropism and gravitrop-
ism. At the cellular level, auxin negatively regulates the
transcription factor AUXIN RESPONSE FACTOR (ARF),
which mediates the expression of auxin-responsive genes
[3, 4]. At the tissue level, auxin is synthesized and then
transported from the site of biosynthesis to the sites of
auxin action [5, 6]. Auxin efflux has been observed in
specific tissues at different developmental stages, and plays
a role in lateral organ initiation, root gravitropism, and
root hair formation [7-9]. The cell to cell polar transport
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of auxin is mediated by specific influx and efflux carriers,
resulting in asymmetric distribution of auxin [10, 11]. The
auxin influx and efflux proteins in Arabidopsis can be
grouped into 3 gene families: P-glycoprotein (MDR/PGP/
ABCB) efflux/conditional transporters (PGP), auxin
resistant 1/like auxl (AUX1/LAX) influx carriers, and
plant specific PIN-FORMED (PIN) efflux carriers [4, 12, 13].
The polar subcellular localization of PIN efflux proteins is
responsible for directional auxin flow, and more and more
evidence indicates that plasma membrane-localized PIN
proteins are the rate-limiting step in auxin polar transport
[14, 15]. PIN polarization and auxin polar transport play
an important role in both plant phototropism and grav-
itropism [16, 17].

In Arabidopsis, the PIN gene family is comprised of 8
members, which have been reported to be involved in
various developmental processes [18, 19]. PIN1, PIN2,
PIN3, PIN14 and PIN7, located in the plasma membrane,
are involved in the tropic response and root growth. In
contrast, the endoplasmic reticulum (ER) localized PINs,
including PIN5, PIN6 and PINS, are mainly involved in
intracellular auxin homeostasis [20, 21]. Among all PIN
family members, loss-of-function pinl and pin2 mutants
show severe phenotypes, making them well suited for
investigating auxin-dependent developmental processes
[22]. PIN1 is mainly involved in the maintenance of em-
bryonic auxin gradients, and organ initiation is severely
affected in pinl mutants, which results in the formation of
naked inflorescence stems [23]. Constitutive triple re-
sponse 1 (CTR1), a protein that acts downstream of the
ethylene receptors, is a negative regulator of ethylene
signaling. PIN2 functions downstream of CTR1 and
primarily regulates root gravitropism [24]. The roots of
pin2 mutants are insensitive to ethylene and grow agra-
vitropically [25, 26]. Recently, the PIN genes have been
reported to play a role in the integration of hormone
signaling and abiotic stress responses. In soybean, PIN
genes are differentially regulated by both abiotic stresses
and phytohormones [19]. In rice, PIN genes show tissue-
specific expression and have been found to also be regu-
lated by hormones [27]. In maize, the expression levels of
most ZmPIN genes were induced in shoots and reduced
in roots by various abiotic stress treatments, including
drought, salt, dehydration and cold [15].

Cotton is an important source of both natural fibers in
the textile industry and cotton seed oil used in the produc-
tion of food and biodiesel fuel. Understanding the factors
that regulate fiber initiation will drive the development of
technologies to improve yield potentials. Prior work sug-
gests that auxin plays an essential role in fiber cell initiation.
Exogenous application of IAA to cotton ovules promoted
cotton fiber initials during fiber cell initiation [28]. Further-
more, in vitro application of N-1-naphthylphtha-lamic acid
(NPA), an inhibitor of auxin polar transport, reduces IAA
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accumulation and inhibits fiber cell initiation [29]. Further,
targeted expression of iaaM, an IAA biosynthetic gene, was
showed to increase the number of lint fibers produced [29].
In additional, auxin regulates cotton fiber initiation via
GhPIN-mediated auxin transport [30, 31]. Auxin is not
synthesized in fiber cells, and is mainly transported from
the outside of ovules to fiber cells via polar auxin transport.

In this work, we performed a comprehensive analysis of
the PIN gene family based on data gathered from recent
whole genome sequencing results [32-36]. Comparative
analysis of allotetraploid cotton (G. hirsutum) with its dip-
loid ancestor (G. arboreum) indicated that PINI-3 and
PIN2 may play an important role in root development. In
addition, we carried out expression profiling of cotton PIN
genes in response to different hormonal treatments and
abiotic stresses. The results showed that the majority of
cotton PIN genes contained auxin response elements
(AuxREs) and salicylic acid (SA) responsive elements in their
promoter regions, which were significantly up-regulated by
exogenous hormone treatment.

Methods

Plant materials and growth conditions

Gossypium hirsutum (Xuzhou 142) and Gossypium arbor-
eum (Shixiya 1) seeds were acquired from the Institute of
Cotton Research of the Chinese Academy of Agricultural
Sciences (Anyang, China). The seeds were planted into
sand containers (one seedling per container) and grown in
a climate-controlled greenhouse (16-h light and 8-h dark
cycle at 30 °C) located at Shaanxi Normal University. For
each assay, samples were collected from the equivalent
growth stages of G. hirsutum and G. arboreum. A total of
9 seedlings of each species were used for each treatment
and three biological triplicates were performed per assay.

Identification and phylogenetic analysis of cotton PIN
genes

Genome sequences of G. hisutum, G. arboreum and G.
barbadense have recently become available [32-38]. A
genome browser for the cotton genome, termed Cottongen,
is accessible online (https://www.cottongen.org). The A
thaliana genome sequence was acquired from TAIR 10
(http://www.arabidopsis.org). Putative cotton PINs were
identified by blast searches against the three reference ge-
nomes using A. thaliana PIN protein sequences as queries.
Next, candidate PINs were further filtered based on their
conserved domains using SMART (http://smart.embl-
heidelberg.de) and Pfam (http://pfam.xfam.org/search#tab-
view=tab0) database analyses [39, 40]. The phylogenetic rela-
tionships between putative cotton PINs and A. thaliana PIN
proteins were determined using the neighbor-joining algo-
rithm using default parameters with 1000 bootstrap analyses
by MEGA 5.0 (https://www.megasoftware.net). Based on the
phylogenetic analysis, the putative cotton PINs were named
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according to their respective clades. Multiple sequence align-
ments of all newly identified PINs in this study were per-
formed using ClustalX with default parameters [41].

Chromosomal location and gene duplication analysis

Chromosome position information of the putative PINs
in G. hirsutum was obtained from gene annotation files
downloaded from the CottonGen website (https://www.cot
tongen.org). The map of PIN gene distribution along the
chromosomes is shown from top to bottom [42]. Dupli-
cation analysis of G. hirsutum PIN genes and genomic
synteny was identified and displayed with the Synteny
Mapping and Analysis Program (SyMAP) v3.4 [43].

Stress and hormonal treatments

Plants used for stress and hormone treatments were grown
under the same greenhouse conditions as reported pre-
viously [44]. The same protocols were used for drought,
dehydration and salt (250 mM) abiotic stress treatments
[44]. For the plant hormone treatments, the methods were
modified from the methods utilized by Chai et al. [45].
Briefly, two-week old seedlings were irrigated and sprayed
with 10 pM NAA and 0.5 mM salicylic acid, respectively.
After treatment, root and shoot tissues were harvested at
indicated times (0.5, 1, 3 and 5 h). The samples were
frozen in liquid nitrogen immediately after collection
and kept at —80 °C. For each treatment, three individual
samples were collected and analysis was performed on
biological triplicates.

RNA extraction and quantitative RT-PCR (qRT-PCR)
analysis

Cotton samples were ground to fine powder with a mortar
and pestle in liquid nitrogen. Total RNA was isolated
using a modified CTAB method as described [46], and
5 pg of total RNA was converted into ¢cDNA using the
c¢DNA Synthesis SuperMix (Transgen, China) according
to the manufacture instructions. For qRT-PCR experi-
ments, cotton L/BQ7 (GenBank No. AY189972) was used
as an internal control. Primers for qRT-PCR analysis are
listed in Additional files 1: Table S4.

Analysis of regulatory elements in the promoter region
Identified GhPIN genes including their predicted promoter
sequences were downloaded from the CottonGen website
(https://www.cottongen.org). The regulatory elements in
the promoter regions were predicted using PLACE and
PlantCARE software as previously [47, 48].

Accession numbers

The TAIR accession numbers for the Arabidopsis PIN
sequences used in this study are as follows: At1g73590
(AtPINI), At5g57090 (AtPIN2), Atlg70940 (AtPIN3),
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Fig. 1 Phylogenetic analysis of PIN family genes from G. hirsutum, G.
arboreum, G. raimondii and A. thaliana. The phylogenetic tree was
constructed using MEGA 5.0 with the neighbor-joining method. The
origin of the PIN genes are indicated by colored circles as follows:
G. hirsutum (red), G. arboretum (yellow), G. raimondii (green), and A.
thaliana (black). Numbers on branches are bootstrap values calculated
from 1000 replicates

At2g01420 (AtPIN4), At5g16530 (AtPINS5), Atlg77110
(AtPING6), At1g23080 (AtPIN7), At5g15100 (AtPINS).

Results

Genome-wide identification of PIN proteins in cotton
Three cotton genomes, including two diploid (G. arboreum
and G. raimondii) and one allotetraploid (G. hirsutum), have
recently been completed and published [33-36]. A genome


https://www.cottongen.org
https://www.cottongen.org
https://www.cottongen.org

He et al. BMC Genomics (2017) 18:507

browser is available at the Cottongen website (https://
www.cottongen.org). Putative cotton PIN proteins were
initially identified by Blastp searches against the three
reference genomes using A. thaliana PIN protein sequences
as queries. After protein conserved domain and gene struc-
ture selection, a total of 17, 12, and 10 predicted protein
coding sequences (CDSs) were identified in G. hirsutum, G.
arboreum and G. raimondii, respectively (Additional file 2:
Table S1). Most G. hirsutum PIN genes contained at least 3
introns in their open reading frames, except PINI—4-D and
PIN8-2-A, which have only one intron and two introns,
respectively. The protein coding sequences of all GhPINs
are listed in Additional file 3: Table S2. The deduced GhPIN
proteins varied in length from 127 amino acids (GhPIN8-2-
A) to 678 amino acids (GhPIN2-D). Conserved domain ana-
lysis showed they have an auxin efflux carrier (ACE) domain
at the amino-terminal region and a membrane transport
(MT) domain at the carboxy-terminus (Additional file 4:
Figure S1). Although the predicted sizes of the putative
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GhPIN proteins varied markedly, these two domains were
found to be consistently present in all analyzed sequences,
indicating that these two domains are likely to be crucial for
biochemical function.

Phylogenetic analysis and chromosomal distribution of
GhPIN genes

In order to investigate the evolutionary relationships of the
identified PIN proteins, an unrooted phylogenetic tree was
generated using the predicted full length amino acid se-
quences from G. arboreum, G. raimondii, G. hirsutum and
A. thaliana. As illustrated in the Neiboring-Joining phylo-
genetic tree (Fig. 1), a similar organization for the cotton
and A. thaliana PIN proteins and some orthologous rela-
tionships between both species were identified. Based on
this analysis, cotton PIN proteins were named based on
their relationships to known A. thaliana PINs. Compared
with A. thaliana, the PINI1 subfamily was found to be ex-
tensively expanded in cotton, indicating they may play an
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Fig. 2 Chromosomal location of the identified GhPIN genes in G. hirsutum. a Chromosomal location of the 12 mapped GhPIN genes is depicted
from top to bottom. The G. hirsutum chromosomes have been divided into At and Dt chromosomes according to the G. hirsutum genome. The
scale bar is in mega bases (Mb). Chromosome numbers are indicated on the top of the corresponding chromosomes. b Analysis of GhPIN gene
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important role in cotton. Interestingly, PIN5 subfamily
genes were found in G. arboreum, G. raimondii and A.
thaliana, but all of them were lost in G. hirsutum and G.
barbadense (Additional file 5: Table S3), implying that a
gene loss event occurred in the PIN family genes after poly-
ploidization in the allotetraploid cotton.

GhPIN genes were mapped onto chromosomes to pro-
vide insights into their organization in the cotton genome.
This data indicated that 12 genes were distributed among
8 chromosomes, including 5 GhPIN genes on 3 chromo-
somes from the At-subgenome and 7 genes found on 5
chromosomes from the Dt-subgenome (Fig. 2a). Two
whole-genome duplication (WGD) events have been ob-
served in cotton [36], which resulted in the occurrence of
gene duplication. The relationships and duplication
events between the 12 PIN genes were investigated.
These combined data suggested that segmental duplica-
tion and dispersed duplication might be the main types of
PIN gene duplication in cotton (Fig. 2b).

GhPIN1-3 and GhPIN2 are required for cotton root
development

Roots play an essential role in plant growth by absorbing
water and inorganic nutrients from the ground. Auxin,
which is transported and regulated by auxin efflux trans-
porters, has been reported as a positional cue for root
cell type determination [49]. To evaluate the roles of
PIN genes in cotton root development, a comparative
analysis of root growth between G. hirsutum and G.
arboretum was carried out. 7 days after germination, a
significant difference in root length was observed between
G. hirsutum and G. arboreum (Fig. 3a). The roots of G.
hirsutum reached an average length of 8 cm, while roots of
G. arboreum were less than 4 cm (Fig. 3b). Next, we tested
the expression of GhPIN genes during root development.
qRT-PCR results showed that the expression levels of
GhPINI-3 and GhPIN2 in G. hirsutum were much higher
than their predicted orthologs in G. arboreum (Fig. 3c),
indicating that GhPINI-3 and GhPIN2 genes may be re-
quired for early root development. After 3 weeks, both the
main and lateral roots of G. hirsutum were significantly
longer than those of G. arboreum (Fig. 4a and b). However,
no difference in the number of lateral roots was observed
between G. hirsutum and G. arboreum (Additional file 6:
Figure S2). Among the 7 PIN genes analyzed, GhPINI-3
and GHPIN2 were found to be higher expression in
both main and lateral roots of G. hirsutum relative to
G. arboreum (Fig. 4c and d), indicating that GhPIN1-3
and GHKPIN2 may play key roles in regulating the late-
stage development of cotton roots. Furthermore, the ex-
pression data of GhPIN2 suggests that it may contribute
more than GhPINI-3 in regulating cotton root develop-
ment (Figs. 3¢ and 4c). However, GhPINI-3 was found to
be more highly expressed in lateral roots, suggesting that
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Fig. 3 Comparative analysis of root growth in G. hirsutum and G.
arboreum. a Representative roots from 7-d-old G. hirsutum and G.
arboreum seedlings. Bar = 5 cm. b Root lengths of 7-d-old G. hirsutum
and G. arboreum seedlings as shown in (a). Statistical analysis was
carried out on three independent experiments. A total of 10 seedlings
were used for each measurement. Root lengths are shown as means +
SE. ¢ Quantitative RT-PCR analysis of PIN genes in 7-d-old G. hirsutum
and G. arboreum roots

it plays more an important role in regulating lateral root
growth (Fig. 4d). The observed differences in gene expres-
sion during root development indicate possible functional
differentiation of PIN genes.



He et al. BMC Genomics (2017) 18:507

Page 6 of 10

a control

b 25€ d
512 < 30.0047%* )
£10 205 3 m G. hirsutum
2 % 50.003 *
s 8 152 2 = G. arboreum
= -~ 0 7]
8 6 S  £0.0021
£ 4 108 %
g 05 £ 0001
o 2 Ve B i
< c © = -
= 0 | [ & 0- T T
® “7G. hirsutum ' G. arboreum o & Q\e % '5 Q\éb Q\eo’ Q\e‘b
c D &
©0.089
3 m G. hirsutum
é 0.061 = G. arboreum
(%]
£ 0.041
o
3
0 0.024
=
§ 0- A |

&
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replicates. Error bars represent means + SE from three independent experiments. The relative expression level was determined using cotton UBQ7 as
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Expression of GhPINs in response to drought, salt and
dehydration

It has been reported that PIN genes are involved in plant
response to diverse abiotic stresses, such as drought, salt
and dehydration [50]. In order to identify potential roles
of individual cotton PIN genes in different abiotic stress
responses, quantitative real-time PCR (qRT-PCR) analysis
was performed to identify changes in gene expression in
leaves and roots of plants that underwent different stress
treatments. GhPINI-1-D and GhPINI-4-A were found to
be highly differentially expressed. More GhPINs were up-
regulated in both leaves and roots that underwent salt
and dehydration treatment, relative to plants subjected
to drought stress. After cotton seedlings were grown in
drought conditions for 48 h, 5 genes were induced in leaves
(list genes) while only GHPIN6-A was up-regulated in roots
(Fig. 5a). GhPIN1-1-D, GhPINI1-4-A and GhPIN1-4-D were
highly upregulated in leaves under drought stress, but con-
comitantly down-regulated in roots. More genes showed
significant changes in gene expression in leaves, when
compared to roots, and almost all genes (13 out of 17)
were highly expressed in leaves in plants grown in sa-
line conditions (Fig. 5b). Interestingly, the number of
GhPIN genes up-regulated in leaves and roots were
nearly identical after drought stress (Fig. 5¢). In general,
GhPIN genes were widely induced by drought, salt and

dehydration stresses, suggesting that GhPINs play a role
in abiotic stress responses in cotton.

Gene expression analysis of GhPINs in response to auxin
and salicylic acid treatment

The phytohormone auxin is known to play important
roles in plant development [51]. Emerging evidence indi-
cates that salicylic acid (SA), a pivotal signaling molecule
involved in plant immune responses, is involved in both
local and systemic disease resistance responses [52]. In
order to explore the effects of auxin and SA on GhPINs
expression, GhPIN gene expression analysis was carried
out on shoots and roots after treatment with plant hor-
mones were analyzed. GhPINs were differentially expressed
upon treatment with SA and the auxin analogue NAA,.
The results showed that a total of 8 and 10 GAPIN genes
were responsive to NAA treatment in shoots and roots, re-
spectively (Fig. 6a). Further, we have also shown that 9
genes in shoots and 10 genes in roots were responsive to
SA (Fig. 6b). Auxin responsive elements (AuxREs) and SA
responsive elements (SAREs) have been shown to be in-
volved in response to auxin and SA stimuli, respectively
[53, 54]. In order to build our knowledge regarding how
these genes are induced by NAA and SA, a comprehensive
analysis of GhPIN promoters was performed. Our results
showed that 6 out of 8 highly expressed genes possessed at
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least one AuxRE in their promoter regions (Fig. 6c). In
addition, 4 genes, which were up-regulated in both shoots
and roots under SA treatment, contained a predicted SARE
in their promoter regions (Fig. 6d).

Discussion
In this work, 17 PIN genes were identified in G. hirsutum,
including 8 that originated from the At subgenome and 9
from the Dt subgenome (Additional file 2: Table S1).
Among them, 5 genes from the A genome and 2 from the
D genome were lost in the At and Dt subgenomes, which
is consistent with previous results that the allotetraploid
genome suffered a higher rate of gene loss relative to the
diploid genomes, and that more genes were lost in the At
subgenome during polyploidization [34, 35]. Genes in the
PINS group were observed in G. arboreum and G. raimon-
dii, but not found in G. hirsutum (Fig. 1), suggesting that
these genes evolved from a common ancestor, but were
then lost in G. hirsutum. Chromosomal distribution of
GhPIN genes showed that 12 out of the 17 genes are dis-
tributed across 8 chromosomes (Fig. 2a).

Genetic analysis in Arabidopsis has shed light on the
function of several PIN genes. Several members of the
PIN gene family of auxin efflux carriers, such as A¢PINI,

AtPIN2, AtPIN3, AtPIN4, and AtPIN7, are well-known
to be involved in cell-to-cell auxin transport in the root
[55]. In particular, A¢tPINI and AtPIN3 were found to be
the major auxin transport facilitators mediating polar auxin
re-allocation from the shoot to the root tip [12, 55, 56]. The
two PIN genes showed high expression in root, thereby de-
termining meristem size and consequently growth rates of
the primary root [56, 57]. In this study, we found that both
main and lateral roots in G. hirsutum were longer than
those from its diploid ancestor (Figs. 3a and 4a). qRT-PCR
analysis revealed that GZPINI-3 and GhPIN2 were are
strongly expressed in both main and lateral roots of G.
hirsutum (Fig. 4c). The differential and high-level expres-
sion of these genes seems to contribute to increased root
length in G. hirsutum. Lodging, referred to as the perman-
ent displacement of aboveground parts, greatly depends
on root length and strength [15]. Lodging is a common
phenomenon that causes yield reductions and makes
plants difficult to harvest. GhWPINI-3 and GhPIN2 are
required for cotton root development, which can be fur-
ther used in breeding programs to selecting genotypes that
are lodging-resistance.

Previous results revealed that accumulation of the plant
hormone indole 3-acetic acid (IAA) in the epidermis of
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Fig. 6 Quantitative RT-PCR analysis of GhPINs form roots and shoots of cotton plants treated with auxin or salicylic acid. a Expression of GhPIN
genes after NAA treatment. b Transcript abundance of GhPIN genes under salicylic acid treatment. Hpt indicates hours post treatment in (a) and
(b). ¢ Analysis of GhPINs with AuxRE elements present in their promoter regions. The element (TGTCTC) is the putative ARF binding site, which is
one of the key auxin responsive elements (AuxREs). d Analysis of GhPINs with SA responsive elements present in their promoter regions. The
element (TGACG) is the putative SA responsive element

cotton ovules significantly increased the number of lint fi-
bers, an important component of fiber yield [29]. In Arabi-
dopsis, mutation of genes involved in auxin polar transport
facilitators resulted in defects in distal organization of roots
[39]. Our results showed that GAZPINI-3 and GhPIN2
genes might play an important role in regulating both
main and lateral root development (Figs. 3 and 4). Auxin
may function in both the promotion of both fiber initi-
ation and cotton root growth, implying that auxin may
play a dual functional role in cotton development.
Soybean PIN genes were previously shown to be in-
duced by various abiotic stresses and plant hormones [19].
PIN genes in Sorghum bicolor were also found to be differ-
entially up-regulated after phytohormone treatment and
under abiotic stress [58]. Additionally, auxin transporter
gene families in maize were reported to be responsive to
different abiotic stresses [15]. In the present study, several
PIN genes were shown to be highly expressed in cotton
plants grown under drought, salt and dehydration treat-
ments (Fig. 5). Further gene-specific overexpression or
analysis of PIN knockout plants may be helpful to un-
ravel their functions. 10 out of 17 PINs expressed in
cotton roots were induced by NAA and SA treatment
(Fig. 6a and b). When analyzing the promoter regions
of the 10 PIN genes upregulated by hormone treatment,
6 and 4 were found to contain AuxREs and SAREs in
their promoter regions, respectively (Fig. 6¢ and d),

indicating these elements are very important for PIN
genes to respond to NAA and SA stimuli. These findings
provide clues towards the identification of more candi-
dates with potential roles in phytohormone stimuli.

Conclusions

Our study provided a comprehensive analysis of the PIN
gene family in G. hirsutum. We showed that PINI-3 and
PIN2 are involved in cotton root development. This study
will help us to elucidate the precise role of PIN genes in
cotton root development and in adaption to abiotic stress.
Our findings will also further help breeding efforts to de-
velop and select the lodging-resistant varieties in the future.
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