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Abstract

Background: The association studies on human complex traits are admittedly propitious to identify deleterious
genetic markers. Compared to single-trait analyses, multiple-trait analyses can arguably make better use of the
information on both traits and markers, and thus improve statistical power of association tests prominently. Principal
component analysis (PCA) is a well-known useful tool in multivariate analysis and can be applied to this task. Generally,
PCA is first performed on all traits and then a certain number of top principal components (PCs) that explain most of
the trait variations are selected to construct the test statistics. However, under some situations, only utilizing these top
PCs would lead to a loss of important evidences from discarded PCs and thus makes the capability compromised.

Methods: To overcome this drawback while keeping the advantages of using the top PCs, we propose a group
accumulated test evidence (GATE) procedure. By dividing the PCs which is sorted in the descending order according
to the corresponding eigenvalues into a few groups, GATE integrates the information of traits at the group level.

Results: Simulation studies demonstrate the superiority of the proposed approach over several existing methods in
terms of statistical power. Sometimes, the increase of power can reach 25%. These methods are further illustrated
using the Heterogeneous Stock Mice data which is collected from a quantitative genome-wide association studly.

Conclusions: Overall, GATE provides a powerful test for pleiotropic genetic associations.

Keywords: Pleiotropic genetic associations, Principal component analysis, Power, Biomedical study

Background

A lot of human complex traits are highly correlated due
to genetics, environmental influences and interactions
among them, such as, low density lipoprotein and triglyc-
erides, serum calcium and phosphorus, serum prostate
specific antigen and prostate cancer [1-3]. Identification
genetic variants that are associated with these correlated
traits can help researchers understand their genetic archi-
tecture better [4]. Single nucleotide polymorphism (SNP)
is an important genetic factor. A variety of SNPs have
been detected to be deleterious based on the hypothe-
sis analyses of multiple-trait-single-marker. For example,
seven SNPs including rs3764261, rs4420638, rs629301,
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rs964184, rs1367117, rs1042034, and rs174546 are con-
currently associated with four complex traits includ-
ing total cholesterol, high and low density lipoprotein,
and triglycerides [1, 5], and the SNP rs2476601 has
been reported to be associated with five traits includ-
ing rheumatoid arthritis [6], Crohn’s disease [7], systemic
lupus erythematosus [8], type I diabetes [9], and Graves’
disease [10].

The joint analysis of the associations between multiple
traits and a single marker is becoming popular nowadays,
and many methods have been put forward in the literature
[5, 11-19]. Broadly speaking, these methods can be clas-
sified into two categories: univariate analyses and multi-
variate analyses. The basic idea of univariate analyses is to
implement the association study on one trait and one SNP
firstly and then combine the obtained p-values with some
p-value combination procedure to construct an omnibus
test. Fisher-combined p-values [20] and weighted p-values
[16] are two representative approaches of this type. Mul-
tivariate analyses mainly consist of two types of methods:
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model-based analyses and dimension-reduction methods.
For model-based analyses, the traits are regressed on the
marker or the marker is regressed on the traits simulta-
neously. The frequently used regression models are the
mixed effect model and the proportional odds model
[5, 21, 22]. Through using random effects to account for
the correlation among subjects, linear mixed effect model
can not only model the covariance structure caused by
correlated phenotypes, but also by population structure
[12, 18]. Besides, Bayesian approach is another impor-
tant type of model-based approaches. PEER [23] and
mvBIMBAM [15] are two Bayesian approaches which
utilize the inferred hidden factor and posterior proba-
bilities which can provide information about which phe-
notypes are involved in the association model. In the
other hand, the canonical correlation analysis (CCA) and
principal component analysis (PCA) are two common
dimension-reduction approaches. Both of them have been
widely applied in pleiotropic genetic association studies
[17, 24, 25].

As is well known, Fisher-combined p-values possesses
the optimal Bahadur efficiency when these p-values are
independent [26]. However, in pleiotropic genetic stud-
ies, the test statistics are often dependent. For example,
the largest value of the correlation coefficients among
the traits in the Trinity Students Study analyzed below
is 0.98. TATES, a typical procedure of weighted p-values,
uses extended Simes procedure to correct for correlations
among components, and might have low power when
the genetic variant just affects some of the highly corre-
lated traits. MultiPhen [5] which utilizes the proportional
odds model by taking the marker as the outcome and the
traits as the independent variables, may suffer from loss
of power when the interested genetic marker is associ-
ated with all traits which are strongly correlated. CCA
[25] is equivalent to the one-way multivariate analysis of
variance analysis (MANOVA). The principal component
analysis is mainly proceeded based on some top princi-
pal components (PCs) that can explain most of the total
phenotypic variance of the traits used in the association
studies. It will lose power if the discarded PCs are highly
correlated with the traits. However, there is no widely
accepted selection criterion for the optimal PCs. Further-
more, Aschard et al. [17] pointed out that the PCs that
account for a small proportion of total variance can be as
important as those account for a large proportion of vari-
ance in the association studies. To avoid it, they developed
a multistep combined PC procedure (mCPC). For their
method, the number of top PCs included in the first group
is a key, which will affect the power significantly. For the
selection of number of PCs, the accumulated contribu-
tion rate of 80% is recommended. As shown in the later
simulation studies, using 80% sometime can lose power
prominently.
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In this work, we propose a procedure called GATE
to test for the asscoaition between multiple traits and
a single marker. GATE can be implemented using the
following three steps: 1) first perform the PCA on all
traits and calculate the p-values of the association anal-
ysis on univariate PC and a single marker one by one;
2) then divide the obtained p-values which are sorted
by the descending order according to the correponding
eigenvalues of the covariance matrix of traits into a few
groups with given sizes and utilize the Fisher-combined
method to combine p-values within and between groups;
3) let the number of p-values assigned in the first group
vary and take the minimal value of all the quantities
obatined in Step 2 as the final test statistic. To improve the
computational efficiency, we propose a resampling proce-
dure which integrates a two-layer resampling procedure
to one-layer procedure to calculate the statistical signif-
icance of the test statistic. It is built based on the facts
that under the null hypothesis where the genetic marker
is not associated with the traits, all the p-values asymp-
totically follow the uniform distribution on [0,1] and
—2In(p — value)s follow the Chi-squared distribu-
tion with 2 degrees of freedom. Simulation studies
show that GATE outperforms TATES, MultiPhen and
mCPC under most scenarios in terms of power. Some-
time more than 25% power increase can be achieved
(see Fig. 3 below). The performance of the com-
pared methods are further illustrated using the geno-
typic and phenotypic data from the Trinity Students
Study, a quantitative genome-wide association study.

Methods

The GATE

Suppose that there are n unrelated individuals enrolled
from a source population in a genetic study. For the
ith individual, let y; be the observation values of the
jth trait and denote its genotype at a SNP locus by g,
i =12---,nj = 1,2,---,m, where m is the num-

ber of traits of interest. Denote ¥ = (y,'j) and G =
nxm

(g1,82,- - ,g2)". Let A = (8j1j2)mxm be the covariance

n
matrix of traits with 6;,;, = 15 zi@,jl — 5 i = Vjo)s
=

n
y; = %ZJ’!’/’» jji,jo = 1,2,---,m. By the singular
i=1

value decomposition, A can be written as A = QAQF,
where A is a diagonal matrix with diagonal elements being
AMoAo, A (A1 = Ay > -+ > Ay > 0)and Q is an
orthogonal matrix with columns being the eigenvectors.
Denote Z = YQ, which is called the principal compo-
nent matrix whose columns correspond to all principal
components. Let z; be the jth column vector of Z. So the
relationship between the traits and the genotype can be
transformed into
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Zl':Olj-i-ﬂ}'G-}-é‘j, j=1L2,---,m,

where ¢; is the residual error term independently follow-
ing from a normal distribution with mean of zero and
unknown variance of 2. The null hypothesis that there
is no association between the genetic variant and pheno-
types becomes Hy : f1 = B2 = --- = B, = 0. Denote
the Wald test statistic for §; = O by T}, j = 1,2,--- ,m.
Then Ti,T5,---, Ty, are independently and identically
distributed and follow from the standard normal distribu-
tion asymptotically under the null hypothesis.
To test Hy, a natural choice is the Fisher’s combined test
m
denoted as FCT = ) sz which follows from the central
j=1
Chi-squared distribution with m degrees of freedom (DF)
asymptotically. Notice that 71, T5,-- -, Ty, are sorted by
the descending order of the eigenvalues A; > Ap > --- >
Am- Aschard et al. (2014) proposed to use

S
mCPC=—2In|1—F ZT]?
j=1

m
—2In|1-F,_ Z 7,
Jj=s+1

S
where s is the smallest integer satisfying Z Aj /
> A > 08,j = 1,2,---,m, and Fy(-) is the cumula-
=1
]tive distribution function of the centralized chi-squared
distribution with d DFs. As pointed out in the later
simulations, using 0.8 to determine s is not robust and
mCPC could loss power substantially. Sometimes such
power loss can be more than 25% (see Fig. 3 below).
In order to overcome this drawback, we suggest to
divide all marginal test statistics T, T2, -+ , Ty, into K
groups: {Tlr T2! ) Tml}! {Tm1+1! Tm1+27 Tt Tm1+mg}:

t {Tm1+mZ+~~+mK,1+1, Tm1+Vn2+~~~+m1<,1+2: w0 Ty
where m; denote the size of the ith groups,
O0<my <m,t=12,---,K,andm+my+- - -+myg = m.
For a given grouping (i.e. my,my, - - ,my are fixed), we
can first construct a combined statistic as

mi
Empmymye = —2In | 1= Fpy | > T7
j=1

m1+my

—2n(1=Fp | Y TP |-
j=mi+1
m
—2In|1—-F,, > ||

J=rittmg_1+1

where F;(-) is the cumulative distribution function of
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the centralized Chi-squared distribution with d DFs and
Epmymy--my asymptotically follows from x3; under the null
hypothesis, a central Chi-squared distribution with 2K
DFs. It should be noted that when K = 1, although the DF
of the distribution of &,,, is 2, the power of &, is exactly
equal to that of FCT. Hence the proposed test statistic is
given by

GATE = min {1 — Hx ( max 5m1rnz-~m1<> } ,
K=1,2,- ,m—1 mi+ma+--+mg=m

where Hy(-) is the cumulative distribution function of

max Emimy-myy 0 < my < m,t =1,2,--- K.
my+my+--+mg=m

Note that when K = 1, GATE is reduced to FCT and
becomes mCPC when K = 2,m; = s. Hence GATE is
expected to have more broader application than FCT and
mCPC.

Significance computation

GATE is the minimal value of some correlated statistic,
its exact distribution or asymptotic distribution is hard to
know. To calculate the p-value of GATE, we propose to
adopt the following resampling procedure. Since the dis-
tribution function of the statistic &, ,...m; under each
possible grouping is unknown, a two-layer resampling
procedure is required. However, the two-layer resam-
pling procedure is computation-intensive. To address it,
we develop to use the following one-layer resampling
procedure:

1) Calculate GATE based on the observations, denote it
by n(©. Set a large number B, for example B = 10000;

2) For b from 1 to B, generate m random variables
which are iid. from the standard normal distribution
and denoted as Tl(b), Téb), e T,(,? ) Then calculate
Emmyen, with T, T TP,

3) Estimate the distribution function H with the
&imy-.m, obtained from Step 2 and denoted as H,

4) For b from 1 to B, using T®), TZ(b), e T,(,f) and H to
calculate the GATE, denote it by n®;

5) The p-value of the GATE is calculated as

#{U(b) >n0:p=1,2--- ,B}
B

p — value =

’

where # is an operator that counts the number of the
elements in a set.

We point out that when m is fixed, the empirical null
distribution functions of & and GATE are fixed, which
is free of the marker. Hence GATE can be readily to be
applied to a large-scale genetic study such as genome-wide
association studies.
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Results

Simulations

Association models

Since the effect of a causal genetic variant on the phe-
notypes can be indirect and direct [27], here we consider
two association models (indirect and direct association
model) with indirect and direct genetic effect to gener-
ate multiple correlated phenotypes. These two models
(denoted by Model 1 and Model 2) have also been used in
van der Sluis et al. [16] and Aschard et al. [17]. In Model
1, the genetic markers are associated with the phenotypes
through latent factors. Considering m correlated pheno-
types, Y1, Ys,- - -, Yy, which depend on L latent variables
Uy, Uy, -+, U and a genetic marker G. Model 1 can be
expressed as:

U = G+ e = Untea
U = GBy+ ez Yo = Uy +e2
. and . )
Up = GBL + e Yin = Uk, Vm + €m

where ki, ko, --,ky € {1,2,---,L}, e1,ez,---,er and
£1,82, - , &y are independent random error terms which
follow the standard normal distribution. Denote G as the
genotype value for a biallelic SNP with the minor allele
frequency being p (MAF = p) and assume that Hardy-
Weinberg equilibrium holds in the general population on
the SNP locus. Thus the corresponding genotype frequen-
cies are Pr(G = 0) = (1 — p)%, Pr(G = 1) = 2p(1 — p)
and Pr(G = 2) = p?. It should be noted that in reality, the
latent variables are unobservable. The correlations among
phenotypes rely on the coefficients 8 = (81,82, -+, BL)*
andy = (y1,¥2,- -+ » ¥m)", which measures the strength of
the association between the genetic marker and the latent
variables and the association between the latent variables
and the traits, respectively. The proportion of the variance
of the ith phenotype explained by the genetic variant is

[2p1-p)BL 2] /[ 14y +2p(A-p) Byl i= 1,2+ ,m
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For Model 2, the genetic markers are directly associ-
ated with the phenotypes and their genetic effects are
independent of the latent factors. The relationships are

Yi = Uiyn+UWyn+---+ Uit +Gh1 + &1
Yo = Uiy +Uayn+ -+ Uy +GBy + &2

Yio = Urym + WaYma + -+

where Uy, Uy, - - - , U} are L latent variables that are inde-
pendently normally distributed with mean 0 and variance
1, Gand ¢y, &9, - - , &y are defined as above, y;; and §; are
coefficients, i = 1,2,--- ,m, k = 1,2,--- , L. The propor-
tion of the variance of the ith phenotype explained by G
can be calculated by [ 2p(1 —p)ﬁ?] /1 Zé:l )/3(4— 1+2p(1—
p)ﬂiz], i = 1,2---,m. These two simulated schemes are
illustrated in Fig. 1.

+ UrymL + GBm + €ms

Simulation settings

To compare our proposed method with the existing meth-
ods, we generate datasets from the indirect and direct
association model, respectively. The detailed setups are as
follows.

1) Indirect association model

We set the number of latent factors to be smaller than
that of phenotypes: L = m/4. Besides, we assume that
every four phenotypes subject to one common latent fac-
tor and the respective effects are the same. Then Model
1 becomes Y; = Upysyi + € Urijag = GBrijap +
erija;, i = 1,2,---,m, where [i/4] denote the small-
est integer that is greater than i/4, and r;, = 1, if
[i1/4] = [i2/4], i1,ia € {1,2,---,m}. Actually, there
are L different values for y and denote them by y =
Yuve, V)" = (YuVs s Va3 Ym=3)", k =
1,2---,L. For a meaningful comparison, we simulate
m = 20, 100 correlated traits under four patterns of corre-
lation structures: (1) uniform low correlation; (2) uniform
strong correlation; (3) a gradient of moderate to low corre-
lations; (4) a gradient of strong to moderate correlations.

Model 1

Model 2

$n  rrad)

|Y1||Y2 |Y3 |Y| |le

ml

Fig. 1 Schematic representations of two association models with indirect (Model 1) and direct (Model 2) genetic effects used to generate multiple
correlated phenotypes. In Model 1, the genetic variant affects the correlated phenotypes via latent factors, while the genetic variant directly affects
some single phenotypes in Model 2
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Thus the derived correlation matrix under the indirect
trait model is L-block diagonal. Denote the correlation
matrix among m phenotypes by

Aq
Ay
£ diag(A1, Ay, -+, AL),

Ap

where A; = (83(;))”1 o1 =12, Larem/L x m/L
T
positive definite matrices.

We specify different values for the latent variable coef-
ficients y;, i = 1,2,---,m to ensure the non-zero
elements of the correlation matrix A match the above
four structures under the null hypothesis (ie. f1 =
B = --- = P = 0). For uniform low and high
correlation structure, we let all y;,i = 1,2---,m be
equal to 0.5 and 2 which results in a uniform corre-
lation matrix with equal correlation coefficient of 0.2
and 0.8, respectively. On the other hand, we consider a
list of monotone decreasing values for y to construct a
gradient correlation matrix. When m = 20, we have
L = 5 and set y = (1,0.8,0.6,0.4,0.2)*. The derived
correlation matrix A belongs to the third pattern of
correlation matrix and have the biggest non-zero corre-
lation coefficient of 0.500 (moderate) and the smallest
value of 0.038 (low). We set y = (1.5,1.3,1.1,0.9,0.7)F
to get the fourth pattern of correlation structure with
the biggest value of 0.692 and the smallest value of
0.329 for the non-zero correlation coefficients when
m = 20. We denote the obtained four correlation
structures for the indirect association model by SI,
S2, S3, and S4, respectively. The detailed settings of

vi» i = 1,2---,m corresponding to the above four
correlation structures for m = 20 are presented as
follows:
S1. y =(0.5,0.5,0.5,0.5,0.5)% A; =---= Az =

1 020202

02 1 0202 |

0202 1 02|

020202 1
S2. 7 =(2.0,2.0,2.0,2.0,2.0)"; Aj =---= A5 =

1 0808038

0.8 1 080.8 |,

0808 1 08 )

080808 1

$3. 7 = (10,08,06,04,027 A= (&) 8 =
X

L6 =0500whens £ 6 Az = (87) .60 =
X

1,83) = 0.390, when s # ¢;
Az = (55(5))4 R 8 =1, 83(?) = 0.265 when s # £;
X
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Ay = (552‘))4 O =10 = 0.138 when's £ &
X
As = (55?)4 L 8 = 1,8 = 0038 whens £ &
X
$4. 7 = (1.5,1.3,1.1,0.9,0.7)7; Aj = (55}))4X4, 5 =

1,8 = 0.692 when s # t;
Ay = (55?))4 08 =160 = 0.628 when's # 1
X

As

(555))4”, 83 =1, Ss(ts) = 0.548 when s # t;

Ay

<5S(;L))4x4’ 35(3) =1, 55(,?) = 0.448 when s # t;

As = (55;"))4X4, 5% = 1,6 = 0.329 when s # £.

The correlation matrix A is calculated under the null
hypothesis (81 = B2 = --- = Bs = 0). Similarly, we
simulated 100 correlated phenotypes with the above third
and forth correlation structures through letting y; = 1 —
004G —1)and y; = 1.5 —-0.04G — 1),i = 1,2---,25,
respectively. In addition, we provide the detailed settings
of correlation structures when 100 correlated phenotypes
are considered in Additional file 1 which we denote by
S5, S6, S7, and S8, respectively. We specify the minor
allele frequency (MAF) of the genetic variant as MAF €
{0.05,0.15,0.30,0.50}. To make the powers of all pro-
cedures comparable, 1,500 independent individuals are
simulated when MAF = 0.05,0.15, and 1,000 unrelated
individuals are used for MAF = 0.30,0.50. 1,000 simu-
lations are conducted for the nominal significance level
of 0.05.

2) Direct association model

For the direct association model, the effect of latent vari-
ables is independent with that of genetic variants. With-
out loss of generality, we consider the structure that all
the phenotypes are related to one common latent vari-
able. Then Model 2 becomes Y; = Uy; + GB; + ¢,
i = 1,2,---,m, where G is the genotype vector. Sim-
ilarly, we simulate m = 20,100 correlated traits under
four above patterns of correlation structures. All y;, i =
1,2---,m are specified as 0.5 and 2, respectively, for the
uniform correlation matrix (denote by S9 and S10, respec-
tively) with equal correlation coefficient of 0.2 and 0.8. In
order to construct a gradient correlation matrix, we con-
sider a list of monotone decreasing values for y. When
y = (100,145, --,0.05)7, 3 = 1.00 — 0.05(G — 1),
i = 1,2---,m — 1, the resulting correlation matrix X
belongs to the third pattern (denote by S11) with the val-
ues decreasing from left to right and have the biggest
correlation coefficient of 0.48 (moderate) and the smallest
value of 0.005 (low). We set y = (1.50,1.45,---,0.55)7,
yi = 150 — 005G —1),i = 1,2---,m — 1, to get
the fourth pattern of correlation structure (denote by
S12) with the biggest value of 0.68 and the smallest
value of 0.25. Four patterns of correlation structures used
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for m = 20 when the phenotypes are sampled from
Model 2 are

S9. i =050, i=1,2,---,20; A= (8st)20x200ss =
1, 8¢ = 0.2 whens # ¢;
S10. y;=2.00,i=1,2,---,20; A = (85t)20%x200ss =
1, ¢ = 0.8 whens # ¢;
S11. ¥, =1.00—-0.05G0—1),i =1,2,---,20; A =
1 0.480 --- 0.070 0.035
0480 1 ---0.680 0.034

0.070 0.068 --- 1 0.005
0.035 0.034 --- 0005 1/,
S12. ;=150 —0.05(i —1),i = 1,2,---,20; A =
1 0.680 --- 0.420 0.400
0680 1 ---0.420 0.390

0420 0420 --- 1 0.250

0.400 0.390 --- 0.250 1 20%20

Likewise, these correlation matrices are calculated
under the null hypothesis (81 = f2 = -+ = B0 = 0).
And we also summarize the settings of four correspond-
ing correlation structures (denote by S13, S14, S15, and
S16) for m = 100 which is provided detailedly in the
Additional file 1. In the following simulation, MAF €
{0.05,0.15,0.30, 0.50} are considered.

Selection of k

The selection of K in GATE is a key since large K leads
to extensive computations and small K may result in not
grasping the information thoroughly. We suggest select-
ing K = 2 for the proposed GATE procedure in practice.
From the view of “pseudo degree of freedom’, when K = 1,
the statistic &, my....s,, Which is used in the construction
of the GATE statistic might possess m degrees of free-
dom or so, while when K > 2, the corresponding DF
becomes 2K. Thus, when the number of traits that need
to be analysed is enough large (m > 4), dividing all sin-
gle Wald test statistics 17, 1o, - - , Ty, into 2 groups will
lead to the smallest DF. Hence, we deduce that the GATE
with K = 2 will have better power performance than
the other selections of K. Furthermore, we conduct some
simulation studies to explore the performances of GATE
under different selections of K. The simulations results are
summarized in the Additional file 1 which coincidentally
demonstrates our deduction. Therefore, in the following
simulation, we compare the GATE with only considering
K € {1,2} to other existing methods.

Performance comparison to other methods

In order to test the performance of the proposed GATE
aprroach, four existing methods including TATES [16],
MultiPhen [5], MANOVA, and mCPC [17] are compared.
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1) Indirect association model

Firstly, we assume the correlated phenotypes are sam-
pled from the indirect association model and explore the
performances of the above five tests.

Type I error rate

Table 1 summarizes the empirical type I error rates of
these five methods under the nominal significance level of
0.05 when the correlated phenotypes are simulated from
Model 1. When m = 20, all of the five tests can control
the type I error correctly with their empirical values being
close to the nominal significance level. For example, when
MAF = 0.15,m = 20, the empirical type I error rates
of TATES, MANOVA, MultiPhen, mCPC, and GATE for
the phenotypes with the correlation matrix of S3 are
0.051, 0.051, 0.049, 0.051, and 0.052, respectively. How-
ever, when the number of simulated phenotypes is large
(m = 100), MultiPhen always has inflated type I error
rates. For instance, when the phenotypes are generated
from the indirect association model with the correlation
matrix of S5, the empirical type I errors of MultiPhen
for MAF = 0.05,0.15,0.30,0.50 are 0.111, 0.087, 0.096,
and 0.114, respectively. So we exclude it in the following
comparisons of power for 100 phenotypes.

Power

Next, we compare the powers of the TATES, MANOVA,
MultiPhen, mCPC, and GATE under the nominal signif-
icance level of 0.05. Under each scheme of the corre-
lation structures, 5 levels of association including A =
20%, 40%, 60%, 80%, 100% of the phenotypes that are asso-
ciated with the genotype are considered. Denote the num-
ber of the associated traits by k (= Am). Without loss
of generality, we assume that the first k phenotypes are
associated with G. Besides this, we consider the scenarios
that the phenotypes are randomly selected to be associ-
ated with the genotype and the corresponding results are
presented in Additional file 1.

Figure 2 reports the power results for 20 correlated
phenotypes which are generated from Model 1 with the
correlation structures of S1, S2, S3, and S4, respectively.
To make the power comparable, we set the proportions
of the variance of the associated phenotypes explained
by the genetic variant under the four configurations (S1,
S2, S3, S4) are 0.1%, 0.2%, 0.1%, and 0.2%, respectively.
In most cases, our proposed test is more powerful than
the other methods except when the correlations among
associated phenotypes are uniformly strong (52). Some-
times the power increase of TATES compared to the
other four approaches can reach 13%. For example, when
MAF = 0.15,n = 1,500, = 60% and X belongs to
S3, the empirical powers of TATES, MANOVA, Multi-
Phen, mCPC, and GATE are 0.324, 0.309, 0.312, 0.286,
and 0.453, respectively. GATE is sightly less powerful than
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Table 1 The empirical type | errors of TATES, MANOVA, MultiPhen, mCPC, and GATE when the correlated phenotypes are sampled

from indirect association model

Scenario MAF TATES MANOVA MultiPhen mCPC GATE
m =20 S1 0.05 0.046 0.044 0.048 0.046 0.043
0.15 0.048 0.045 0.043 0.044 0.041

0.30 0.058 0.054 0.064 0.052 0.053

0.50 0.047 0.047 0.058 0.050 0.045

S2 0.05 0.062 0.053 0.049 0.043 0.053
0.15 0.059 0.058 0.060 0.057 0.054

030 0.061 0.046 0.047 0.047 0.047

0.50 0.054 0.053 0.054 0.055 0.059

S3 0.05 0.053 0.047 0.047 0.041 0.043
0.15 0.051 0.051 0.049 0.051 0.052

030 0.064 0.053 0.057 0.061 0.065

0.50 0.050 0.061 0.065 0.066 0.062

54 0.05 0.062 0.042 0.047 0.046 0.042
0.15 0.051 0.045 0.045 0.049 0.045

030 0.045 0.042 0.045 0.047 0.047

0.50 0.052 0.044 0.049 0.060 0.057

m =100 S5 0.05 0.055 0.059 0111 0.057 0.059
0.15 0.053 0.049 0.087 0.046 0.053

0.30 0.056 0.037 0.096 0.030 0.032

0.50 0.060 0.051 0.114 0.038 0.051

S6 0.05 0.058 0.049 0.103 0.046 0.051
0.15 0.056 0.056 0.093 0.063 0.058

030 0.062 0.043 0.098 0.040 0.049

0.50 0.076 0.046 0.116 0.037 0.050

S7 0.05 0.057 0.052 0.104 0.051 0.048
0.15 0.045 0.045 0.086 0.058 0.056

030 0.052 0.045 0.103 0.040 0.041

0.50 0.049 0.062 0.114 0.054 0.053

S8 0.05 0.066 0.063 0.113 0.063 0.062
0.15 0.063 0.046 0.085 0.051 0.055

030 0.039 0.052 0.116 0.041 0.038

0.50 0.066 0.071 0.126 0.066 0.054

The number of correlated phenotypes is 20 and 100. Scenario S1-54 correspond to four correlation structures for m=20 and Scenario S5-58 are for m=100. For each scenario,
four MAFs including 0.05, 0.15, 0.30, and 0.50 are considered. The nominal significance level is 0.05 and 1000 simulations are conducted

mCPC and TATES when the non-zero correlation coeffi-
cients are uniformly equal to 0.8 (52) and the gap between
them narrows as the proportion of associated phenotypes
increases. For example, under the correlation matrix of
S2 and MAF = 0.15,n = 1,500, the empirical powers
of TATES for 1 = 20%, 40%, 60%, 80%, 100% are 0.166,
0.313, 0.396, 0.495, and 0.580, respectively, and those of

GATE are 0.118, 0.238, 0.346, 0.486, and 0.605. We also
find that MANOVA and MultiPhen usually have similar
performance when the number of phenotypes are not too
large.

The empirical powers of four test (excluding MultiPhen)
for 100 phenotypes which are simulated from the indi-
rect trait model with the correlation schemes of S5, S6,
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Fig. 2 The empirical power of five tests for 20 correlated phenotypes sampled from Model 1 with correlation structure S1-54. 1000 simulation
replicates are conducted under the nominal significant level of 0.05

S7, and S8 are summarized in Fig. 3. The proportions
of the variance of the associated phenotypes explained
by the genetic variant under four patterns of correla-
tion structures are 0.1%, 0.1%, 0.05%, and 0.1%, respec-
tively. The results for m 100 are similar to those
for m 20. In most scenarios, GATE performs bet-
ter than the other three methods. From Fig. 3, we can
find that the superiority of GATE over the other three
methods is more evident when the number of the anal-
ysed traits is large. Sometimes, the power increase of
the proposed GATE can reach 25%. For instance, when
MAF = 0.15,n = 1,500, 2 = 60% under the correlation
matrix of S7, the powers of TATES, MANOVA, mCPC,
and GATE are 0.251, 0.428, 0.409, and 0.683, respectively.
When the non-zero correlation coefficients are uniformly
large (S6), the mCPC performs slightly better than the
GATE. This occurs because when the correlations among
different phenotypes are strong and a relatively large num-
ber of analysed traits are analyzed, the test &,,, which is
included in the construction of GATE would have loss
of power substantially. However, under the other cor-
relation structures (S5, S7, and S8), the powers of the

GATE are always higher than those of mCPC. In some
cases, GATE can have 28% increase of power compar-
ing to mCPC. For instances, when MAF 0.05n =
1,500, A 60% under the correlation matrix of S7,
the powers of mCPC and GATE are 0.408 and 0.693,
respectively.

2) Direct association model

Next, we assess the performance of the proposed test
compared with those of the other four tests when the
correlated phenotypes are sampled from the direct asso-
ciation model.

Typel error rate

In this section, we compare the type I error rates of
TATES, MANOVA, MultiPhen, mCPC, and GATE when
multiple phenotypes are generated from direct associa-
tion model. Table 2 reports the results of type I error rate
for 20 and 100 correlated phenotypes under the nominal
significance level of 0.05, respectively. It shows that when
m = 20, all five tests can control the type I error rates cor-
rectly because their empirical type I error rates are close
to the nominal level. For example, when MAF = 0.30,
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Fig. 3 The empirical power of five tests for 100 correlated phenotypes sampled from Model 1 with correlation structure S5-S8. 1000 simulation
replicates are conducted under the nominal significant level of 0.05

the type I error rates of TATES, MANOVA, MultiPhen,
mCPC, and GATE under the correlation structure of S11
are 0.049, 0.054, 0.055, 0.052, and 0.054, respectively. Sim-
ilarly, when the number of simulated phenotypes is large
(m = 100), MultiPhen has inflated type I error rates,
while the other four tests maintain correct type I error
rates. For instance, when m = 100, the type I error rates
of MultiPhen under the correlation structure of S15 for
MAF = 0.05,0.15,0.30, and 0.50 are 0.106, 0.102, 0.118,
and 0.103, respectively.

Power

Next, we compare the power of the five tests when multi-
ple phenotypes are simulated from Model 2. Under each
scheme of the correlation structures, 5 levels of associa-
tion: A = 20%, 40%, 60%, 80%, 100% of the phenotypes that
are associated with the genetic variant are considered and
the number of the associated traits is k. Here we report the
results under the scenario where the first k phenotypes are
associated with the genetic variant. Additional empirical
power results for the cases that the associated phenotypes
are randomly selected with equal probability are available
in Additional file 1.

Figure 4 presents the power results of all five tests
for 20 correlated phenotypes simulated from Model 2
with S9, §10, S11 and S12, respectively. To make the
power results comparable, we set the proportions of
the variance of the associated phenotypes explained
by the genetic variant under the four configurations
(§9-S12) are 0.2%, 0.1%, 0.2%, and 0.2%, respectively.
When m 20, we find that MANOVA and Multi-
Phen usually have similar performances. For example,
when MAF 0.30 and the correlation structure
is S9, the powers of MANOVA and MultiPhen for
A = 20%,40%,60%,80%, and 100% are (0.348, 0.350),
(0.535, 0.546), (0.612, 0.618), (0.523, 0.539), and (0.333,
0.338), respectively. When the correlations among
different phenotypes are equal (S9 and S10) and the
number of the associated phenotypes are relatively
small (A < 60%), MANOVA and MultiPhen are two
most powerful tests and they have similar power
performances. In other situations, GATE performs
better than MANOVA and MultiPhen. For exam-
ple, under the configuration of S9 and MAF 0.15,
the powers of the MANOVA, MultiPhen and GATE
tests for A 40% are 0.742,0.726 and 0.710, and
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Table 2 The empirical type | errors of TATES, MANOVA, MultiPhen, mCPC, and GATE when the correlated phenotypes are sampled

from direct association model

Scenario MAF TATES MANOVA MultiPhen mCPC GATE
m =20 S9 0.05 0.045 0.048 0.050 0.045 0.047
0.15 0.054 0.049 0.058 0.050 0.048

0.30 0.051 0.047 0.054 0.043 0.045

0.50 0.050 0.054 0.056 0.053 0.052

S10 0.05 0.037 0.054 0.059 0.048 0.052
0.15 0.035 0.055 0.050 0.046 0.045

0.30 0.038 0.049 0.055 0.052 0.043

0.50 0.031 0.043 0.049 0.047 0.047

ST1 0.05 0.041 0.050 0.050 0.052 0.050
0.15 0.049 0.047 0.054 0.048 0.053

0.30 0.049 0.054 0.055 0.052 0.054

0.50 0.060 0.053 0.060 0.052 0.055

S12 0.05 0.042 0.051 0.057 0.062 0.064
0.15 0.040 0.047 0.045 0.044 0.048

0.30 0.041 0.043 0.048 0.045 0.046

0.50 0.045 0.048 0.052 0.048 0.051

m = 100 S13 0.05 0.049 0.044 0.086 0.042 0.044
0.15 0.060 0.047 0.089 0.046 0.040

0.30 0.060 0.063 0.119 0.052 0.056

0.50 0.053 0.041 0.094 0.039 0.051

S14 0.05 0.031 0.053 0.100 0.059 0.048
0.15 0.024 0.059 0.092 0.046 0.054

0.30 0.030 0.051 0114 0.051 0.058

0.50 0.030 0.050 0122 0.046 0.042

S15 0.05 0.058 0.055 0.106 0.056 0.050
0.15 0.047 0.051 0.102 0.059 0.043

0.30 0.042 0.066 0118 0.061 0.051

0.50 0.048 0.039 0.103 0.045 0.043

S16 0.05 0.036 0.055 0.099 0.059 0.053
0.15 0.041 0.050 0.087 0.055 0.049

0.30 0.041 0.047 0.110 0.057 0.065

0.50 0.042 0.065 0.130 0.059 0.052

The number of correlated phenotypes is 20 and 100. Scenario $S9-S12 correspond to four correlation structures for m=20 and Scenario S13-S16 are for m=100. For each
scenario, four MAFs including 0.05, 0.15, 0.30, and 0.50 are considered. The nominal significance level is 0.05 and 1000 simulation replicates are conducted

their corresponding powers for A = 100% are 0.501,
0.475 and 0.798, respectively. When the correla-
tions among different phenotypes are nonuniform
(S11 and S12), the GATE performs better than the
other four methods in most cases. When A is rela-
tively small, mCPC outperform slightly than GATE.
However, when A becomes large, the powers of the

GATE exceed those of mCPC significantly. And in
some cases, the power increase can reach 25%. For
example, when the correlation structure is S11 and
MAF = 0.15, the powers of mCPC and GATE for
A = 80% are 0.372 and 0.621, respectively. More-
over, when there exist strong correlations among
phenotypes (S10), TATES suffers significant loss
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replicates are conducted under the nominal significant level of 0.05
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Fig. 4 The empirical power of five tests for 20 correlated phenotypes sampled from Model 2 with correlation structure S9-512. 1000 simulation

of power. For example, when MAF 0.05,n
1,500, and the rate of associated phenotypes with
S10 is 60%, the powers of the TATES, MANOVA,
MultiPhen, mCPC, and GATE are 0.192, 0.980,
0.981, 0.969, and 0.975, respectively. Hence, the
proposed GATE is the most robust test against
different levels of pleiotropy and strengthes of cor-
relation. Figure 5 shows the power results of four
tests including TATES, MANOVA, mCPC, and
GATE for 100 simulated phenotypes from Model
2. The proportions of the variance of the associ-
ated phenotypes explained by the genetic variant
under four configurations (S13, S14, S15, S16) are all
set to be 0.1%. The performances of all compared
approaches are similar to those under m = 20.

Applications to heterogeneous stock mice data

The mouse is an important model organism which can
provide information on gene functions in mammals. Its
use has been proved to be a powerful approach to under-
standing the genetic architecture of human disease and
fundamental mammalian biology [28]. To further explore

the performance of the proposed method on the test
for pleiotropic genetic effects, we apply it to the anal-
ysis of the Heterogeneous Stock Mice data, which is
downloaded from http://mus.well.ox.ac.uk/. Originally,
101 phenotypes including models of human disease (such
as, asthma, type 2 diabetes mellitus, obesity, anxiety),
immunological, biochemical and hematological pheno-
types, and others, are collected [29]. These 101 pheno-
types belong to 19 categories and a full description of
them is available in Solberg et al. [30]. Before the analysis,
we remove the phenotypes with the proportion of missing
values being large than 0.01, so that 52 phenotypes (listed
in Additional file 1) are left. The remaining phenotyps
are correlated with each other and the largest correlation
coefficient is 0.979, which happens between two hema-
tological phenotypes: “Haem Haemoglobin” and “Haem
Haematocrit” In addition, we exclude the subjects with
missing oberved phenotype values and thus a total of 588
mice are obtained. There are totally 302 SNPs on chromo-
some 19. After removing the SNPs with the proportions
of missing genotype value large than 15% and MAF being
smaller than 0.05, 250 SNPs are finally analyzed.
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Fig. 5 The empirical power of five tests for 100 correlated phenotypes sampled from Model 2 with correlation structure S13-S16. 1000 replicates are
conducted under the nominal significant level of 0.05

We use TATES, MANOVA, MultiPhen, mCPC, and
GATE to test the association between the SNPs on chro-
mosome 19 and all 52 phenotypes. 1,000,000 resamplings
are conducted to calculate of the p-value of GATE. Under
the nominal significance level of 0.05, the adjusted signif-
icance level for a single test is 0.05/250= 2 x 10~* from
the Bonferroni correction for multiplicity. On a whole, the
number of identified SNPs that are associated with all the
52 phenotypes by GATE is more than those by the other
four methods. Among 250 SNPs, there are 125 SNPs are
detected by GATE, while 80, 114, 118, and 116 SNPs are
detected by TATES, MANOVA, MultiPhen, and mCPC,
respectively. Among the 125 SNPs, there are 7 SNPs that
are only detected to be significantly associated with all
the analyzed phenotypes by the proposed methods. The
p-values of these SNPs for five methods are presented
in Table 3. For each SNP, the p-value of GATE is always
the smallest and smaller than the adjusted significance
level 2 x 10~*. For example, for rs13483499, the p-value
of GATE is 6.30 x 10~ which is smaller than those of
TATES (3.27 x 10-3), MANOVA (1.79 x 10~%), MultiPhen
(3.34 x 10~%) and mCPC (1.63 x 10~%). Besides, some of

the identified SNPs have been found to have implications
on the analyzed phenotypes in the literature. For exam-
ple, Valdar et al. [29] reported that the SNP rs13459157
is associated with the phenotype “OFT Activity and defe-
cation’, which is among the 52 phenotypes and the SNP
rs6259521 has an association with the phenotype “Pleth
Enhanced pause (baseline)”.

Discussion

The genetic variants play fundamental roles in studies
of human complex diseases. The elucidation of genetic
risk factors could provide an insightful understanding on
the occurrence of the diseases and then make the tar-
geted therapy feasible. As the genome-wide association
studies move forward, the association between multiple
traits and a single SNP is becoming a hot pot nowadays.
Intuitively, multiple-traits-single-SNP analysis (MTSS) is
more powerful in identifying deleterious SNP compared
to single-marker test on one trait. In this paper, we have
presented GATE, a new procedure to do MTSS. The false
positive rate of GATE is controlled correctly for various
MAFs and different correlation structures for the traits
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Table 3 P-values of the selected 7 SNPs on mouse chromosome 19 for the association tests with 52 phenotypes using the TATES,

MANOVA, MultiPhen, mCPC, and GATE methods

snpid TATES MANOVA MultiPhen mCPC GATE

rs13483499 3.27x1073 1.79x 1074 3.34x107% 163x107% 6.30x10™°
rs13459157 405x1073 236x107% 420x107% 217x107% 880x10™°
rs13483502 423x1072 101x1073 222x107% 997x10™* 167x107%
rs6259521 3.00x1073 1.11x1072 463%x1073 641x107% 1.73x107%
rs13483579 1.19%1073 6.15%1072 6.17x1072 544%1073 1.74%107%
rs13483598 453x1073 3.16x1073 807x107% 2.85x1073 136x107%
rs13483601 3.82x1073 282x1073 745%1074 184x1073 850107

“snpid” is the ID of the selected SNPs

since the computation of the significance of GATE is
based on the resampling procedure. Extensive simulations
including the direct association model and indirect asso-
ciation model show that GATE outperforms the existing
procedures when the association model is indirect and
the relationship is not consistently strong, and is more
robust under other situations. In other words, GATE is an
efficient multivariate analysis procedure to conduct asso-
ciation studies between genotypes and phenotypes since
the potential genetic architecture is generally unknown
beforehand.

We provide a resampling procedure to calculate the sig-
nificance of GATE. The key of such resampling procedure
is to generate i.i.d. observations from the standard nor-
mal distribution. This procedure is very user-friendly and
can be implemented in any statistical and numerical soft-
wares such as R, SAS, Matlab, and others. In principle,
a two-layer resampling procedure should be employed
to obtain the p-value of GATE. Here we adopt a one-
layer resampling procedure, where the cumulative distri-
bution function (H) of the inner statistic was estimated
at the beginning, and then use the estimated distribu-
tion function of H and the same samples to obtain the
empirical significance of GATE. This procedure can effi-
ciently reduce the computational cost and make GATE
feasible to a large-scale genetic study. Since a large num-
ber of replications in the one-layer resampling procedure
won't result in high computation cost, we recommend
using B=10000 or larger to ensure the stability of the cal-
culated GATE s p-values. On the other hand, we can
use the generalized Gamma distribution (GGD) [20] to
approximate the distribution of —2In(GATE). The 95%,
99%, 99.9%, 99.99%, 99.999% quantiles using the fitted
GDD and the empirical values of —2In(GATE) based on
1,000,000 resamplings are given in Additional file 1: Table
S5. They match very well. So in order to reduce the
computational intensity, we can consider using the fitted
GDD method to obtain the p-values of GATE. The pro-
posed procedure has been coded in R verion 3.3.3 and

is available at http://www.statsci.amss.ac.cn/yjscy/yjy/lqz/
201510/t20151027_313273.html.

PCA is an important tool in multivariate analysis. In
PCA, a crucial issue is how to select PCs. A standard selec-
tion criterion is using the cumulative contribution rate
that indicates a few top PCs can be chosen. As pointed out
by [31] and [17], only using some top PCs might miss some
important PCs that are with low contribution rate, but are
highly correlated with the outcome. FCT that combines
all PCs can be an alternative approach. However, it loses
power substantially when the number of true signals is
large. To overcome this drawback, Aschard [17] proposed
a mCPC procedure. By dividing the marginal test statis-
tics for each PC into two groups and combining the tests
among groups, the DF can be reduced, especially when the
signals are very sparse. However, for the correlation struc-
ture among multiple phenotypes and association strength
between genotype and phenotype are unknown before-
hand, using a fixed grouping technique is not enough
robust. GATE makes a bridge between FCT and mCPC.
To some extent, GATE can be regarded as an extension
of FCT and mCPC since it is exactly equal to FCT when
the group number is one and takes mCPC as one of com-
ponents. GATE is constructed from a large family of test
statistics containing FCT and mCPC. Overall, GATE is
more robust than FCT and mCPC. The simulation results
also demonstrate it.

GATE is also an extension of TATES who uses the min-
imum of weighted p-value as the test statistic. Basically,
TATES can be viewed as a function of p-values. The func-
tion is the combination of linear operator and minimum
operator. For GATE, it utilizes the cumulative distribution
function, log, quadratic-form and summation functions.
These four functions are commonly used in constructing
the test statistics in hypothesis testing, which is expected
to integrate the information over a wide range of scenar-
ios than other functions. The simulations show that GATE
is more robust than TATES under most of the considered
scenarios.


http://www.statsci.amss.ac.cn/yjscy/yjy/lqz/201510/t20151027_313273.html
http://www.statsci.amss.ac.cn/yjscy/yjy/lqz/201510/t20151027_313273.html
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Covariates or confounding factors including the gen-
der, age, environment factors can be of great importance
in assessing the associations between the genetic variants
and complex traits. Adjusting for covariates in genetic
association studies have two motivations: one is cor-
recting for the bias of the genetic effect estimates, and
another is improving statistical power. For example, the
hidden population structure can not be ignored in popu-
lation genetic association studies and a failure to consider
the population stratification might lead to many false
positive findings. So it is a routine for researchers to
correct for the population stratification in the genome
wide association studies. Fortunately, the proposed GATE
procedure can be directly applied to multiple traits asso-
ciation studies with covariates by adding the covariates
in the association studies of the single PC and genetic
variant .

Conclusions

GATE is an efficient and robust procedure for associ-
ation studies between multiple traits and a single SNP,
which holds the key to understanding the genetic archi-
tecture of complex diseases. GATE is implemented based
on the principal components (PCs) of multiple correlated
traits. In contrast with the traditional PCA, GATE uti-
lizes all obtained PCs instead of some selected PCs. This
is because that low variances may possess important evi-
dences of association and combines them in a group man-
ner. Extensive numerical analyses show the superiority of
the proposed approach over several existing methods in
terms of statistical power.

Additional file

Additional file 1: GATE: an efficient procedure in study of pleiotropic
genetic associations. (PDF 317 kb)
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