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Genome-wide association study identifies a
major gene for beech bark disease
resistance in American beech (Fagus
grandifolia Ehrh.)
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Abstract

Background: The American Beech tree (Fagus grandifolia Ehrh.), native to eastern North America, is ecologically
important and provides high quality wood products. This species is susceptible to beech bark disease (BBD) and is
facing high rates of mortality in North America. The disease occurs from an interaction between the woolly beech
scale insect (Cryptococcus fagisuga), one of two species of the fungus Neonectria (N. faginata or N. ditissima), and
American Beech trees.

Methods: In this case-control genome-wide association study (GWAS), we tested 16 K high quality SNPs using the
Affymetrix Axiom 1.5 K – 50 K assay to genotype an association population of 514 individuals. We also conducted
linkage analysis in a full-sib family of 115 individuals. Fisher’s exact test and logistic regression tests were performed
to test associations between SNPs and phenotypes.

Results: Association tests revealed four highly significant SNPs on chromosome (Chr) 5 for a single gene (Mt),
which encodes a mRNA for metallothionein-like protein (metal ion binding) in Fagus sylvatica. Metallothioneins
represent Cys-rich metal chelators able to coordinate metal atoms and may play an important role in the resistance
mechanisms against beech scale insect.

Conclusion: The GWAS study has identified a single locus of major effect contributing to beech bark disease
resistance. Knowledge of this genetic locus contributing to resistance might be used in applied breeding,
conservation and restoration programs.
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Background
American beech (Fagus grandifolia Ehrl.) is native to the
eastern North American deciduous forests and is the
only species of this genus in North America [1]. The
slow-growing, deciduous tree usually reaches about
37 m height (120 ft) and may attain ages of 300 to
400 years [2]. The native range of American beech is
within an area from Nova Scotia in southeastern
Canada, west to Wisconsin and south to eastern Texas
and northern Florida in the United States. Beech wood

is easily workable, excellent for turning and steam bend-
ing and used for flooring, furniture, veneer and
containers [2].
Genetic research has been centered mostly on three

genera (Fagus, Castanea and Quercus) of the family
Fagaceae. The American beech (Fagus grandifolia Ehrh.)
genome is estimated at 610 Mbp [3] and has yet to be
sequenced. The number of chromosomes is generally
stable within the Fagaceae family (2n = 24), with occa-
sional changes (2n = 24 + 1, 2, 3) resulting from irregu-
lar segregation at mitosis [4]. Both Fagus grandifolia and
F. sylvatica have the most rudimentary genomes within
the family, making their genomes attractive for compara-
tive genomics studies [3].
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The thinness of beech bark makes it vulnerable to a
range of scale insects. Beech bark disease (BBD) is a scale-
fungal complex disease, initiated when a specific scale in-
sect, Cryptococcus fagisuga Lind., attacks the bark of
beech trees and renders it susceptible to bark canker fungi
of the genus Neonectria [5]. Neonectria (Neonectria fagi-
nata or Neonectria ditissima) is the most common genus
of ascomycete fungi associated with beech bark disease
[6–8]. The disease develops through feeding activity of the
beech scale insect that creates points of entryway for the
fungal pathogen. Once established on the tree, the fungus
is no longer influenced by fluctuations in beech scale
density caused by environmental factors or habitat quality
[9]. The cankering response of beech to fungal infection
produces bark microstructure fissures and when it pro-
gresses the cankers may coalesce girdling or partially gird-
ling the tree leading to wilting foliage and even mortality
of trees. Individuals that survive infection are more sus-
ceptible to abiotic and biotic stress [10].
Beech bark disease first occurred when the scale insect

was accidently introduced on plant material imported to
Nova Scotia from Europe around 1890 [11]. It is found
throughout northeastern U.S. states and southeastern
Canadian provenances and is still expanding. The disease
distribution is generally attributed to the initial phase of
the insect life cycle (“crawlers”) just after hatching, which
is the only mobile phase of the life cycle. The “crawlers”
can move to other areas on the same tree and can be dis-
persed by wind, birds, animals or humans. The mortality
rate in beech has been significant in areas throughout the
eastern United States. The loss of beech trees in some
areas, where other hardwood species are rare, is causing
even greater impact on wildlife, especially for black bear
(Ursus americanus) [6, 12]. Pesticide control proved to
not be fully effective in reducing the number of scale in-
sects due to their protective waxy covering [13]. Neither
pesticide application nor removal of infested trees is
practical in large natural areas, because of labor, fi-
nancial and environmental constraints [14]. Attempts
to control C. faggisuga using a bio-agent such as a
predatory mite [Allothrombium mitchelli Davis (Acari:
Trombidiidae)] is currently under investigation [15].
Several field trials showed some beech trees remain

after infestations that appear to be naturally resistant to
BBD, usually clustered in small groups [16, 17]. About
1% of American beech trees remain disease free in for-
ests long-affected by BBD [17]. There have been a small
number of studies to understand the genetics of resist-
ance of American beech to BBD [17–20]. Several studies
have been conducted using molecular markers such as
isozymes, RAPD (random amplified polymorphic DNA),
AFLP (amplified fragment length polymorphism) and
SSRs (simple sequence repeat) to differentiate between
resistant and susceptible individuals and identify markers

correlated with resistance, evaluate spatial and popula-
tion genetic structure, and perform parentage analysis
[19, 21–24]. Although genetic marker studies enhanced
the efforts to clarify modes of inheritance, no markers
have been discovered that correlate with resistance. To
estimate heritability, resistance to the beech scale insect,
the artificial infestation technique developed by Houston
[16], was used to test parent trees and their full and
half-sibling progeny for resistance [24]. Individuals were
classified as susceptible if five or more scale insects were
present on the bark surface 1 year after scale insect eggs
were affixed to the test tree. Low levels of resistance
were found in families with only one resistant parent
and a higher proportion of resistant progeny were only
observed in families where both parent trees were resist-
ant, confirming that resistance to beech scale insect is a
heritable trait [19, 24]. Current screening for resistance
aims to increase the proportion of resistant trees and re-
move the susceptible trees for breeding purposes. These
results formed the basis of a regional breeding program
for BBD-resistant American beech [5, 25]. Identification
of genetic markers associated with the resistance pheno-
type could potentially accelerate breeding efforts and re-
duce costs through the implementation of indirect
selection methods, reducing the need for the costly, time
consuming and labor intensive methods currently used
to test trees for resistance to the scale insect.
Association mapping (AM) is an alternative approach

that may, in theory, overcome limitations of pedigree-
based quantitative trait loci (QTL) mapping [26]. It has
been used in model species with available genomic re-
sources, however with recently available genome se-
quences for forest species, this approach has the
potential to increase the chance of understanding the
genetic architecture of complex traits. The candidate-
gene-based approach has been used for forest species
where genome sequences were not yet developed [27].
In our study, we conducted a genome wide association
study (GWAS) to discover loci associated with BBD re-
sistance. A case-control design was used, which com-
pared marker frequencies between a group of affected
individuals (cases) and a group of unaffected individuals
(controls). In this approach, we aimed to examine gen-
etic architecture of disease resistance in American beech
and identify candidate genes associated to BBD. Once
identified, a marker breeding based approach could be
used in breeding programs for BBD resistance.

Methods
Transcriptome
Plant materials
Trees sampled for RNA preparation were all part of
the U.S. Forest Service Northern Research Station’s
American beech breeding program in Delaware, OH.
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Tissues were sampled in the summer of 2009 from
selected trees growing in naturally forested areas,
grafted ramets of parent trees, and seedling progeny.
The selected trees, or grafted ramets of the selected
trees, were previously tested for beech scale resistance
using an artificial infestation procedure [25]. To
maximize genetic diversity, five resistant and five sus-
ceptible trees originating from a diverse geographic
range, that included New Brunswick (Canada), Maine
(USA), the lower peninsula of Michigan (USA), the
upper peninsula of Michigan (USA), Pennsylvania
(USA), and both northern and southern Ohio (USA)
were selected for RNA sequencing and SNP discovery.
Outer bark tissues including periderm, vascular cam-
bium, and phloem, were harvested using grafting
knives sterilized with liquid ethanol and were imme-
diately frozen in a dry ice ethanol bath before transfer
to a − 80 °C freezer until shipping overnight to the
Schatz Center at Pennsylvania State University in a
dry nitrogen shipper to prevent thawing.

RNA preparation
RNA samples were sequenced using Roche 454 sequen-
cing technology. The main aim was to establish a data-
base for network analysis to determine tissue specific
expression patterns. Individual total RNA samples were
prepared from bark tissues using the method first de-
scribed by [28] and modified by [29]. At least five grams
of frozen bark tissues were weighed, ground to a fine
powder under liquid nitrogen, and dispersed in CTAB
buffer. Following two chloroform extractions, RNA was
precipitated with LiCl2, extracted again with chloroform
and precipitated with ethanol. The resulting RNA pellet
was re-suspended in 40–100 μl of DEPC-treated water,
and the quality was assessed with an Agilent Technolo-
gies 2100 Bioanalyzer (Agilent Technologies). Poly(A)
RNA was purified from total RNA using the Ovation
RNA-Seq System kit (NuGen) following supplier’s in-
structions. Reverse-transcription was performed using
the Just cDNA kit (Stratagene) and random hexamer
primers.

Library construction and 454 Roche sequencing
Individual sequencing libraries for each cDNA preparation
were constructed and sequenced using a 454 sequencer as
previously described [29]. The cDNA preparations were
sheared to approximately 500 bp fragment lengths.
Adaptor sequences containing unique barcodes for each
library were ligated to the fragmented cDNAs and immo-
bilized on beads. The libraries for the five disease-resistant
trees were pooled and the libraries for the five disease-
susceptible trees were combined for separate multiplex
sequencing, each on a different half of the same plate.
Multiplex sequencing of the library pools was performed

on an FLX model 454 DNA sequencer (Roche Diagnos-
tics) at Penn State University. The DNA sequence files for
each of the ten cDNA libraries were selected and com-
piled from the batch sequencing raw data files using a
Newbler 454 software utility, based on the unique bar-
codes assigned to each of the libraries. Sequences gener-
ated in this study were submitted to the Short Read
Archive at the National Center for Biotechnology Infor-
mation, accessions numbers SRX1781388 to SRX1781397,
for NCBI BioProject Accession PRJNA321730 (NCBI:
http://www.ncbi.nlm.nih.gov).

Transcriptome assembly
The SeqMan NGEN (DNASTAR) program for next gen-
eration transcriptome sequence data assembly was used
to assemble contigs from the pooled 454 sequence data
files for all five BBD-resistant tree libraries. Similarly, the
pooled dataset consisting of 454 sequence data files for
the five BBD-susceptible tree libraries was also assem-
bled using the NGEN program. Finally, to obtain a refer-
ence transcriptome for F. grandifolia, all of the 454
sequencing data files for the ten libraries were pooled
and assembled into a combined set of transcript contigs.

Filtering of transcriptome assembly and SNP calling
Mapping of the reads from each library onto the assem-
bled transcriptomes revealed a high level of several se-
quences of ribosomal origins. These transcripts
accounted for 34% (180,292 out of 533,261), 27%
(139,718 out of 521,505) and 18% (186,745 out of
1,026,995) of the resistant, susceptible and combined as-
semblies, respectively. To determine the amount of
structural non-coding RNA (ncRNA) sequences present
in the libraries, the RFAM structural RNA database [30]
was downloaded to serve as a local BLAST database. All
of the sequence reads and contig sequences in the three
assembled transcriptomes were aligned to the RFAM
database, using a conservative BLAST e-value threshold
of e-70, the ribosomal content was about 30% of the se-
quenced reads. ncRNAs accounted for 729, 1506 and
2110 contigs for the resistant, susceptible and combined
assemblies, respectively. These contigs were removed
from the assemblies, prior to SNP discovery.
Due to the large amount of ncRNA reads, another as-

sembly was conducted using the Newbler program
(Roche) which incorporated filtering for structural
RNAs, low quality reads, and abbreviated reads. The
BLAST cut-off e-value used in the filtering ncRNAs was
set at e-50, resulting in 349,613 out of 1,406,316 reads in
total to be removed prior to assembly. Again, assemblies
were conducted for the 5 BBD-resistant libraries, the 5
BBD-susceptible libraries, and all 10 libraries combined.
Detection of putative polymorphic sites was performed

by mapping reads filtered for structural RNAs to the
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beech reference transcript contigs, using the Newbler’s
gsMapper program. Both DNASTAR and Newbler all-
library combined contig sets were used, separately, as
reference transcriptomes in the SNP discovery. A mini-
mum depth of coverage of 15 reads from each library
was required to call putative SNPs. High confidence
SNP sites were identified as those with a minimum of
100 bases flanking the SNP site and where the reference
nucleotide at the SNP site was non-ambiguous. The
stress-response genes and EST-based DNA markers served
as a resource (Fagus grandifolia Transcriptome, Hardwood
Genomics Project, www.hardwoodgenomics.org) for
the construction of linkage maps and a framework for a
GWAS study.

Population sampling and phenotypic classification
Resistant trees (R = 254) and susceptible trees (S = 260)
were located and positions mapped in six US states and
nine stands. Trees in Penobscot county (Maine),
Berkshire county (MA), Randolph county (WV) and
Pascataquis county (ME) and two Canadian

provenances: Prince Edward Isl. Canada, Kings county,
and Sissiboo Falls, Digby county (NS) were located and
mapped as reported in previous studies [18, 22]. Add-
itional trees were located and mapped in Ludington
State Park, Mason county (MI), Luce county (MI),
Mckean county (PA), Clearfield county (PA), Clinton
county (PA) and Licking county (OH) (Fig. 1).
Phenotypes were determined for 514 individuals

through field assessment of all trees at the time of tissue
collection. Trees exempt of beech scale insects and any
apparent signs of fungal infection were classified as re-
sistant. A subset of trees was artificially inoculated with
scale eggs to confirm resistance either in the field or on
grafted ramets of the original trees [16, 17, 25]. A
complete description of sampled trees and their pheno-
types is included in Additional file 1.

Tests of association
SNP genotyping
Extraction of DNA from leaf and dormant bud tissues
was carried out as described in [19]. Dormant buds were

Fig. 1 Sampling locations of mapping population. Highlighted by red full circles are sampling locations of American beech full-sib individuals used
for association mapping study across stands in six U.S. states and two Canadian provinces. The map graphic was reproduced in the package ‘ggmap’
(Spatial visualization in ggplot2) v.2.6.1 (Kahle and Wickham) [38] in software R with Google Maps and Stamen Maps. For Fig. 1 a copyright permission
was not required
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collected as described in [18] and stored at −70 °C until
used for DNA extractions. For the 514 samples, DNA
quality and quantity was tested before submitting for
genotyping. Approximately 20 K SNPs, originating from
EST transcriptome assemblies, were submitted for de-
sign scores and 16 K of these were selected for inclusion
on an Affymetrix Axiom™ Genome-Wide 1.5 K - 50 K
array (Santa Clara, CA). Genotypes were successfully de-
termined for 506 of the 514 samples and were used in
downstream analysis with an initial call rate of 97% or
greater.

SNP linkage map
Controlled cross-pollinations were carried out between
two confirmed beech scale resistant American beech
trees 1505 (R) and 1504 (R) in Ludington State Park, MI
(USA) as previously described to create the mapping
population [31]. Additional cross-pollinations were car-
ried out on grafted containerized ramets of the parents
in 2010 to supplement the original family (N = 46),
bringing the total number of progeny to 117.
Linkage analysis was performed on 115 of the 117 pro-

geny that were successfully genotyped at 5838 SNPs
sites. A genetic map was constructed to order SNP
markers used in association testing and served as graph-
ical displays of the genome wide significant associated
SNPs. The map construction was performed using the
software Join-Map 2.0 [32]. All SNPs that successfully
“passed” a 1:2:1 or 1:1 segregation ratio test in the off-
spring, were used in the linkage analysis, assigned to
linkage groups and ordered to determine map genetic
distances in cM (centimorgans).

Population structure analyses and genome-wide identity-
by-state test (IBS test)
Discriminant Analysis of Principal Components (DAPC)
was used to cluster individuals based on genotypes. This
well-known method aims to maximize group differences
while minimizing within cluster variances [33]. DAPC
was applied on a matrix composed of 506 individuals
and 5838 SNPs using an implementation available in the
R package adegenet 2.0.0. To identify clusters, the princi-
pal component analysis (PCA) of the matrix data was
first computed followed by Discriminant Analysis on the
number of retained principal components as provided
by DAPC method.
A test for population stratification was also performed

with qqman package [34] in R software v.3.2.0, a com-
mon tool to visualize GWAS results and estimate the
rate of genomic inflation. We measured genomic infla-
tion also defined as λ (lambda) to provide evidence of
population stratification or cryptic relatedness.
To avoid statistical biases during population structure

analysis and IBS score computations, SNPs with

Pearson’s correlation coefficients (r2) higher than 0.8
were rejected. Due to the absence of a genetic scaffold, a
chromosomal location-based SNP filtering, as imple-
mented in common GWAS packages, such as PLINK
v.1.9 [35], was replaced by iterative SNP filtering. Pair-
wise Pearson’s r2 across SNPs were computed and, at
each step during the iteration, the SNP correlated
(r2 > 0.8) with the most number of other SNPs was
rejected. The iteration stopped when no remaining SNPs
were correlated (all pairwise r2 < 0.8). This procedure
left 3220 SNPs out of original 5838 SNPs. Filtered SNPs
were then used to compute IBS scores, namely pairwise
Pearson’s correlation coefficients (r2), between individ-
uals. Here again iterative filtering was applied across
trees to prune individuals with IBS > 0.1875. Out of 506
trees, 327 passed IBS-based filtering.

GWAS
A logistic regression model was used to perform associ-
ation tests between SNPs and disease scores. Population
stratification was controlled using the first 20 ancestry
principal components (PC’s) as covariates in the logistic
model. GWAS was performed using the PLINK 1.9
package ([35], https://www.cog-genomics.org/plink2, [36])
and 3220 SNPs on 327 independent individuals (172 cases
and 155 controls, all pairwise IBS < 0.185). Prior to
association testing, individuals with missing genotype
rate > 10% were deleted, leaving effectively 172 cases
(susceptible or diseased trees) and 155 controls (resistant
or symptom-free trees). SNPs were then filtered for
Hardy-Weinberg equilibrium (p-values >10−5), minor allele
frequencies (MAF > 0.05) and missing genotypes across
individuals (< 10%). In total, 3155 SNPs were included in
the association test after filtering. The genotyping rate was
equal to 0.99. For every SNP included in the case-control
test, the exact P value [P] and the estimated odds ratio
[OD] for the association between the minor allele [A1] and
the disease phenotype were calculated. Resulting p-values
underwent genomic inflation control.

Linkage disequilibrium
Haplotypes were identified using Haploview (v.4.2) [37],
and with default parameters (exclusion of markers sepa-
rated by >500 kb and individuals with >50% missing
genotype). Pearson’s coefficient of determination (r2) was
used to determine the pairwise correlation between gen-
etic markers.

Results
Transcriptome results
RNA sequence data
The sequencing of 10 cDNA libraries yielded 1,406,316
reads covering 508,764,432 bases. The libraries from
BBD-resistant trees yielded between 87,964 and 210,340
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reads, while 70,218 to 205,945 reads were obtained for
libraries from BBD-susceptible trees (Table 1). While the
quality and quantity of the sequence data was acceptable
(Table 1; Additional file 2), the mRNA poly-A selection
step left a large proportion of structural non-coding
RNAs in the samples, including ribosomal RNA. More-
over, up to a third of the transcriptome sequence reads
were mapped to ncRNAs. Subsequently, the quality of
the mRNA preparations was re-assessed with an Agilent
Technologies 2100 Bioanalyzer (Agilent Technologies), re-
vealing remnant rRNA peaks (Additional file 3). Because
the ncRNA contamination was detected after the first
transcript assemblies were conducted, a second assembly
with additional filtering was conducted (see below).

Assembly of transcript contigs
Assemblies of 454 sequence reads into contigs were con-
ducted using both the SeqMan NGEN (DNASTAR) pro-
gram and the 454 Newbler (Roche) assembler. Contigs
were built using reads from, either five BB-resistant li-
braries, five BBD-susceptible libraries or combination of
both libraries.
The NGEN assembly resulted in a total of 28,592,

27,544 and 44,065 contigs for pools of BBD-resistant,
BBD-susceptible and the combination of both libraries,
respectively. NGEN assemblies incorporated 76%, 73%
and 73% of the sequence reads from the BBD-resistant,
BBD-susceptible and the combined samples. NGEN con-
tig lengths averaged approximately 360 bases, with a me-
dian varying from 475 to 542 bases. The longest
transcripts obtained in the resistant, susceptible and
combined assemblies were 11,704, 8168 and 10,800
bases, respectively. Table 2 summarizes the results of the

three F. grandifolia transcriptome assemblies using the
NGEN program.
The Newbler filtered assembly resulted in 10,690 con-

tigs for the BBD-resistant data, 7630 contigs for the
BBD-susceptible data, and 16,285 contigs for all libraries
combined. The Newbler assemblies incorporated 84%,
81% and 86% of the sequence reads from the BBD-
resistant, BBD-susceptible and the combined data, re-
spectively. The longest transcripts obtained by Newbler
in the resistant, susceptible and combined assemblies
were 4651, 4336 and 10,681 bases respectively. The aver-
age length of the Newbler contigs across the three as-
semblies was 679 bases. The detailed Newbler assembly
statistics are shown in Table 3. The “large contigs” from
the Newbler assembly are those with 500 bases or lon-
ger, which overall averaged 949 bases in length.

Single nucleotide polymorphism (SNP) discovery
SNP site discovery was performed using both the
DNASTAR NGEN and Newbler combined assemblies as
reference transcriptomes. The Newbler gsMapper SNP
calling program generated two output files. One output
file contained all possible SNPs. The other output file
contained only the high confidence SNP calls, which was
used as the starting point for selecting SNPs for the
mapping study. A summary of the SNP discovery results
is displayed in Table 4. As shown in the last two col-
umns of Table 4, 15,542 and 12,119 candidate SNP sites
were discovered using the Newbler and DNASTAR ref-
erence transcriptomes, respectively. For each candidate
SNP with a minimum 100 bases of sequence flanking
the SNP, 50 bases from each flanking side of the SNP
site was extracted for DNA marker development. The

Table 1 Result metrics for the sequencing of 10 beech cDNA libraries

Library Name (based on tree number) Number of reads Average read length Total bases

BBD-Resistant trees

Beech_1228R 210,340 375 78,912,594

Beech_2692R 131,306 354 46,467,779

Beech_1504R 123,194 370 45,498,709

Beech_1208R 87,964 358 31,467,605

Beech_2276R 147,781 374 55,192,118

Resistant tree Sub-Totals 700,585 366.2 257,538,805

BBD-Susceptible trees

Beech_1973S 205,945 358 73,702,265

Beech_DN00726S 159,660 349 55,759,976

Beech_3128S 130,917 359 46,933,567

Beech_2143S 138,991 357 49,586,742

Beech_Holden 70,218 360 25,243,077

Susceptible tree Sub-Totals 705,731 356.6 251,225,627

Totals for all libraries 1,406,316 361 508,764,432
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values in parenthesis in the last two rows of Table 4 rep-
resent the number of SNP sites selected, based on suffi-
cient flanking sequence. The sequences and statistics for
the high quality and most informative SNPs used in the
GWAS are presented in a table in Additional file 4.

Test of association
SNP genotyping data results
In total, 514 DNA samples were submitted to genotyp-
ing using the Affymetrix Axiom™ Genome-Wide 1.5 K -
50 K array and after quality filtering, resulted in
genotypes for 506 samples (R = 249 and S = 257). Of the
initial 16,709 SNPs, 5838 Poly High Resolution SNPs
passed Affymetrix filtering metrics and only these were
included in downstream analysis. A set of 5838 SNPs
was visualized for the cluster pattern in SNPolisher R
Package v.1.5.1 (Affymetrix Inc.).

SNP linkage map construction
We developed a single-nucleotide polymorphism
(SNP) - based linkage genetic map for American
beech. Single locus Mendelian segregation was first
tested using X2 goodness-of-fit to 1:2:1 and 1:1 ratio
at 5% and 1% significance levels. Linkage analysis pro-
duced 12 linkage groups (Fig. 2) using JoinMap 2.0
[32]. Out of 3236 SNPs apparently segregating, 16

SNPs failed to be linked so the final number of linked
SNPs was 3220 (Additional file 5).

GWAS
Population structure analysis and IBS test results
To explore the population structure of our sample
population, Discriminant Analysis of Principal Com-
ponents (DAPC) was applied to 506 individuals and
5838 SNPs. DAPC revealed three genetic clusters
(Additional file 6A) using 40 principal components
(PCs), maximum numbers of clusters and discovery
clusters limited to 40 and 7, respectively and 6 dis-
criminants. In addition, we employed a genomic con-
trol to assure for population structure by estimating
an inflation factor λ (genomic control measures). Sig-
nificant inflation was detected based on a QQ-plot of
association p-values, which displayed systematic devi-
ation from the expectation (Additional file 6B).
The pairwise clustering based on identity-by-state

(IBS), revealed high correlation among individuals in
the sample population. The IBS test allowed the re-
moval of individuals with the highest number of cor-
related “partners”, indicating high likelihood of
relatedness. Our method of choice was to test for
population outliers by performing IBS-based nearest
neighbor analysis. In total, 179 individuals from the

Table 2 F. grandifolia transcriptome NGEN assembly statistics

BBD-Resistance Libraries BBD-Susceptible Libraries “Combined” Reference transcriptome

Assembled Reads 533,261 521,505 1,026,995

Unassembled Reads 167,324 184,226 379,321

Total Number of Reads 700,585 705,731 1,406,316

Assembled Reads (%) 76.12 73.90 73.03

Assembled Contigs 28,592 27,544 44,065

Contigs >2 K 622 271 1115

Av. Length of Contigs 362 354 357

Table 3 F. grandifolia transcriptome sequence assembly summary obtained from Newbler

Assembled Contig Sequences Beech “Resistant” Library Beech “Non-Resistant” Library Beech “Combined” Library

Aligned Bases (%) 157,365,926
(83.63%)

143,162,558
(80.91%)

314,816,063
(86.23%)

Aligned Reads (%) 438,153
(82.04%)

412,164
(78.90%)

893,216
(84.54%)

Number of Contigs, All 10,690 7630 16,285

Total Contig Bases 7,845,700 4,478,078 11,664,012

Average Contig Length 734 587 716

Number of Large Contigs 7147 4018 9943

Average Large Contig Size 961 875 1009

N50 Large Contig Size 1005 893 1081

Largest Contig Size 4651 4336 10,681
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five different stands were identified as possible very
close relatives and were removed from the further
downstream analysis (Table 5).

Logistic regression test
The initial logistic regression test was performed with
3220 SNPs, however after filtering SNPs to compute
PCA and IBS score, an independent set of 2116 SNPs
remained. No Genomic inflation from GWAS p-
values expected by random chances was detected, ex-
cept for the top associated SNPs (lambda = 1.13, Fig.
3a). A Fisher’s exact test revealed four markers on
chromosome 5 (Fig. 3c), whose P values were above
the significant genome-wide threshold of (P value
>1.585 × 10−5) (Fig. 3b; Additional file 7). For the as-
sociation test, the significance threshold for all 3155
SNPs was Bonferroni’s (α* = α/n) based significant
threshold to adjust for multiple testing, where α rep-
resents Bonferroni’s coefficient 0.05 and n represents
the number of SNPs after filtering for quality parame-
ters (0.05 / 3155 = 1.58 × 10−5).

Identification and mapping of the disease resistance
candidate gene
As shown in the Manhattan plot (Fig. 3b and Add-
itional file 7), four SNPs were observed to surpass
the genome-wide significance threshold of
1.585 × 10−5, which is strong evidence of association.
All four SNPs are located on chromosome (Chr) 5
(Additional file 8). The strongest evidence of associ-
ation is linked to AX-156994126 (P = 5.99E-6, odds
ratio (OR) = 0.2573), AX-156988334 (P = 8.852E-6,
odds ratio (OR) = 0.2758) and AX-157000652
(P = 8.074E-6, odds ratio (OR) = 0.2773) (Table 6).
On chromosome (Chr) 5, SNPs were positioned at
12.344 cM (centimorgans) for AX-156994126, AX-

156989406 and for AX-157000652 and at 13.811 cM
for AX-156988334 (Additional file 8A).
The flanking sequences for these four SNPs were

used in Blast analysis. The best BLAST (BLASTn)
analyses were performed against the NCBI database
(National Center for Biotechnology Information) for
non-redundant protein database. The best hit resulted
in the identification of the single gene (Mt) from a
single contig (contig 03321), within which fell all four
identified SNPs (see Additional file 8B). The gene
(Mt) encodes an mRNA for metallothionein-like pro-
tein (metal ion binding) (Table 6).
Support for the result from GWAS was obtained by

BLASTx alignment of the RNA sequence reads for
each of the 10cDNA libraries individually to contig
03321, containing the full length transcript of the
candidate Mt. gene. With the exception of the indi-
viduals (1504R and DN00726S), the constitutive ex-
pression of the candidate Mt. gene was higher in the
BBD resistant individuals than in the BBD susceptible
individuals (Additional file 9). On average, 1602 reads
mapped per BBD resistant library, and 414 reads per
susceptible library, after normalization in TPM (Tran-
scripts Per Kilobase Million). This does not imply the
expression of the candidate Mt. gene alone is suffi-
cient for BBD resistance, nor that it is the only gene
differentially expressed upon attack by the insect
vector.

Linkage disequilibrium
To measure the degree to which alleles at two loci are
associated, a complete set of 3220 SNPs were included
to determine whether two loci are in linkage equilibrium
or disequilibrium. LD plot showed SNPs in strong link-
age disequilibrium (D’ = 1) (Additional file 10).

Table 4 Summary of SNP discovery results for F. grandifolia using the reference transcriptomes generated by DNASTAR NGEN and
Newbler

Statistics DNASTAR Reference Transcriptome Newbler Reference Transcriptome

Number of Contigs in Reference 43,212 14,977

Number of Bases in Reference 28,676,242 11,580,835

Number of Mapped Reads (%) 1,357,629 (96.55%) 938,418 (88.82%)

Number of Mapped Bases (%) 494,805,288 (97.45%) 312,081,222 (85.48%)

Fully Mapped Reads (%) 444,838 (31.64%) 396,609 (37.54%)

Partially Mapped Reads (%) 35,728 (2.54%) 135,858 (12.86%)

Non-Unique Mapped Reads (%) 871,685 (61.99%) 147,210 (13.93%)

Chimeric Reads (%) 5378 (0.38%) 258,741 (24.49%)

Unmapped Reads (%) 32,025 (2.28%) 101,623 (9.62%)

Reads Too Short (%) 16,470 (1.17%) 16,470 (1.56%)

High Confidence SNP Calls 2119 (12,069) 15,542 (14,574)

HC SNP Calls (Not Ambiguous) 10,971 (10,934) 15,541 (14,573)
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Fig. 2 (See legend on next page.)
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Discussion
Trait architecture
Genome Wide Association Analysis has identified a single
locus contributing to resistance to beech bark disease
(BBD). There were four SNPs in chromosome (Chr) 5 sig-
nificantly associated with the scale resistance trait analyzed.
A candidate gene (Mt) encoding for a metallothionein-like
protein was found to be physically linked to these genetic
markers and may play an important role in the resistance
mechanisms against Nectria sp. - beech scale insect. This
is consistent with genetic studies of several different small
full-sibling families that suggest involvement of a few as
two genes [5, 24, 38]. For validation of single locus trait
discovery, BLASTn search of the contig EST sequences
was performed against the complete NCBI database for
those SNPs (see Additional file 8B). A proven functional
annotation for these SNPs is essential prior to use in breed-
ing, which will be possible when a reference genome se-
quence for American Beech is available.
Disease resistance in plants can involve any number of

genes, from a single major gene to many loci determining
resistance. Single-gene resistance mechanisms with large
effects are more common in agricultural crops but only a
few have been described in forest species, which reflects the
greater genetic diversity of the host and pathogen popula-
tions in forest pathosystems [39]. In forest species, resist-
ance is typically polygenic and durable, with few examples
of simply inherited disease resistance. This is likely due to
the limited potential for Mendelian analysis in forest trees
and complex life cycles of many forest pathogens [40].
However, disease resistance is not exclusively polygenic in
forest pathosystems. Examples of single qualitative re-
sistance, include loblolly pine (Pinus taeda) resistance to
the fusiform rust disease [41, 42], resistance to white pine
blister rust in several species of pine [43, 44] and evidence
for major gene resistance to weevil in Sitka spruce [45].

In this study, we used Affymetrix Axiom™ Genome-
Wide 1.5 K – 50 K array (Santa Clara, CA) to genotype
327 individuals used for association mapping. Although
SNP discovery was performed specifically for BBD, a
very small proportion of the SNPs deemed informative in
downstream analysis. The conversion rate, provided by
Affymetrix genotypng facility, corresponded to 34.04%
and was quite high compared to Pinus taeda (Loblolly
pine) at only 5–10%. Overall, the number of informative
SNPs was sufficiently high to provide us with association
power on the genome scale for the disease resistance.
The knowledge of genetic architecture is important for

breeding resistant varieties to develop resistant planting
stock for restoration of impacted habitats. Molecular
markers have also contributed to improved breeding
strategies for monogenic resistance genes when combin-
ing them in a “gene pyramiding” strategy for a more dur-
able resistance [46] and can also be used to develop
cost-effective indirect selection techniques.

Candidate gene role
Plant metallothioneins are proteins thought to sequester
excess amounts of certain metal ions [47]. These low
molecular weight proteins (4–8 kDa) were discovered
in mature wheat embryos about 30 years ago [48].
Metallothioneins represent Cys-rich metal chelators able
to coordinate metals atoms (e.g. Zn, Cd and Cu ions) and
found to play a role in cellular processes such as
regulation of cell growth, proliferation and DNA damage
repair. But how metallothioneins fulfill these cellular
roles, is yet to be discovered [49, 50]. Expression of
plant metallothionein genes has been observed in a
variety of senescing tissues, such as leaves and stems,
ripened fruits and wounded tissues [49]. Recent reports
show that MTs (metallothionein’s) are also involved in
the scavenging of reactive oxygen species (ROS) [51].

(See figure on previous page.)
Fig. 2 Genetic linkage map of F. grandifolia. Genetic linkage map of F. grandifolia constructed using 115 progeny individuals derived from the
cross controlled experiment 1505 (R) × 1504 (R). Totally 3220 single nucleotide polymorphism markers are linked in twelve groups and presented
on the right side of each linkage group. Map distances in centi-morgans are presented on the left side

Table 5 Duplicated individuals revealed by IBS test for the threshold (IBS > 0.1875)

Stand Number of excluded individuals Disease status

Ludington State, MI 1 R NA

Berkshire county, MA 18 9R 9S

Penobscot county, Maine 55 33R 22S

Randolph county, WV 38 26R 12S

Sissiboo Falls, Digby county, NS-Canada 65 27R 38S

Not classified 2 NA 2S

Total 179
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Metallothionein-like protein class II (Fagus sylvatica
type) was described in Norway spruce (Picea abies),
whose expression pattern was analyzed via ESTs from
cDNA libraries [52]. Type 4 metallothionein-like
protein genes are expressed in inner bark tissue of
Japanese cedar (Cryptomeria japonica) [53]. ESTs en-
coding metallothionein-like proteins were the most
frequently found hits in both early and late flushing
libraries. Metallothionein-like protein activity is prob-
ably initiated by some cellular events during late
flushing [52].
Changes in expression of metallothioneins and

metallothionein-like proteins have been previously re-
ported in response to biotic stresses in plants, including
insect herbivory and fungal infections (reviewed in [53]).
There is not consensus of the role of metallothionein-
like proteins in biotic stress response, but a role in oxi-
dative stress have been proposed [53].

Implementation of the findings in the future breeding
program in beech
A number of insects and diseases cause significant
loss to forest productivity. Most of the current oper-
ational strategies for insect and disease control rely
on classical breeding methods to develop populations
enriched for resistance [54]. With emergence of

genomics-based approaches, such as genome-wide as-
sociation studies (GWAS) and genomic selection
(GS), a broader range of applications is now available
for plant breeding and genetic research [55, 56]. In
Fagus, mapping populations have been developed to
discover QTLs for traits correlated to BBD. The tree
improvement program included crosses to study in-
heritance of resistance to Cryptococcus fagisuga (see
[19, 57]). However, association mapping like GWAS
for QTLs underlying disease resistance to the BBD,
has not been previously reported. In the present
study, we used a GWAS mapping approach and a
SNP linkage map to identify candidate resistance
genes. To confirm the SNPs identified are truly asso-
ciated with the scale-resistant trait, replication of this
GWAS study is necessary, using independent case-
control data from the initial population of unrelated
individuals (see [58, 59]).
Deployment of resistant planting stock can help to re-

duce disease incidence throughout natural stands of
American beech. Markers found in this study that ex-
hibit a significant association with the resistant pheno-
type, can be further refined to develop efficient and cost
effective indirect selection techniques such as MAS
(marker assisted selection) and genomic selection (GS)
or combination of both (see [60]).

Fig. 3 a Quantile-quantile (QQ) plot of GWA p-values. QQ-plot shows only minor deviations from the null distribution, expected for the top associated
SNPs. b Manhattan plot from the GWAS analysis of Beech Bark Disease in 327 individuals. Beech bark disease is associated with a locus on
chromosome 5. The x-axis represents chromosomal locations and the y-axis, −log10 p-values from genotypic associations. Four markers
on chromosome 5 reached genome-wide significance (p-values >1.585 × 10−5)

Table 6 Top SNPs associated with Beech Bark disease

Gene Chr Position (cM) Affymetrix ID Original SNPs ID Logistic regression
association (P value)

Annotation

Mt 5 12.344 AX-156989406 contig03321_576 2.46E-6 Fagus sylvatica (European beech)
mRNA for methallothionein-like
protein, Metal ion bindingMt 5 12.344 AX-157000652 contig03321_166 8.07E-6

Mt 5 13.811 AX-156988334 contig03321_330 8.85E-6

Mt 5 12.344 AX-156994126 contig03321_441 5.99E-6
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Conclusion
To our knowledge, this is the first study designed to deter-
mine the genetic factors of disease resistance to beech
bark disease (BBD) with genome scan analysis in
American beech tree. The results presented identified four
highly significant markers associated with a single locus
located on chromosome (Chr) 5. All four loci were
localized to the same contig within a single gene
(Mt), that encodes for Fagus sylvatica mRNA for
metallothionein-like protein (metal ion binding). Once
a reference genome sequence is available, it will be
possible to gain more insight into functional annotation of
the four SNPs and determine the exact number of genes
associated to BBD.
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