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Abstract

Background: While eukaryotic noncoding RNAs have recently received intense scrutiny, it is becoming clear that
bacterial transcription is at least as pervasive. Bacterial small RNAs and antisense RNAs (sRNAs) are often assumed to
be noncoding, due to their lack of long open reading frames (ORFs). However, there are numerous examples of sRNAs
encoding for small proteins, whether or not they also have a regulatory role at the RNA level.

Methods: Here, we apply flexible machine learning techniques based on sequence features and comparative
genomics to quantify the prevalence of sRNA ORFs under natural selection to maintain protein-coding function in 14
phylogenetically diverse bacteria. Importantly, we quantify uncertainty in our predictions, and follow up on them
using mass spectrometry proteomics and comparison to datasets including ribosome profiling.

Results: A majority of annotated sRNAs have at least one ORF between 10 and 50 amino acids long, and we
conservatively predict that 409 ± 191.7 unannotated sRNA ORFs are under selection to maintain coding (mean
estimate and 95% confidence interval), an average of 29 per species considered here. This implies that overall at least
10.3 ± 0.5% of sRNAs have a coding ORF, and in some species around 20% do. 165 ± 69 of these novel coding ORFs
have some antisense overlap to annotated ORFs. As experimental validation, many of our predictions are translated in
published ribosome profiling data and are identified via mass spectrometry shotgun proteomics. B. subtilis sRNAs with
coding ORFs are enriched for high expression in biofilms and confluent growth, and S. pneumoniae sRNAs with coding
ORFs are involved in virulence. sRNA coding ORFs are enriched for transmembrane domains and many are predicted
novel components of type I toxin/antitoxin systems.

Conclusions: We predict over two dozen new protein-coding genes per bacterial species, but crucially also
quantified the uncertainty in this estimate. Our predictions for sRNA coding ORFs, along with predicted novel type I
toxins and tools for sorting and visualizing genomic context, are freely available in a user-friendly format at
http://disco-bac.web.pasteur.fr. We expect these easily-accessible predictions to be a valuable tool for the study not
only of bacterial sRNAs and type I toxin-antitoxin systems, but also of bacterial genetics and genomics.
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Background
Recent technological advances such as tiling microarrays
and deep RNA sequencing have led to a new apprecia-
tion of bacterial transcription, identifying thousands of
new bacterial small RNAs (sRNAs) [1–4]. Single strains
can contain hundreds of sRNAs, including both inde-
pendent transcripts and extensive transcription antisense
to annotated open reading frames (ORFs) [2, 5, 6]. In
virtually all cases, sRNAs do not contain an annotated
coding sequence (CDS, or coding ORF) and it is therefore
assumed that their primary function is to act as anti-
sense RNAs modulating the expression of other genes
[4, 7]. However, ORFs occur frequently by chance, and
although there are many reasons that an ORF would not
be translated (for example, strong secondary structure
of the RNA), it is difficult to prove that an ORF is not
translated in vivo.
In particular, gene annotations for short ORFs (usually

defined as shorter than 100 or 50 amino acids) are notori-
ously incomplete and thousands of protein-coding genes
remain unannotated in bacteria [8], so many sRNAs could
in theory code for functional small proteins. There are
several examples of dual-function sRNAs having a regu-
latory role that also code for an experimentally-validated
functional small protein: E. coli SgrS encodes the protein
SgrT [9], S. aureus RNAIII encodes δ-hemolysin [10], B.
subtilis SR1 encodes SR1P [11], and P. aeruginosa PhrS
encodes an unnamed protein [12]. However, because no
antisense regulatory function has been found so far for
most known sRNAs [3], it is possible that the primary
function of many could be simply coding for functional
peptides.
Small proteins play important roles in bacteria, includ-

ing quorum sensing, transcription, translation, stress
response, metabolism, and sporulation [13, 14]. However,
they are difficult to identify by computational or exper-
imental methods. The short sequences have less space
for evidence of natural selection, resulting in high levels
of statistical noise and false positives, making computa-
tional discrimination of coding ORFs smaller than about
50 amino acids difficult [8, 15]. Standard proteomics
methods usually utilize gel electrophoresis or other chro-
motography methods, which bias towards proteins larger
than about 30 kDa and preclude detection of very small
proteins [16, 17]. Proteolytic cleavage of some small pro-
teins also results in no peptides of a length detectable by
mass spectrometers.
Nevertheless, efforts to identify bacterial short coding

sequences have had some success. Proteogenomics, the
reannotation of genomes using mass-spectrometry-based
proteomics, is a powerful tool for identifying protein-
coding genes but still suffers from false negatives, espe-
cially for small proteins [17–19]. Most computational
methods applied so far have not taken advantage of sRNA

annotations and either used comparative genomics infor-
mation exclusively [8, 20] or were applied only to a single
species [15, 21, 22]. No existing method is ideal for deter-
mining the overall number of sRNA coding ORFs. Some
comparative genomics methods take into account more
information than the Dn/Ds test, but more complexity
can make algorithms more brittle. For PhyloCSF [23],
a greater number of parameters to fit can be problem-
atic for small bacterial genomes and this method remains
untested on prokaryotes. RNAcode [24] handles multiple
alignment issues like insertions and deletions intelligently,
but because it does not take into account phylogenetic
structure it relies on careful selection of orthologous
species to yield relevant results, making it difficult to apply
on a large scale. Warren et al. [8] used a clever BLAST-
based approach to quickly find new genes, but this is less
sensitive than Dn/Ds, which is aware of phylogeny and
mutations at the DNA level. Other methods are either ad-
hoc and difficult to apply to other species [22] and/or do
not incorporate both sequence features and comparative
genomics [21].
Short proteins can rarely be predicted with nearly

100% confidence because of limited evidence, but most
standard gene annotation tools do not provide an esti-
mated false discovery rate (FDR) for marginal predic-
tions, instead choosing ad-hoc cutoffs for amino acid
length or coding score. However, even without confident
individual predictions, statistically sound conclusions can
be made when considering short ORFs in aggregate;
for example, the overall number of ORFs under natu-
ral selection to maintain protein-coding potential can
be estimated.
To identify short coding sequences in diverse species

with high fidelity, algorithms must adapt to composition
biases such as GC content, the strength and frequency
of Shine-Dalgarno sequence motifs, the availability of
closely-related genomes, and the structure of the phylo-
genetic tree relating these species. We set out to reex-
amine the assumption that most sRNAs are noncoding
by applying simple and adaptable computational and sta-
tistical methods to a broad range of bacterial species,
paying special attention to controlling for several biases
in sRNA ORF sequence properties. We developed a com-
putational method to predict coding ORFs called Dis-
covery of sRNA Coding ORFs in Bacteria (DiSCO-Bac).
We then validate the translation of predicted coding
sRNA ORFs with experimental data from previously pub-
lished ribosome profiling experiments [25] andmass spec-
trometry. We also mine experimental data from various
sources to show that many of the resulting small pro-
teins are likely to be functional, and a surprising num-
ber may be encoded antisense to other RNAs, many
of which represent predicted or known toxin-antitoxin
systems.
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Results
Most bacterial sRNAs have open reading frames
Hypothesizing that many bacterial sRNAs contain unan-
notated short ORFs that could code for small proteins,
we retrieved sRNA annotations from BSRD [3], sup-
plemented by recent published datasets not included in
the BSRD database [26, 27], and existing ORF annota-
tions from Genbank. sRNAs were defined as any RNA
expressed outside of annotated ORFs, including those
found by small-scale experimental validation, RNA-seq,
microarrays, or by sequence and structural conservation
to known sRNAs. The sRNA definitions could be hetero-
geneous depending on the species, as they were identified
by diverse methods. We focused first on a Gram-positive
model species with particularly good sRNA annotations,
Bacillus subtilis 168. We observed a sharp decrease in
annotated coding ORFs shorter than around 50 amino
acids (Fig. 1a, top). Because many gene finding algorithms
use an arbitrary cutoff of 50 amino acids or greater, the

handful of shorter annotated ORFs are generally added
by hand after their discovery via small-scale experiments.
Many less intensely studied bacterial species have an even
sharper cutoff around 50 amino acids, as in Clostridium
acetobutylicum ATCC 824 (Fig. 1a, bottom). Presumably,
this sharp cutoff reflects a technical artifact of automated
annotation pipelines rather than an aspect of the true
underlying length distribution. For example, reannota-
tion of coding ORFs in yeast based on ribosome profil-
ing recently found translation of 2869 non-internal ORFs
shorter than 50 amino acids [28]. The presence of an arti-
ficial cutoff in bacterial ORF lengths suggests that many
short coding ORFs remain unannotated. We next asked
how many potentially coding ORFs in sRNAs were unan-
notated, limiting our search to ORFs of between 10 and
50 amino acids in length. Smaller proteins have a lower
chance to be functional (for example, only 0.6% of antimi-
crobial peptides are less than 10 amino acids in length
[29]), and longer proteins would likely be identified by
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Fig. 1Most sRNAs have at least one potential protein-coding ORF. a Top: Length distribution of B. subtilis 168 ORFs annotated in Genbank (orange)
compared to those between 10 and 50 amino acids of length in annotated sRNAs (blue) or those arising by chance in shuffled sRNAs (green). 95%
confidence limits based on one thousand shuffles of sRNA sequence are shown in grey. Bottom: The same for Clostridium acetobutylicum ATCC 824
ORFs, which have a sharper drop-off around 50 amino acids. b Number of annotated sRNAs and sRNAs with at least one ORF for 14 species,
representing 4 phyla. Phyla are represented as colors on the left, and colors on the right indicate when multiple taxonomic classes are represented
within one phylum. As in (a), shuffled sRNA sequences generate a number of ORFs comparable in length to the observed amount. Inset: For each
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modern gene-finding algorithms. We found 1365 ORFs
in this size range in the 375 annotated B. subtilis sRNAs,
with 82.1% of sRNAs having at least one ORF (Fig. 1a, b).
This was roughly the number of ORFs expected by chance
based on shuffles of the sRNA sequences (i.e. based on
the length and nucleotide composition), suggesting that
their occurrence is not strongly avoided by negative evo-
lutionary pressure, and conversely there is not a large
number of coding ORFs easily identified by length alone
(Fig. 1a, b). We next examined 14 bacterial species repre-
senting 4 phyla and 7 classes, as a diverse representation of
species having well-annotated transcriptomes. Each bac-
terial species had between 22 and 800 sRNAs having at
least one ORF (Fig. 1b). The number of ORFs meeting
our size cutoffs in sRNAs was roughly the same for shuf-
fled control sequences in each species, so simply having
many ORFs does not provide strong evidence for cod-
ing function in sRNAs. This result suggests that whatever
the number of sRNA ORFs under selection to maintain
coding function, it is approximately balanced by selec-
tion against maladaptive coding ORFs. Nevertheless, over
a broad phylogenetic range, a majority of bacterial sRNAs
have at least one ORF with the potential to code for a
protein.

Bacterial sRNA ORFs have sequence features predictive of
protein-coding function
Most sRNA ORFs are thought not to be translated into
protein products, because the presence of an ORF is nec-
essary but not sufficient for expression at the protein level.
For example, the Shine-Dalgarno sequence must be acces-
sible to the ribosome for robust translation of most ORFs,
and strong secondary structure may preclude translation.
Several sequence features have been used to identify ORFs
under natural selection to maintain protein coding, sep-
arating them from those not likely to be protein-coding
[8, 15, 21, 22, 24, 30]. We use three sequence features
with wide generality and applicability: The strength of
the Shine-Dalgarno sequence (the SD score), conserva-
tion at the amino acid level (the Dn/Ds test), and phase-
specific mono- and oligo-nucleotide bias (composition
bias) (Fig. 2a). Each has varying predictive power depend-
ing on the species considered or on the available close
orthologs, but is applicable to a wide phylogenetic range of
species. We compared each of these features to carefully
selected negative controls, which we call “mock ORFs”.
Mock ORFs were regions selected from intergenic space
to match the length distribution of sRNA ORFs, were
required to not contain in-frame stop codons, and when
appropriate, were matched for overlap with full-length
annotated coding ORFs (Methods).
The free energy of pairing between the 16S rRNA and

the Shine-Dalgarno sequence (the SD score) is a com-
monly used predictor of the protein-coding potential

of ORFs based on its requirement in some species for
strong translation [31]. For some species this feature alone
can separate annotated coding ORFs from mock ORFs
remarkably well, as in B. subtilis (Fig. 2b, orange and green
lines). sRNA ORFs typically have similar SD scores to
randomly shuffled sequences, but for many species a sub-
stantial number comprise a tail with stronger SD scores
than expected by chance, i.e. an excess of sRNAORFs that
“look like” coding ORFs by SD score (Fig. 2b, blue line).
This tail of SD scores stronger than expected by chance
can be attributed to natural selection acting to preserve
translation; therefore, in B. subtilis, based only on their SD
scores, we can predict that 33 ± 9.3 sRNA ORFs code for
proteins (95% confidence interval; Fig. 2b, shaded region).
The SD score alone was able to predict at least one coding
ORF for 10 of the 14 bacterial species tested (Fig. 2c, white
bars; Additional file 1: Figure S1).
A more direct test for natural selection maintaining

protein function is the classic Dn/Ds log likelihood test,
which compares the mutation rate at the amino acid
level to that at the nucleotide level. Although there are
more sophisticated methods that can perform better in
some circumstances [23, 24] we use the classic Dn/Ds
test because it explicitly controls for phylogeny, making
it applicable in many contexts, and it is independent of
codon bias and nucleotide composition, which can then
be explicitly captured in an orthogonal measure. Also,
this test is relatively robust to missing data, the choice
of orthologous species, and the nature of the selection
acting on the sequences. Sequences lost in orthologous
species or diverged too far away to align are generally
treated as missing data and therefore count neither for
nor against an ORF. Therefore it is a conservative test that
can be applied in an automated manner to species with
diverse phylogenetic tree structures. Applying this test to
14 bacterial species yielded predictions for coding sRNA
ORFs above background in 4 species (Fig. 2c, grey bars;
Additional file 1: Figure S2).
Phase-specific nucleotide bias has been used to success-

fully predict protein-coding potential in both short and
long ORFs [21, 32]. ORFs have biased nucleotide content
overall, in specific phases, and other subtle biases such
as codon bias. For example, there is a universal bias for
purines at the first codon position [33]. Because com-
position biases differ qualitatively and quantitatively in
each species, they must be learned from training data,
i.e. real coding ORFs and noncoding sequences. We use
a logistic regression method to learn these biases from a
subsets of annotated ORFs and mock ORFs in noncod-
ing regions with properties matching the sRNA ORFs in
each species (see Methods). The regression then outputs
a score for each sRNA ORF representing its likelihood
of being coding. Again, sRNA ORFs tend to have higher
scores thanmock ORFs, with 12 of the 14 bacterial species
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Fig. 2 sRNA ORFs have features characteristic of coding ORFs. a The three features useful for separating coding from non-coding sequences, as
illustrated using a B. subtilis sRNA that was annotated by tiling array: (1) The Shine-Dalgarno free energy (SD score) measures the free energy of
pairing to the 16S ribosomal RNA sequence, which enhances translation to a variable degree depending on the species. (2) The Dn/Ds test
measures whether there is significant conservation on the amino acid level relative to the DNA level by measuring the rate of non-synonymous and
synonymous mutations. For three selected orthologs, synonymous mutations are highlighted in green, non-synonymous mutations are in red, and
start and stop codons are in bold. (3) The composition bias measures phase-specific nucleotide, dinucleotide, and trinucleotide occurrences, learning
the difference between coding and noncoding sequence using a logistic regression on training data. The contribution of each codon to the logistic
regression score is plotted with bars, with the cumulative score as a black line. b An example of using a feature to predict coding ORFs in B. subtilis.
Annotated coding ORFs (orange) have Shine-Dalgarno free energies greater than that expected by chance (green, with 95% confidence limits in
gray). Actual sRNA ORFs follow the same distribution, except for an excess of ORFs with free energies more than about -10 kJ/mol (light blue region).
c The number of ORFs predicted as coding based individual features. For each feature, the cutoff with the maximum difference between sRNA ORFs
and the background expectation was selected. After correcting empirically for this degree of freedom in selecting the cutoff (see Methods), the
number of ORFs predicted coding above background is plotted with 95% confidence intervals. d Different features sometimes implicate the same
ORFs as coding. B. subtilis sRNA ORFs were separated into those with SD score stronger than -11 kJ/mol and those with weaker SD score (others).
Those with strong SD score (n = 27) also had higher Dn/Ds log likelihoods (left panel) but only marginally composition bias scores (right panel)



Friedman et al. BMC Genomics  (2017) 18:553 Page 6 of 21

tested having an excess (Fig. 2c, black bars; Additional
file 1: Figure S3).
One concern with the nucleotide bias method is that

sequences recently acquired via horizontal gene trans-
fer may have different biases and thus may suffer from
drastically reduced prediction accuracy. To evaluate the
extent of this problem, we examined the SPβ prophage
in B. subtilis, a 134 kilobase region having substantially
lower GC content than the overall genome (34.6% com-
pared to 43.5%). After training the only on ORF subsets
and mock ORFs outside of the SPβ region, we calcu-
lated the nucleotide bias score for 5941 ORF subsets and
mock ORFs coming from 234 full-length ORFs within the
region, resulting in 81.0% of instances classified correctly
(AUC=0.804). By contrast, training on the ORF subsets
and mock ORFs in the SPβ region itself resulted in only
a marginal increase to 83.0% of instances classified cor-
rectly (AUC=0.877) when using 10-fold cross-validation.
This indicates that the nucleotide bias measure should be
robust to recent horizontal gene transfer.
The three sequence features used here are complemen-

tary because they rely on different information, so it is not
surprising that they predict different numbers of coding
ORFs for each species. However, presumably many bona
fide coding ORFs should score well in multiple features at
once, as they are all signs of natural selection for protein-
coding potential. Indeed, B. subtilis sRNA ORFs with SD
scores better than −11 kJ/mol had strongly and signifi-
cantly higherDn/Ds log-likelihood scores as well as barely
higher composition bias scores compared to sRNA ORFs
with worse SD scores (Fig. 2d, p = 0.00004, 0.037 respec-
tively, two-tailed Mann-Whitney test). This indicates that
the three sequence features may be differently comple-
mentary in different combinations, and there may not be
a trivial way to combine all three into a single score.

Machine learning predicts numerous protein-coding sRNA
ORFs in several bacterial phyla
Although the three features may be correlated, they pro-
vide complementary evidence, so they must be combined
intelligently to maximize their predictive power. Machine
learning provides a natural solution for this problem, i.e.
training binary classifiers to distinguish between cod-
ing ORFs and noncoding sequence. Because each species
differs in the phylogeny of available orthologs, history
of horizontal gene transfer, codon bias, GC content,
and other factors affecting sequence evolution, no sin-
gle classification scheme can accurately separate coding
from non-coding sequence across species. Therefore, we
trained individual classifiers on each species, yielding
tailored predictions taking into account the predictive
power of each sequence feature in each genomic context.
We constructed positive training sets based on subsets
of annotated coding ORFs, and negative sets based on

mock ORFs in likely noncoding sequence, controlling for
relevant properties of sRNA ORFs (see Methods). We
trained several types of classifiers on these datasets and
selected a bootstrap aggregated (bagged) decision tree
classifier, which had consistently high performance on all
species, for further analysis (Additional file 1: Figure S4).
In general, higher scores for each feature increased the
likelihood of predicting an ORF to be coding (Fig. 3a).
However, the classifier takes into account some complex-
ities, such as the fact that an SD sequence is not always
required for coding, and that negative log likelihoods for
the Dn/Ds test (i.e. more non-synonymous than synony-
mous mutations) can be evidence for coding as well.
When this classifier is applied to sRNA ORFs, it out-

puts a “coding score” for each ORF between zero and one,
which can be interpreted as a probability that an ORF is
coding under the assumption that the prior probability of
an ORF to be coding is 50%. We estimate the background
distribution of coding scores (i.e. scores for noncoding
sRNA ORFs) by applying the classifier to the mock ORFs
under 10-fold cross-validation, because they are matched
for several relevant properties of the sRNA ORFs. At any
selected threshold for coding scores, if more sRNA ORFs
meet the cutoff than are expected based on the back-
ground distribution, we can attribute the excess to natural
selection to maintain coding. Few B. subtilis sRNA ORFs
meet very stringent thresholds for the coding score, but
even fewer mock ORFs do (Fig. 3b, right side). As the
threshold is relaxed, the number of sRNA ORFs remain-
ing increases faster than the mock ORFs, so more sRNA
ORFs can be predicted as coding. However, most ORFs
meet the threshold as it approaches zero and the separa-
tion between sRNA ORFs and mocks disappears (Fig. 3b,
left side). Therefore both the number of sRNA ORFs pre-
dicted as coding and the proportion of predictions that
are expected to be false positives (the FDR) depend on
the coding score threshold. If we want to be more confi-
dent in the predictions of individual coding ORFs, we will
make fewer overall predictions, while our best estimate of
the total number of coding ORFs will be associated with
lower confidence in each individual prediction (higher
FDR). Figure 3c illustrates this tradeoff for B. subtilis, with
the estimated false discovery rate (q-value) plotted against
the number of coding ORFs predicted above background
expectation. If we choose the threshold that maximizes
sensitivity (i.e. the maximum number of sRNA ORFs pre-
dicted as coding, black dashed line in Fig. 3c) and apply
a correction for the degree of freedom that this adds (see
Methods), we predict that there are in total 69 ± 30.5
B. subtilis sRNA coding ORFs (95% confidence interval;
Fig. 3c). When we perform this calculation separately for
sRNAORFs that overlap annotated codingORFs (either in
the sense or antisense direction), we find less evidence in
support of their coding in B. subtilis (Fig. 3c, broken lines).
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Fig. 3 a Visualization of a machine-learning classifier for combining features into a single predictive score. A bagged decision tree classifier was
trained on B. subtilis ORF subsets and mock ORFs, and its output is plotted for each value of SD score and composition bias score (above) or Dn/Ds

(below). For each position, the hidden third feature is subsampled and the classifier output is averaged over these possibilities. b Number of sRNA
ORFs and mock ORFs classified as coding as a function of the coding score threshold in B. subtilis. Gray band represents 95% confidence intervals
based on 20 mock ORF sets. c Number of ORFs predicted as coding above background expectation for B. subtilis. For each coding score threshold, a
false-discovery rate q-value is calculated using the ratio between the sRNA ORFs and mock ORFs plotted in (b). The difference between these two,
i.e. the number of ORFs predicted coding above background, is plotted on the y-axis in red, with 95% confidence intervals plotted in gray. The cutoff
with the highest sensitivity is marked (dashed black line). The calculation is also made separately for subsets of ORFs having no overlaps with
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numbers predicted for each species were calculated as illustrated in (c) at the most sensitive cutoff and a correction was applied for random
fluctuations. Error bars represent 95% confidence intervals on the total estimate, and the breakdown by overlap with annotated coding ORFs is
represented by colors. Right: The predicted coding ORFs are sampled to estimate the fraction of sRNAs having at least one coding ORF, and error
bars represent 95% confidence intervals. Inset: The fraction of sRNAs having a predicted coding ORF for each species in box plot form. Box
represents first and third quartiles and median; whiskers extend to most extreme values
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However, because we do not perform the Dn/Ds test for
these ORFs and because they have other differing prop-
erties, we cannot conclude that there are fewer bona fide
sRNA coding ORFs that overlap annotated coding ORFs.
Training bagged decision tree classifiers on other bacte-

rial genomes and applying the same test yields between 1
and 207 predicted coding sRNA ORFs, depending on the
species (with the high outlier being S. aureus NCTC8325,
having the most annotated sRNAs by far). Because the
predictive power of the sequence features used varies, we
cannot directly compare the number of predictions across
species, i.e. we cannot conclude that any species has more
bona fide coding sRNA ORFs than another. In addition,
some species have more short ORFs previously annotated
than others, which are excluded from the analysis. Com-
bining the 14 species considered here, we predict that
409±191.7 (95% confidence intervals) previously unanno-
tated small proteins are coded by sRNA ORFs, an average
of 29 per species (15 per species excluding the S. aureus
NCTC8325 outlier). We believe this to be a very conserva-
tive estimate even without taking into account the limited
nature of current sRNA annotations, for two main rea-
sons: first, we use only a limited set of sequence features
that can at best detect a fraction of cases of natural selec-
tion; second, the classifier expects coding ORFs to have
similar properties to full-length annotated coding ORFs,
while they may be expressed at a lower level on average
and conserved in a different manner. For example, the
estimate for protein-coding sRNA ORFs based only on
the composition bias feature (Fig. 2c) is higher for some
species than the combined estimate; this is because the
SD score and/or Dn/Ds features hurt the sRNA ORFs in
the machine learning classifier more than they help them.
Therefore, we can also report a simple, slightly less con-
servative estimate for the number of coding sRNA ORFs
by using only the composition bias feature of 548 ± 117,
an average of 39 per species.
To test the sensitivity of our method, we deleted the

annotated ORFs less than 50 amino acids in length from
B. subtilis 168 and in E. coli K12 MG1655. We then ran
our analysis on these genomes and evaluated our meth-
ods on how well they separated the known short ORFs
from intergenic mock ORFs of equivalent size. Out of 101
annotated ORFs less than 50 amino acids in length in
B. subtilis 168, 82 ORFs had a q-value of at most 0.05,
meaning our machine learning approach separates 81% of
annotated ORFs from intergenic mock ORFs with at most
a 5% false positive rate (Additional file 2: Table S1). In E.
coli K12 MG1655, 65/120 (54%) had q-value of at most
0.05. Thus, our methods were able to separate true cod-
ing ORFs from background with appreciable sensitivity in
multiple species with varying signals of selection (e.g. the
Shine-Dalgarno score is highly informative in B. subtilis,
but not in E. coli).

Because many sRNAs havemultiple ORFs, it is not obvi-
ous what fraction contain at least one ORF that is under
selection to be protein-coding. To estimate this fraction,
we used the estimate for the total number of coding sRNA
ORFs and randomly chose 100 sets of particular ORFs as
coding (Fig. 3c, right). For most species, 5-15% of sRNAs
had at least one predicted coding ORF, with 10.3±0.5% of
sRNAs across all species.
We find almost no evidence in any species for coding

of sRNA ORFs overlapping with annotated coding ORFs
on the sense strand (Fig. 3c, white bars), but there is
a substantial number of predictions overlapping coding
ORFs on the antisense strand (blue bars). For example, L.
pneumophila, which has 40 sRNAs with antisense over-
lap to annotated coding ORFs [34], has 16± 5.0 predicted
coding sRNA ORFs in this orientation (Fig. 3c). Overall,
164±70 of the predicted coding ORFs had antisense over-
lap to annotated ORFs, compared to 222 ± 82 with no
overlaps.

Many sRNA ORFs are bound by ribosomes and expressed
as peptides
The predictions of protein-coding ORFs reflect evidence
for conservation of a protein-coding function, which
implies as a pre-requisite expression at the RNA level and
protein level. Any annotated sRNA must have evidence
for its expression at the RNA level, so all sRNA ORFs
have the potential to be translated into peptides. There-
fore, as an independent experimental validation of our
predictions, we looked for experimental evidence of trans-
lation from two types of data: ribosome profiling, show-
ing the binding of ribosomes (which correlates in most
cases with translation of transcripts), and mass spectrom-
etry, showing the accumulation of protein to detectable
levels.
We used ribosome profiling data for B. subtilis 168 and

E. coli K12 from [25] to annotate translated sRNA ORFs.
Looking for signal accumulating on either the start or stop
codon of ORFs not overlapping annotated coding ORFs
(see Methods), we found evidence for ribosome binding
in 156 out of 546 B. subtilis sRNA ORFs, compared to on
average 85 ± 15 expected by chance (based on the trans-
lation of mock ORFs in regions not annotated as coding);
in E. coli 54 out of 84 ORFs had evidence for ribosome
binding compared to 42± 8.0 by chance (Fig. 4a). Because
the ribosome profiling data was strand-specific, we could
also test the binding of ribosomes in ORFs in the anti-
sense strand to annotated coding ORFs. In this case, the
numbers were 7 of 774 ORFs compared to 7.8 ± 5.5 by
chance in B. subtilis, and 21 of 45 E. coli ORFs compared
to 3.9 ± 4.2 by chance. In all, this corresponds to 83 and
17 more unannotated sRNA ORFs bound by ribosomes
than expected by chance, respectively. Interestingly, anti-
sense ORFs were enriched for a translation signal in
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Fig. 4 sRNA ORFs with evidence for translation are preferentially predicted to be protein-coding. Ribosome profiling data from [25] was mapped to
B. subtilis 168 and E. coli K12. sRNA ORFs were annotated as translated based only on ribosome profiling signal within three codons of the start or
stop codon. a sRNA ORFs were separated into those independent of annotated ORFs and those antisense to annotated ORFs. The fraction of ORFs
translated (black bar) is compared to mock ORFs matched for length and overlap properties (white bars with 95% confidence intervals). b The
predicted coding probability of translated sRNA ORFs is compared to non-translated sRNA ORFs in a histogram for B. subtilis (top) and E. coli (bottom).
c Top: B. subtilis sRNA sbsu2300.1 has three potential coding ORFs, but only one is predicted to be coding. The start and stop codons of this ORF
correspond to ribosome profiling peaks, while the ORFs predicted as noncoding do not. Bottom: E. coli sRNA seco4050.1 (CsrC) has four ORFs, two of
which are predicted as coding and overlap with ribosome profiling peaks. The coding probability can help distinguish between the coding frame
for overlapping ORFs, as in the first two in this sRNA
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E. coli but not B. subtilis, but the reverse is true for
standalone ORFs.
Some sRNA ORFs with a protein-coding function may

not be found by these ribosome profiling experiments
because they are only be transcribed and translated under
certain conditions. Conversely, translation does not nec-
essarily imply function. Nevertheless, there should be
significant overlap between proteins translated in specific
conditions and ORFs under natural selection to maintain
protein-coding function, since translation is a prerequisite
for protein-encoded function. Indeed, more ribosome-
bound ORFs had more high coding scores than non-
ribosome-boundORFs, meaning the coding score statistic
was able to predict which sRNA ORFs were bound by
ribosomes (Fig. 4b). This predictive power was not due to
the strength of the Shine-Dalgarno sequence alone, imply-
ing that selection for protein-coding function reflected
in the Dn/Ds test and composition bias was correlated
with translation (Additional file 1: Figure S5A). For E. coli
K12 MG1655, we only predicted 1-2 sRNA ORFs under
selection to maintain protein coding, but there was still
significant evidence for ribosome binding of sRNA ORFs
that appeared to be correlated to the coding score. Our
methods may be unable to predict these protein products
with statistical confidence even if they are functional, for
example because the SD score has little predictive power
in E. coli (Additional file 1: Figure S1), and because trans-
lated sRNA ORFs may have different expression profiles
and different sequence features compared to annotated
ORFs. In other words, even though sRNA ORFs may not
rise above mock ORFs in terms of coding features such as
the Dn/Ds test, those coding features are still predictive of
translation.
Ribosome-bound ORFs typically had peaks of ribosome

profiling signal concentrated at the start or stop codons,
as was the case with many full-length annotated ORFs
(Fig. 4c). Many sRNAs that were previously identified
only by high-throughput screens had evidence for ribo-
some binding, such as the B. subtilis sRNA sbsu2300.1,
which was defined based on tiling array data ([35], Fig. 4c,
top). Some sRNAs have multiple ORFs between 10 and
50 amino acids long, making the assignment of ribo-
some profiling coverage to individual ORFs ambiguous.
For example, the CsrC noncoding RNA in E. coli has ORFs
overlapping in different frames (Fig. 4c, bottom). In this
case, only one ORF under the coverage peak had a coding
score of greater than 0.5, showing that the coding score
can help to prioritize ORFs for follow-up experiment even
when evidence for translation is ambiguous. Although
these analyses were performed by dividing sRNAORFs by
the mere presence or absence of ribosome profiling reads
(see Methods), similar results were obtained when quan-
tifying the number of reads in each ORF (Additional file 1:
Figure S5B).

Mass spectrometry confirms small proteins from sRNA
ORFs
Many sRNA short ORFs could be occasionally translated
without accumulation of a protein product to apprecia-
ble levels if the protein were quickly degraded. Conversely,
detection of sRNAORF protein products in cells by meth-
ods with limited sensitivity would be strong evidence
against this possibility. Therefore, we took advantage of
a mass spectrometry dataset from an experiment specif-
ically designed to find small proteins to search for sRNA
ORF products in Helicobacter pylori. For the purposes
of this search, we included the widest set of sRNA ORF
predictions possible, filtering neither for predicted cod-
ing score nor potential overlaps with annotated full-length
ORFs. This search resulted in 25 peptide hits from 17
sRNA ORFs at FDR less than 0.05, with 6 hits having FDR
less than 0.01. Despite the statistical significance of these
matches, most novel proteins were identified by only a
single peptide, making their identification unreliable. The
ultimate confirmation of protein identification must be
made by matching the observed spectrum to that of a syn-
thetic peptide with the expected sequence. Therefore, we
synthesized each of our putative matching peptides. 17 of
the synthetic peptides resulted in useable mass spectra, of
which 6 tested peptides were validated with a spectrum
match. One of the hits, shpy580.1.10, was likely due to an
alternative start site of a previously-annotated ORF, i.e. a
misannotated or alternative start codon (Additional file 3:
Table S2). Another peptide hit in shpy1027.1.1 is for a
short sequence shared by an annotated ORF, so may not
be considered strong evidence for a novel protein-coding
sRNA. However, another peptide comes from an sRNA
labeled here as shpy839.1, which is a tmRNAwith a known
(but unannotated) coding peptide that helps to recycle
stalled ribosomes (Fig. 5, Additional file 3: Table S2). One
other, shpy997.1.2 appears to be a bona fide novel coding
peptide arising from an sRNA antisense to an annotated
ORF (Fig. 5).

sRNA ORFs are enriched for certain functional annotations
Some of the sRNAs considered in our study are already
known to encode functional peptides in addition to
their non-coding functions. For example, the transfer-
messenger RNA gene SsrA has tRNA-like properties but
also codes for a short peptide, which is rarely annotated.
We predicted the coding peptide for SsrA in S. pneumo-
niae at a q-value of 0.10, and in two other species at a
coding score p ≥ 0.5. Most other sRNAs with known cod-
ing ORFs were already annotated correctly, for example
SgrT in E. coli and SR1P/YkzW in B. subtilis, so they were
skipped by our methods.
To systematically find other annotations for our pre-

dicted sRNA coding ORFs, we searched their translated
sequences against known proteins using protein BLAST.
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Fig. 5Mass spectrometry confirms sRNA ORFs in Helicobacter pylori. a Two sRNAs are shown in their genomic context, with short ORFs merged for
in-frame overlaps and plotted in a separate track. Both sRNAs had a hit in a mass spectrometry search at a false discovery rate of 0.05 (the middle
ORF in the case of shpy997.1). b Validations by synthetic peptide of the peptide/MS matches. On top the spectra from the full shotgun MS/MS
experiment are plotted for the hit corresponding to each sRNA ORF. On bottom, the spectra are confirmed with the expected peptide synthesized
and run alone on the mass spectrometer

43 sRNAORFs with coding score p ≥ 0.5 had a significant
match with a similar length and an informative descrip-
tion, including 12 with coding q ≤ 0.25 (Additional
file 4: Table S3). Many of these BLAST hits were anno-
tated in the same genus as the sRNA ORF, suggesting
that they are direct orthologs that have escaped annota-
tion so far. In one case (sbsu22741.1), a B. subtilis sRNA
ORF matched a type I toxin-antitoxin system annotated
in the same species but added to genbank after we per-
formed our analysis. Another notable example is a gene
with BLAST hits to many proteins annotated as phenol-
soluble modulins, that was nevertheless unannotated in S.
aureus N315 (Additional file 4: Table S3). Phenol-soluble
modulins are a crucial virulence factor for methicillin-
resistant S. aureus [36], so it is surprising that the protein
in S. aureus N315 was never annotated as such based on
homology alone. Still, the 43 sRNAORFs with informative
BLAST hits leave more than 350 new predicted coding
ORFs with no known homolog.
To identify potential functions of our sRNA predicted

coding ORFs lacking annotated homologs, we examined
a large compendium of B. subtilis tiling array data for
expression patterns [26]. sRNAs that contained a pre-
dicted coding ORF were enriched for having high expres-
sion in biofilms, stationary phase in minimal media, and
other confluent conditions, when compared to sRNAs

having ORFs not predicted to be coding, or to mock ORFs
(Fig. 6).
One of the species we analyzed, Streptococcus pneu-

moniae, was the subject of a recent genome-wide screen
for sRNA function in virulence [37]. We searched for
predicted coding ORFs in the S. pneumoniae sRNAs as
defined by Mann et al., resulting in two having coding
q ≤ 0.25, the R12 and F32 sRNAs. Both had a pheno-
type when knocked out in the study, with the R12 mutant
having reduced fitness in blood and reduced nasopharynx
colonization, and the F32 mutant having reduced fitness
in Lung infection. The F32 RNA is also known as SsrA, the
tmRNA gene with known peptide-encoding function.

Many sRNA ORFs are part of type I toxin/antitoxin systems
An obvious trend in the annotations of the homologs
of our predicted coding sRNA ORFs is that 27 were
membrane-associated, including 6 matches to holins or
type I toxin-antitoxin systems, which typically encode
membrane-associated small protein toxins (Additional
file 4: Table S3). Therefore we hypothesized that a com-
mon function for many sRNA coding ORFs would be to
act as membrane-binding proteins and possibly also as
toxins. Translated sRNA ORFs with coding q ≤ 0.25 had
a predicted transmembrane helix more often than shuf-
fled sequences or equivalent-length regions of annotated
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Fig. 6 sRNA coding ORFs are enriched for predicted functions including type I toxins. a B. subtilis 168 sRNAs containing at least one predicted
coding ORF were compared to sRNAs with only noncoding ORFs or mock ORFs. Four growth conditions were enriched for high expression of
predicted sRNA coding ORFs (1.5-fold increase in coding ORFs over both controls, minimum 5 sRNA coding ORFs). b For all predicted coding ORFs
in all species (q ≤ 0.25, n = 120), the number of ORFs with at least one predicted transmembrane helix is compared to the number expected by
chance based on their shuffled amino acid sequences, sRNA ORFs with q ≥ 0.25, all intergenic ORFs, or size-matched subsets of annotated ORFs.
Error bars represent 95% confidence intervals. c As in (b), except that the number of ORFs predicted as type I toxins by the physicochemical classifier
are plotted. d Degradation levels of S. aureus ORFs as measured by sequencing of short RNA fragments are plotted. ORFs subject to degradation of
double-stranded RNAs have higher levels in wild-type bacteria (y-axis) than in RNAse III mutant bacteria (x-axis). Known and predicted type I toxins
are highlighted (blue and red, respectively)

ORFs, notably in B. subtilis, S. aureus N315, and S.
meliloti (Fig. 6b, Additional file 1: Figure S6). Altogether,
the number of coding sRNA ORFs with at least one
transmembrane helix in excess of controls was 8.0-13,
depending on the type of control, 6.7-11% of the 120
predicted coding ORFs.
To more directly find unannotated toxins, we devel-

oped a machine-learning classifier to differentiate type I
toxin peptides from non-toxic short proteins based on
the physicochemical characteristics of their amino acid
sequences, a method adapted from Torrent et al. [38]. We
trained a Random Forest classifier on type I toxin pep-
tides found via an exhaustive PSI-BLAST search [39], with
length-matched Uniprot sequences as negative controls.
This classifier achieved a sensitivity (true positive rate)
of 64.3% with a false positive rate of only 3.6% in 10-
fold cross-validation of the training data. When applied
to predicted sRNA ORFs with coding q ≤ 0.25, 10 were
predicted type I toxins compared to only 2-4 expected
by chance based on shuffled sequences or controls from
other ORF types (Fig. 6c). Of these 10 predicted tox-
ins, three have annotated holin or type I toxin BLAST
hits (sbsu2274.3:2273534-2273824.2, ssau1857.1:1856223-

1856978.5, sbsu2679.1:2678645-2679017.7). This result
implies that coding sRNAORFs are enriched for predicted
type I toxin-antitoxin systems compared to chance.
If these predicted sRNA coding ORFs are really part of

type I toxin-antitoxin systems, their expression should be
controlled by the formation of a double-stranded RNA
followed by degradationmediated by RNase III.We exam-
ined short RNA fragment sequencing data from a recent
study for signs of these degradation products in S. aureus
[40]. Of the three type I toxins reported by Fozo et al.
[39], two had very high levels of RNA degradation sig-
nal (93rd percentile or above, Fig. 6d, Additional file 1:
Figure S6). The third was poorly expressed. This signal
could not be accounted for by background degradation, as
it did not persist in an RNase III mutant (78th percentile
or below). We reasoned that novel type I toxins should
have similar signal for RNase III dependent degradation.
Because we did not predict any confident type I toxins in S.
aureus sRNAs, we expanded the search to all short ORFs
not overlapping annotated ORFs. Three of these ORFs
had coding p ≥ 0.5 and were predicted type I toxins. All
three had high RNA degradation signal that was depen-
dent on RNAse III to a similar extent (Fig. 6d, Additional
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file 1: Figure S6). Expanding this search to B. subtilis, 3/5
predicted type I toxins in sRNA ORFs had high RNA
degradation signal (85th percentile and above, Additional
file 1: Figure S6), although the lack of data from an RNAse
III mutant precludes their confident confirmation.

Web Server
We anticipate that this collection of predicted bacterial
sRNA coding ORFs with quantified uncertainty will be
of broad utility for experimental microbiology. To make
these results as accessible as possible, we created a user-
friendly web site providing all of our coding ORF predic-
tions for searching or browsing. A parser was written in
Python to browse the results of all analyses, formatting
and storing them in a couchdb database (http://couchdb.
apache.org/). NoSQL technologies were used to dynami-
cally display bioinformatics results. The resulting website
is available at the URL http://disco-bac.web.pasteur.fr.
For each species (cf. Table 1), a summary of the cod-

ing sRNA ORF search statistics is available. From this
first page, the user may view the detailed characteris-
tics including coding score for each sRNA ORF, or may
expand the search to all intergenic ORFs. In each case,
summary figures, for example displaying the ROC curves
for prediction accuracy, are also shown. Furthermore, an
interactive genome browser [41] was embedded to visu-
alize the genomic context of sRNA ORFs. Tracks show
genome position, annotated sRNAs, all sRNA ORFs (with
and without in-frame overlaps merged), as well as full-
length annotated ORFs. We expect that the accessibility

Table 1 Species used in this study and associated Genbank
accession numbers for their chromosomal genome

Species Genbank version

Bacillus subtilis subsp. subtilis str. 168 AL009126.3

Clostridium acetobutylicum ATCC 824 AE001437.1

Escherichia coli str. K12 substr. MG1655 U00096.2

Helicobacter pylori 26695 CP003904.1

Legionella pneumophila subsp. pneumophila
str. Philadelphia

AE017354.1

Listeria monocytogenes strain EGD AL591824.1

Salmonella enterica subsp. enterica serovar
Typhimurium SL1344

FQ312003.1

Staphylococcus aureus subsp. aureus N315 NC_002745.2

Staphylococcus aureus subsp. aureus NCTC
8325

CP000253.1

Sinorhizobiummeliloti 1021 AL591688.1

Streptococcus pneumoniae TIGR4 AE005672.3

Streptococcus pyogenesMGAS5005 CP000017.1

Streptomyces coelicolor A3(2) NC_003888.3

Synechocystis sp. PCC 6803 BA000022.2

of this data should empower both computationalists and
experimentalists to follow up on these results with ease.

Discussion
Our survey was enabled by DiSCO-Bac, a flexiblemachine
learning method to find coding sRNA ORFs based on
simple sequence features and comparative genomics.
Although relatively straightforward, the method is con-
servative and versatile, making as few assumptions as
possible while still being able to incorporate a wide range
of evidence. Our use of “mock ORFs” to measure the
empirical background distributions of our sequence fea-
tures is crucial for controlling for several biases that would
otherwise strongly skew the analysis, for example, the
length distribution and number of ORFs, the GC content
of the upstream sequence, higher-order oligonucleotide
frequencies, the length of runs of conservation, the effects
of overlap with annotated coding ORFs, and the frequency
of horizontally transferred sequence. We are careful to
guard against double-counting by merging all overlapping
ORFs before estimating the number that are coding, to
correct for the freedom in fitting the coding score thresh-
old to the data, and to use only a single machine learning
algorithm with a single parameter set to guard against
researcher degrees of freedom— all of which are common
problems in this type of bioinformatic analysis.
Although ultimate proof of protein-coding function for

these predicted proteins will await shotgun mass spec-
trometry targeted towards finding small proteins coupled
to genetic and molecular validation, we note that valida-
tion at the protein level is extremely difficult. In H. pylori,
only a single novel short ORF was confidently validated
by mass spectrometry using a synthetic peptide, despite
dozens of putative hits in the shotgun search. Small pro-
teins are notoriously difficult to detect with shotgun mass
spectrometry, because protein purification, electrophore-
sis, and chromatography all bias towards larger proteins,
and because small proteins have few tryptic peptides avail-
able to search against. However, we believe more attention
paid towards this topic by the proteomics community
will yield advances through improved techniques, such as
the incorporation of sRNA ORF coding predictions with
selected reaction monitoring.
Our evidence suggests that even with proof of pro-

teins encoded by sRNA ORFs, many will likely be
nonfunctional. Our ribosome profiling analysis suggests
widespread translation at some low level in sRNA ORFs,
and our sRNA ORF abundance result suggests weak or
no selection against having sRNA ORFs. Therefore, the
default state of sRNAs may be to have short ORFs coming
into and out of existence, with occasional translation but
little functional impact. However, because of our com-
parison to mock ORFs, we have quantified how often
natural selection has put pressure on the Shine-Dalgarno

http://couchdb.apache.org/
http://couchdb.apache.org/
http://disco-bac.web.pasteur.fr
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sequence, the amino acid sequence, or the coding com-
position to be more coding-like than expected by chance.
Taking these ideas together, it is likely that widespread
coding ORFs are preferentially newly evolved and con-
served over shorter distances than full-length proteins.
No pre-existing method is ideal for estimating the num-

ber of sRNA coding ORFs as we have. Some comparative
genomics methods take into account more information
than the Dn/Ds test, but more complexity can make algo-
rithms more brittle. For PhyloCSF [23], a greater number
of parameters to fit can be problematic for small bacterial
genomes and this method remains untested on prokary-
otes. RNAcode [24] handles multiple alignment issues
like insertions and deletions intelligently, but because it
does not take into account phylogenetic structure it relies
on careful selection of orthologous species to yield rele-
vant results, making it difficult to apply on a large scale.
Warren et al. [8] used a clever BLAST-based approach
to quickly find new genes, but this is less sensitive than
Dn/Ds, which is aware of phylogeny and mutations at the
DNA level. Other methods are either ad-hoc and difficult
to apply to other species [22] and/or do not incorporate
both sequence features and comparative genomics [21].
A key advantage of our analysis is the effective aggre-

gation of predictions with weak confidence (high FDR)
to make statistically accurate statements about the set of
sRNA ORFs as a whole. At first glance, it might seem
strange that one can have reasonable confidence in the
number of coding ORFs when the confidence in any par-
ticular coding ORF prediction is only 50% or less. The
situation is analogous to estimating the mean of a prob-
ability distribution with a high variance. Each individual
observation from the distribution is likely to be far from
the mean, but when aggregating over multiple observa-
tions, the sample mean converges rapidly to the true
expected value as sample size increases, as proven by
the law of large numbers and the central limit theorem.
There are many instances of biological insight gained by
aggregating noisy predictions; for example, the number
of human genes that are conserved targets of microRNAs
can be quantified despite having low confidence in most
individual predictions [42].
One caveat with our method is that it depends on the

sRNA annotations, which reduce the amount of ORFs
to consider and therefore reduce the background noise
and the problem of multiple test correction. For example,
S. aureus N315 has 154 annotated sRNAs, compared to
1233 in NCTC8325. As a result, we predict 21.6 ± 12.4
S. aureus N315 coding ORFs compared to 207 ± 32 in
S. aureus NCTC8325 (Fig. 3d). Future additions to sRNA
annotations will likely reduce these differences. Addition-
ally, S. meliloti appears as an outlier in this analysis, with a
large number of sRNAs annotated but a small number of
coding ORFs predicted. This could be attributed to sRNA

annotations, as a large number of its S. meliloti sRNA
annotations overlap an annotated coding ORF in the sense
orientation, and we discard sRNA ORFs with in-frame
overlap to annotated ORFs. We found very little evidence
supporting coding of ORFs with out-of-frame sense over-
lap to annotated ORFs in any species, explaining the S.
meliloti outlier.
We expect that the true number of coding sRNAORFs is

much higher than what we predicted for several reasons:
1) sRNA annotations are based on a subset of published
studies which have profiled a subset of potential condi-
tions, and therefore are likely incomplete, 2) the sequence
features we used have limited predictive power, for exam-
ple very few ORFs have strong Shine-Dalgarno sequences
in some species, 3) we only consider AUG start codons,
while 10.0% of annotated E. coliORFs begin with GUG or
UUG, 4) our mock ORFs used for non-coding background
calculations likely contain some real ORFs because of
missed annotations and nonstandard start codons, 5) we
miss unannotated sRNA ORFs smaller than 10 or larger
than 50 amino acids, and 6) the machine-learning classi-
fier assumes that sRNA ORFs have similar properties to
full-length ORFs, but many bona fide small proteins are
likely poorly expressed and/or have different evolutionary
histories and thus will have different sequence proper-
ties. For example, some sRNA ORFs may have recently
evolved de novo and therefore would not have orthologs.
For all these reasons, we expect that the true number of
small proteins encoded by sRNAORFs ismuch larger than
what we reported, and future improvements to method-
ology and sRNA annotations will increase these estimates
substantially.

Conclusions
We present here a broad survey of protein coding in
bacterial sRNAs, to our knowledge, the first of its kind.
We combined phylogenetics and known biological effects
into a machine learning classifier, a method we call
DiSCO-Bac, Discovery of sRNA Coding ORFs in Bac-
teria. We found that more than half of sRNAs con-
tain canonical ORFs between 10 and 50 amino acids in
length, and conservatively at least 10% of sRNAs con-
tain ORFs under selection to maintain protein-coding
function. In each species considered here, an average of
29 new protein-coding ORFs were predicted in anno-
tated sRNAs. We showed experimental evidence that
many of these ORFs were bound by ribosomes (using
ribosome profiling data) and that some protein products
accumulated to detectable levels (using mass spectrom-
etry). Although few of the predicted protein products
had orthologs with annotations, we nonetheless found
clues to potential commonly encoded functions. In B.
subtilis, sRNAs with predicted coding ORFs were prefer-
entially expressed in biofilms and confluent conditions.
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Overall, sRNA predicted coding ORFs more often had
transmembrane domains than expected by chance. Build-
ing a machine learning classifier to predict novel type I
toxins, we found that predicted sRNA coding ORFs were
enriched for predicted toxins, which were associated in S.
aureus and B. subtilis with small RNA degradation prod-
ucts characteristic of control of expression by an RNA
antitoxin (Fig. 6). Chromosomal type I toxins are often
involved in forming bacterial persisters and biofilms [43],
consistent with their expression tendencies in B. sub-
tilis. We expect that type I toxins constitute a substantial
minority of our novel coding ORFs.
Although many are careful to point out that bacterial

sRNAsmay code for small peptides [1], the term “noncod-
ing” is sometimes used interchangeably, and a trans-acting
function for sRNAs is sometimes assumed [4]. Given that
more than 50% of sRNAs contain ORFs and up to 60% of
E. coli sRNA ORFs have some evidence for translation in
a single condition (Fig. 4a), it is clear that sRNAs should
not be assumed noncoding and should not be assumed
to have only a trans-acting antisense function. Under-
scoring this point, for many species, a high fraction of
antisense ORFs are predicted to be coding (Additional
file 1: Figure S4C). The fact that two sRNAs involved in
S. pneumoniae virulence, R12 and F32, have confident
predicted coding ORFs underscores that the possibility
of protein-coding function must always be considered.
Of course, there are many examples of sRNAs that have
both protein-coding and RNA-level functions, so one does
not preclude the other [9–12]. Antisense transcription is
prevalent inmany bacteria [4, 40] but these RNAs are even
more commonly assumed to function via antisense bind-
ing. However, almost half of our newly-predicted coding
sRNA ORFs had some antisense overlap with annotated
ORFs, and these ORFs were found to be commonly bound
by ribosomes (Fig. 4). For many species, over 20% of
antisense ORFs are predicted to be coding (Additional
file 1: Figure S4C). This should serve as another reminder
that apparent antisense RNA function does not preclude
protein-coding potential.
Although our ORF predictions are certainly not per-

fect, it is important to provide predictions with quanti-
fied uncertainty, both to define a lower limit on the size
of this class of proteins, and to provide realistic expec-
tations for experimental follow-up. In addition to pre-
senting our detailed predictions here (Additional file 5:
Table S4), we distributed our predictions in a user-friendly
web database (http://disco-bac.web.pasteur.fr) combin-
ing summary results, individual ORF characteristics, and
tools for sorting and visualizing genomic context. These
easily-accessible predictions should hasten the experi-
mental characterization of sRNA ORFs. With an average
of over a dozen new protein-coding genes predicted in
each bacterial species, we expect that future experiments

will elucidate novel functions for sRNA ORFs for years to
come.

Methods
Genomic data collection
Bacterial genomes and ORF annotations were down-
loaded from Genbank, with accession numbers found in
Table 1. Bacterial sRNA annotations were downloaded
from BSRD version 1.2 [3]. BSRD annotations were sup-
plemented by sRNA annotations that were not in BSRD
from two recently published studies on B. subtilis 168
(Table S6.2 of [26]) and S. aureus NCTC8325 (Table S6
of [27]).

Sequence features
sRNA ORFs between 10 and 50 amino acids in length
were found assuming ATG as the only start codon. The
50 amino acid maximum length was applied to account
for full-length ORFs that would be found by conventional
algorithms but were not included in a particular genome’s
Genbank annotations. When an ORF extended past the 3′
end of an annotated sRNA, it was extended until the near-
est in-frame stop codon, allowing for inaccurate sRNA 3′
end annotations. sRNA ORFs having in-frame overlap in
the same sense as an annotated coding ORF were filtered
out. When all intergenic ORFs were considered, no over-
lap was allowed with annotated coding ORFs, regardless
of the frame. The number of ORFs expected by chance
(Fig. 1b) was generated by shuffling the sRNA sequences
one thousand times and counting the resultingORFs using
the same procedure as above. In many instances, multiple
start codons could be matched to the same stop codon,
corresponding to overlapping in-frame protein sequences.
In all predictions of coding ORFs (Figs. 3, 4, and 6,
these in-frame overlaps were merged, resulting in only the
longest ORF, which avoids double-counting coding ORFs.
The ORF with the highest coding score was retained in
these cases.
Shine-Dalgarno sequence strength (the SD score) was

calculated as in Ma & Karlin [31] using their published
anti-SD sequences or when unavailable, the correspond-
ing section of the species’ 16S rRNA sequence down-
loaded from Genbank. For each ORF or mock ORF,
ensemble free energies of SD binding were calculated by
hybridizing the twenty basepairs upstream of the start
codon to the anti-SD sequence using the “hybrid” program
from the UNAFold package [44]. Energies reported are at
37 degrees Celsius and in units of -kJ/mol.
Composition bias was calculated using the 69-

parameter Z-curve transformation, i.e. phase-specific
mononucleotide frequency at each position, and di- and
tri-nucleotide frequency at frame zero only [32]. The Z-
curve transformation is a numerical representation of the
codon bias of an ORF, but also of amino acid frequencies

http://disco-bac.web.pasteur.fr


Friedman et al. BMC Genomics  (2017) 18:553 Page 16 of 21

and nucleotide biases such as GC content and purine
bias. Z-curve transformations of ORFs and matching
intergenic controls were then used to train a logistic
regression classifier in Weka version 3-7-9 [45] with a
ridge parameter of 10−8 yielding scores ranging between
zero and one, representing the estimated probability that
a sequence is protein-coding. We found that this classifier
was more robust and more interpretable than the original
Fisher discriminant method used by Gao and Zhang [32].
We skipped any ATG codons when scoring any sequence,
because they are, by definition, almost never found in the
intergenic mock ORFs.
Density plots in Fig. 2 and Additional file 1: Figures

S1 and S3 were smoothed using a gaussian kernel using
the density function in R with adjust=0.7. 95% confidence
intervals were ±1.96 times the standard deviation of the
control sets.

Comparative genomics
Orthologous sequences were selected with a blastn search
against all complete bacterial genomes in Genbank with
an E-value cutoff of 0.05 and parameters -word_size 7
-gapopen 5 -gapextend 2 -penalty -3 -reward 2. After
running blastn for all full-length annotated ORFs in
the reference species, species with at least 50% of the
maximum number of hits were included as orthologous
species; in other words, 50% of the maximum was our ad-
hoc threshold for the number of total genes shared with
species to be included in the tree. For this analysis, plas-
mids were included in the search and counted towards
the number of hits for a species. To construct a phylo-
genetic tree, annotated ORFs in the reference sequence
were truncated to a maximum of 5000 nucleotides,
re-blasted against the orthologous species, and aligned
using Clustal Omega [46] with default parameters. The
alignments were then concatenated and analyzed with
the dnaml program of the PHYLIP package using default
options [47]. To limit memory usage and running time, we
randomly subsampled the sites to yield a maximum of 5
million total nucleotides including all species. For species
having more than fifty members of the tree at this stage,
we pruned the tree using a greedy algorithm to remove
redundant leaves and decrease computational complexity,
i.e. we iteratively removed one random species from the
pair with the shortest intervening branch length until only
fifty leaves remained. At this point, multiple alignments
were recreated as above and the phylogenetic tree recal-
culated using the fifty remaining orthologous species.
Any gap positions in the reference organism sequence
were spliced out of the multiple alignment, and in-frame
stop codons in non-reference species were replaced by
gaps. These steps were intended to maximize the amount
of data to theDn/Ds tests while remaining robust to indels
and substitutions in the genome assembly and alignment

errors. Misaligned sequences statistically add equally
to Dn and Ds, thus providing evidence against protein-
coding potential, and therefore making the method
more conservative with respect to predicting functional
coding sequences. Likewise, we did not explicitly test for
the presence of start or stop codons in the orthologous
sequences. This choice was also deliberately made to
provide more information, while making the method
more conservative with respect to predicting coding.
Dn/Ds tests were performed using the codeml program
of the PAML package using equal amino acid distance
and one site type [48]. Codeml was run once with a fixed
omega of one and once with a variable omega, and the
reported log likelihood is the difference between the log
likelihood of the two models (or zero if the fixed-omega
model was more likely than the variable-omega model).
We did not perform the Dn/Ds test on sRNA ORFs over-
lapping with annotated coding ORFs on either strand, as,
in these cases, any signal for selection could not be solely
attributed to the sRNA ORF.
To search for homologs to amino acid sequences,

command-line BLASTP was used to search the non-
redundant protein database (Nr) with the parameters -
task blastp-short -evalue 0.25. The search was performed
both with and without composition-based statistics
(-comp_based_stats 0), and all matches were filtered to
be within a two-fold difference in length to the pre-
dicted short protein. Any matches with E-value <0.25 in
either search were considered homologs. Homologs with
descriptions containing “hypothetical”, “uncharacterized”,
“unknown”, “unnamed”, “predicted”, “undefined function”,
or beginning with “conserved domain protein” were con-
sidered to be hypothetical proteins.

Machine learning
All machine learning was performed with Weka version
3-7-9 [45]. When positive and negative sets were not per-
fectly matched for size, a cost-sensitive classifier was used
to ensure an equal weighting of positive and negative
training data. For each sequence feature, a unique set of
negative controls (which we refer to as “mock ORFs”) was
selected to best match relevant properties, and positive
controls were sampled from annotated ORFs. These con-
trols were used for statistical tests, plotting figures, and
as training data for the machine learning step of coding
prediction.
sRNA ORFs having any overlap with an annotated cod-

ing ORF were treated separately and were given their
own mock ORF sets as described below. The conser-
vation analysis was not performed for these ORFs and
was treated as missing data, because the conservation of
the annotated ORF would typically have overwhelmed
signal for conservation out-of-frame or in the antisense
orientation.
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For Shine-Dalgarno sequences, the scores of the 20
nucleotides upstream of all annotated ORFs were used as
positive controls, as in Ma & Karlin [31]. These sequences
were shuffled (i.e. randomly reordered) twenty times and
re-scored to generate negative control sets controlled for
nucleotide composition in each upstream region. The
same was done for sRNA ORFs.
For conservation analysis, positive and negative control

sets were matched for ORF length and were not shuf-
fled, therefore preserving frame-specific composition and
spatial clustering of conservation. Instead, each positive
control set consisted of in-frame subsets of annotated
ORFs matching the length distribution of sRNA ORFs.
Each negative control set consisted of mock ORFs with
the same length distribution as sRNA ORFs but ran-
domly taken from “intergenic” regions between annotated
coding ORFs, also excluding all sRNA ORFs between 10
and 50 amino acids long. Mock ORFs did not start with
an ATG codon, but were constrained not to contain an
in-frame stop codon. Twenty sets of positive and nega-
tive controls were generated, with each set equal in size
and length distribution to the sRNA ORFs. The resulting
background estimate of noncoding background is conser-
vative, because the mock ORFs may contain coding ORFs
not starting with ATG codons.
Positive and negative controls for the composition bias

analysis were the same as those used for the conserva-
tion analysis except in the case of sRNA ORFs having
overlap with annotated coding ORFs. For each of these
sRNA ORFs, twenty mock ORFs were randomly selected
with the same overlap length with an annotated ORF in
the same orientation (and by implication the same read-
ing frame). For example, an sRNA ORF of 50 nucleotides
with its last 10 nucleotides overlapping the 3′ end of an
annotated coding ORF would have a negative control set
of 20 corresponding mock ORFs having 40 nucleotides in
intergenic regions and the last 10 3′ nucleotides overlap-
ping the 3′ end of a randomly selected annotated coding
ORF. These mock ORF sets are also required to not con-
tain sRNA ORFs between 10 and 50 amino acids long or
in-frame stop codons.
To generate the coding score, we used a two-step clas-

sification procedure. First, a logistic regression classifier
was trained for composition bias as described above,
yielding the composition bias score for each ORF. Next,
the SD score, log likelihood of the Dn/Ds test, and the
composition bias score were combined into a training set.
As a starting point, the 20 control sets from the conserva-
tion and nucleotide composition analysis were used. The
positive control sets were matched with the actual SD
score of the annotated ORF containing the ORF subset,
while the negative control sets were randomly matched
to one of the shuffled SD scores. These data were used
to train a bagged decision tree classifier using the Weka

Bagging class with REPTree base classifiers with default
options, but with 100 iterations instead of the default 10.
This classifier was used to generate the final coding score
of each sRNA ORF, mock ORF (for the calculation of
the background distribution), and intergenic ORF. AUC
values and ROC curves on training data are for 10-fold
cross-validated evaluation. When confidence limits are
stated, they represent ± 1.96 times the standard deviation
of the negative control sets, i.e., a 95% confidence interval.
Plots in Fig. 3a were generated using Weka’s Bound-

aryVisualizer class using the training data with parameters
r = 2 and k = 5.

Number of sRNA ORFs coding above background
The coding score represents an estimate of the probability
that a given ORF is protein-coding, given the assumptions
that the training sets accurately represent the parame-
ter distributions for ORFs and noncoding sequences, and
that there is an equal number of coding and noncoding
ORFs being tested. The latter assumption is problem-
atic, because when we test all sRNA ORFs, far fewer than
half may be coding, meaning the coding score is not an
accurate probability estimate.
Here, we used the coding score to calculate an empirical

false discovery rate estimate. For each species, all in-frame
overlapping sRNA ORFs were merged and assigned the
largest coding score of the individual ORFs. Let S and M
be the number of sRNA ORFs and mock sRNA ORFs,
and ST and MT be an estimate of the number of ORFs
having coding score greater than a threshold T. With the
assumption that the distribution of coding scores for non-
coding sRNA ORFs is be the same as for mock ORFs, we
calculated the empirical false discovery rate (FDR) as

FDRT = Expected false positives at T
All positives atT

= MT/M
ST/S

and the q-value, the FDR analog of the p-value, was by
definition

qT = min
T ′≥T

FDRT ′

We then estimated the raw number of true coding ORFs,
C, by

C = max
T

(All positives − Expected false positives)

= max
T

(ST − qTST )

This maximization over all thresholds leaves open the
possibility that random fluctuations due to limited sample
sizes yield an erroneous signal. This is because any ran-
dom set of noncoding ORFs will have a transient positive
difference ST/S > MT/M at some threshold T. There-
fore, we made two modifications to this estimate. First
we reasoned that the true coding ORFs would be found
preferentially at the highest coding scores, so we did not
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consider any thresholds below the first point at which the
coding signal above background was negative, i.e.:

T ′ = max (t) such that St − Mt
M

× S ≤ −1

C = max
T>T ′

(ST − qTST )

The second modification was to select twenty random
subsets of mock ORFs matching the number of true sRNA
ORFs to estimate the effect of this random fluctuation,
correcting the estimate of coding sRNA ORFs by

C′ = C −
∑20

i=1Mi
T − qiTM

i
T

20
where Mi is subset i of the mock ORFs and qiT is the cal-
culated as above considering the remainder of the mock
ORFs as the false positive distribution. This correctedC′ is
plotted in Fig. 3d, with the confidence intervals estimated
from the standard deviation of theMi mock ORF subsets.
In species having sRNA ORFs overlapping annotated

coding ORFs, the FDR calculation was performed sep-
arately for ORFs with no annotated overlap, ORFs with
out-of-frame overlap in the sense direction, and ORFs
with antisense overlap, yielding three C′ values. The con-
fidence intervals on sum of the three are based on the
standard deviation of the sum of the three Mi mock ORF
subsets, one for each category of sRNA ORF.
To estimate the number of sRNAs with at least one

coding ORF, we randomly sampled sets of ORFs to be
coding 100 times, with each set equal in size to the esti-
mate for the total number of coding sRNAORFs. This was
done separately for ORFs with overlap to annotated cod-
ing ORFs in sense and in antisense orientations, and the
union of the three sets of coding ORFs were counted.

Intergenic ORFs
When the analysis was expanded to all intergenic ORFs
rather than limited to annotated sRNAs, two additional
controls were added to eliminate false positives from
pseudogenes. First, all ORFs having a Dn/Ds > 1 with
a log likelihood ratio of at least 3, i.e. those having sig-
nal for positive selection, were removed as they are likely
out-of-frame ORFs in unannotated pseudogenes. Also, all
ORFs having a BLAST hit larger than 100 amino acids
in length were also eliminated, as they are likely in-frame
degenerations of full-length protein.

Ribosome profiling data
Processed ribosome profiling data from [25] was down-
loaded in processed WIG format from the NCBI Gene
Expression Omnibus (Accession GSE35641). Analysis
shown is for samples GSM872393 and GSM872397,
although similar results were obtained from the other
replicates. We began by visualizing the rates of reads map-
ping in all sRNA ORFs and mock ORFs. We found that a

large fraction of ORFs had no reads mapping at all, and
when reads were mapped they preferentially accumulated
at the start and stop codons. Therefore, a normalization
by ORF length would disadvantage longer ORFs. Instead,
we counted ORFs as being ribosome-bound if they had
ribosome profiling signal in the correct strand within 3
codons of the start or stop codon, the range reported by
Li et al. [25]. ORFs were compared to 20 sets of mock
ORFs chosen in the same way as the negative controls
for the nucleotide composition analysis. ORFs with out-
of-frame overlap to annotated ORFs in the same sense
were excluded, because the ribosome profiling data did
not have sub-codon resolution.

Proteogenomic analysis of H. pylori
Parts of the data and methods were previously published
[49], but for convenience we include a complete summary
here:

Sample preparation
For validation of predicted novel proteins of H. pylori
strain 26695 we reanalyzed our in-depth proteome analy-
sis which was especially focused on low molecular weight
proteins [Mueller et al., submitted]. Briefly, H. pylori
strain 26695 was cultured in Ham’s F12 medium (without
arginine, Biosera, UK) supplemented with either “light”
(12C6, 14N4), “heavy” (13C6, 15N4) or “medium” (13C6,
14N4) isotopically labeled arginine (Cambridge Isotope
Laboratories, USA) and 5% (v/v) dialyzed fetal calf serum
(FCS) (Thermo Scientific, USA). Cells were harvested
and the extracted proteins of the heavy (repG deletion
mutant, spiral morphology ([50]), medium (wild type H.
pylori strain 26695, spiral morphology) and light arginine
(wild type H. pylori strain 26695, coccoid morphology)
labeled samples were mixed 1:1:1 (w/w). The protein
mixtures were either separated by 1D-SDS-PAGE or,
for enrichment of low molecular weight, by gel-eluted
liquid fraction entrapment electrophoresis (GELFREE)
(5 fractions collecting between 0 and 50 kDa. Proteins
were reduced and alkylated and 50% of each sample was
digested by endoproteases trypsin and 50% by AspN.
Samples were reconstituted with 0.1% (v/v) formic acid
for LC-MS/MS analysis.

Nano-uHPLC/nano-ESI analysis
Briefly, proteolytic peptide mixtures were separated on
a nano-uHPLC system (nanoAcquity, Waters, Milford,
MA, USA) coupled online with an LTQ Orbitrap Velos
mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA). Peptides were trapped and washed for 5 min
with 2% acetonitrile containing 0.1% formic acid. Peptide
separation was performed using a gradient of 94 min
(SDS-PAGE fractions) or 154min (off-gel fractions) ramp-
ing from 2 to 40% acetonitrile, 0.1% formic acid on a C18
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column (nanoAcquity UPLC column, C18, 75 μm× 150
mm, 1.7 μm, Waters) with a flow rate of 300 nl/min. The
mass spectrometer automatically switched between full
scan MS mode (m/z 300− 1600, R = 60, 000) and tandem
MS acquisition. Peptide ions exceeding an intensity of
2000 counts were fragmented within the linear ion trap
by collision induced fragmentation. Dynamic precursor
exclusion for MS/MS measurements was set to 2 min.

Data Analysis
Proteome Discoverer (version 1.4.1.14, Thermo Scien-
tific., Bremen, Germany) was utilized for peptide identi-
fication. The database search engines MS Amanda [51]
and Sequest [52] were applied for peptide and protein
identification using a concatenated database containing
all proteins of H. pylori strain 26695 from NCBI (1596
entries) as well as 89 predicted proteins from an sRNA
short ORF with coding p > 0.5. The search was con-
ducted allowing a precursor mass tolerance of 10 ppm and
a fragment mass tolerance of 0.5 Da. Up to two proteolytic
missed cleavages were allowed. Carbamidomethylation of
cysteine was defined as fixed modification, whereas oxi-
dation of methionine was set as variable modification for
both proteases. AspN specificity was defined to cleave at
the N-terminal side of aspartic acid and glutamic acid. A
FDR of 5% was applied for peptide and 1% was tolerated
for protein identifications. Minimum one unique peptide
was required for protein identifications.

Confirmation using synthetic peptides
Thirty three proteolytic peptides of the predicted proteins
were synthesized (Thermo Scientific., Bremen, Germany),
measured by nano-uHPLC/nano-ESI MS/MS as been
described above using a 94 min gradient, and were man-
ually compared to spectra obtained by the analyses of the
H. pylori samples. Finally, only proteins being identified
with a protein FDR below 1%with at least one unique pep-
tide which could be confirmed by a synthetic peptide were
reported as novel proteins.

Functional annotations
B. subtilis expression data was taken from table S5 of
[26]. ORFs in sRNAs or size-matched mock ORFs from
intergenic regions were matched to array features if they
had any overlap with the annotated feature coordinates.
Array features were counted as coding if they contained
any sRNA ORF with coding q ≤ 0.25. Predicted coding
ORFs were then matched to conditions of high expression
as annotated by [26] through their array feature. Num-
ber of coding ORFs with high expression in a condition
expected by chance was calculated based on the mean and
standard deviation of 20 sets of mock ORFs or noncoding
ORFs equal in size to the predicted coding ORFs. Cat-
egories were considered significantly enriched if there

was 1.5-fold more predicted coding ORFs than expected
based on either control set, with a minimum of 5 ORFs.
95% confidence intervals were calculated using the normal
distribution.
Transmembrane domains were predicted by TMHMM

[53]. Two negative control sets were used for comparison:
first, sRNA ORFs with coding q ≤ 0.25 were shuffled 20
times for one control set; second, mock ORFs were cre-
ated by selecting random fragments of annotated ORFs
matching the sRNA ORFs with coding q ≤ 0.25 in length.
Type I toxins were taken from BLAST hits in [39].

Toxin amino acid sequences were filtered for only those
10-50 amino acids in length and clustered using CD-
HIT v4.6.1 [54], to select representative sequences not
more than 90% similar to each other, yielding 114 posi-
tive training examples. Negative training examples were
sampled from Uniref50 filtered to remove fragments and
proteins containing nonstandard amino acids, with length
distribution matching the positive control set exactly. 20
negative training examples were selected for each positive
example. For each amino acid sequence, physicochemical
properties were predicted using various methods: In vitro
aggregation, α-helix, β-strand, and β-turn conformation,
and helical aggregation propensity were calculated using
TANGO version 2.2 [55] with the parameters ct=N nt=
N ph = 7 te = 298 io = 0.1. Isoelectric point and hydro-
pathicity were calculated using Bio::Tools::pICalculator
and Bio::Tools::SeqStats from Bioperl 1.006923. A random
forest classifier was trained on this data using Weka 3-7-9
with parameters -I 10 -K 0 -S 1 -num-slots 1.
Data from [40] were downloaded from the sequence

read archive (SRA, accessions SRR064320, SRR064321,
and SRR064325). Short RNA reads were trimmed to
remove 3′ adapter sequences as in [40], and mapped to
the S. aureus NCTC 8325 or B. subtilis 168 genomes
using Bowtie 1.1.0 using the parameters -v 2 - -m 1 –seed
2 –strata –best. Alignments less than 10 bases long were
discarded, and alignments less than 20 bases long had at
most one allowed mismatch. Coverage of each annotated
ORF was calculated using coverageBed from bedtools
2.19.1 [56]. Coverage was normalized to RPKM using the
length of each annotated ORF and the total number of
mapping reads.
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