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Abstract

Background: Alternative transcription is common in eukaryotic cells and plays important role in regulation of
cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3′ untranslated region (UTR)
of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain
important functional sites.

Methods: The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent
validation by datamining in multiple independent experimental data from previously published studies.

Results: In this study we propose a mathematical model that describes the population dynamics of alternatively
polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian
or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a
phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative
polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts
oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate
of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of
transcript behavior that fits the mathematical model.

Conclusion: Alternative transcripts with different turnover rate create the effect of rectifier. This “molecular diode”
moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In
our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of
counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways.
Accounting for this mechanism is important for understanding the natural and engineering the synthetic cellular circuits.

Keywords: Alternative transcription, Oscillatory gene expression, Cellular circuits, Molecular diode,
mathematical modeling, datamining
Background
Circadian oscillation plays important role in regulation of
gene expression. The number of reported cycling genes dif-
fers from study to study. Some publications report hundreds
[1–3] others thousands [4] of oscillating transcripts, depend-
ing on experiment design and analysis of data. Some reports
insist on majority or the entire transcriptome experiencing
diurnal oscillations [5, 6]. In any case, a considerable fraction
of rhythmically expressed genes is bound to modulate the ac-
tivity in multiple biological pathways. Multiple other factors
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are known to regulate gene expression in the context of bio-
logical pathways. Alternative polyadenylation is one of such
factors, sometimes considered a form of alternative splicing,
but rarely mentioned in connections with circadian oscilla-
tion. Recent reviews, such as [7, 8] provide a panoramic
overview of the prominent role of alternative polyadenylation
in various healthy and disease states, but make no connec-
tion to the rhythmic alternations in alternative transcript
population. However, some studies point specifically to the
importance of such connection [9] in Arabidopsis thaliana
and Drosophila melanogaster [10]. Others point at the role
of polyadenylation in regulation of rhythmic protein expres-
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sion [11, 12] while observing the length of PolyA tail in vari-
ous transcripts in mice. In some estimations up to 35% of all
alternative 3’UTR transcripts may have different turnover
rate [8]. Generalizing these observations we come to a con-
clusion that transcription factors are not the only mechanism
regulating circadian expression. Post-transcriptional mecha-
nisms such as alternative splicing, polyadenylation,
nonsense-mediated decay, etc. are also important in forma-
tion of dynamic pattern of transcripts. In this connection we
would like to remember one old study reporting a perplexing
pattern of alternative transcripts of suppressor of cytokine
signaling (SOCS3) in mice oscillating in opposite phase to
each other [13]. The paper described the occurrence of alter-
native microarray probes traced to alternative transcripts
sharing the coding part, but resulting from alternative polya-
denylation sites. This effect was first discovered in JAK-
STAT (Janus Kinase - Signal Transducer and Activator of
Transcription) signal transduction pathway. Counter-phased
alternative transcripts were observed in brown adipose tissue,
but not in white adipose or liver samples. Other elements of
the same pathway such as JAK were also showing counter-
phase transcripts in one tissue, but not the other. The study
proposed that such pattern of alternative transcripts may
represent an adaptive mechanism regulating the pathway in
a tissue-specific manner by creating a constant abundance of
a particular protein. For example, constant production of
SOC3 from alternating short and long transcripts can block
signal transduction in a particular tissue regardless of the di-
urnal change of the baseline. In the current study we attempt
to generalize this observation and propose the model of mo-
lecular mechanism responsible for the observed pattern of
counter-phase oscillation of alternative transcripts.
Results
Mathematical model
Let n1(t) denote the change in abundance (for instance,
relative to invariant sum of intensity of microarray con-
trol spots) of the long isoform in time and n2(t) stands
for the change abundance of the short isoform of the
transcript n in time.
Let rp describe the expression rate of the gene from which

both isoforms are transcribed. Since they share the same
promotor and all other functional sites except 3′ UTR poly-
adenylation signal, the rate is the same for both short and
long transcripts. Let p denote the probability of transcrip-
tion resulting in production of the long isoform. Then 1-p
is the probability of transcription resulting in the short iso-
form. The UTRs of these transcripts are different, thus we
introduce separate variables for the degradation rates:
rd1 describes the degradation rate for the long isoform

of transcript n1
rd2 describes the degradation rate for the long isoform

of transcript n2
f dn1
dt

¼ prp−rd1 ;
dn2
dt

¼ 1−pð Þrp−rd2;
ð1Þ

Let’s consider the case when the baseline of expression
is modulated by a simple harmonic process, such as cir-
cadian rhythm. Since the entire cell (or even the organ-
ism consisting of magnitude of cells) is modulated by
the same factors, we consider the period of oscillation
equal in all equations. The baseline oscillation is de-
scribed by the travelling wave equation

rp ¼ a sin ωt þ α1ð Þ; rd1 ¼ b sin ωt þ α2ð Þ; rd2
¼ c sin ωt þ α3ð Þ; ð2Þ

Here we assume that b > c, which means that longer
transcripts have a shorter life span. This assumption
models the action of miRNA that can bind the longer
transcript and facilitate the decay. The shorter isoform
lacks the miRNA binding site and thus can last longer,
transcribing more copies of encoded protein. The overall
model takes the following form:

dn1
dt

¼ pa sin ωt þ α1ð Þ−b sin ωt þ α2ð Þ;

dn2
dt

¼ 1−pð Þa sin ωt þ α1ð Þ−c sin ωt þ α3ð Þ;

8>>><
>>>:

ð3Þ

The formula (14) (see Methods for complete analytic
solution) allows direct calculation of the phase shift from
the estimated degradation rates of short and long iso-
forms. These values can be estimated experimentally.
Summing up isoforms n1 and n2 we can estimate the

overall level of expression and amplitude of oscillation for
the entire population of alternative transcripts of gene n.
While n1 + n2 = n at all times, the amplitude of the result-
ing curve for n depends on the phase shift between iso-
forms n1 and n2. The phase lag between isoforms may have
values varying between 0 and 2π. In the middle of this
range, when β2−β1=π the amplitude of n is reduced to 0. In
terms of biology, this means that gene expression oscilla-
tory in nature at the origin can produce a constant steady
production of peptides using the mechanism of differen-
tially polyadenylated transcriptional isoforms. This mechan-
ism provides the “power rectifier” element for the cellular
circuitry. Figure 1 illustrates the action of molecular circuit
rectifier. The degradation rate of mRNA which determines
the turnover rate of mRNA copies and eventually the
amount of synthesized protein can be affected by many fac-
tors, such as post-transcriptional modification, mRNA
transport, tertiary structure, etc. However, the most well-
known factor is the action of miRNA.



Fig. 1 Molecular mechanism of a cellular circuit rectifier. a Two subpopulations of transcripts are created by occurrence of canonical distant
PolyA signal and proximal non-canonical signal. b Transcription produces two types of mRNA that differ by a stretch of RNA that may contain
functional sites such as microRNA target areas. Both transcripts share the same coding part. c When both transcripts have the same turnover rate,
the transcript abundance has oscillating baseline. If more abundant transcript decays faster the peak abundance also shifts in time and can reach
complete counter-phase (see Analytic Solution). In such case the sum of two transcripts approaches non-oscillatory steady line
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Pattern datamining
Frequently referencing the same or similar data sets from
independent circadian studies we could not help but notice
that the pattern of alternative probe sets for the same gene
showing oscillations in a different phase is quite common
in different plants and animals. Here we present the results
of systematic search for expression patterns indicative of
counter-phase transcripts.
We present a conservative estimation of the counter-

phase transcript occurrence. The standard expression
microarrays are poorly suited for observation of alterna-
tive transcripts. The higher representation of 3′ UTR is
usually viewed as unwanted bias that designers strive to
avoid. Full length mRNAs from Refseq database are
given priority over alternative shorter ESTs. Engineers
also try to avoid excess probe sets interrogating the same
gene in order to make quantitative estimation of gene
expression more consistent. As a result we are only able
to observe alternative polyadenylation through unin-
tended imperfection on microarray design.
The phase estimation procedure described previously

provides for each probe an estimation of the phase among
one of six phase classes discretized by cyclic shift π i /6,
(i = 1..6) and a corresponding p-value for each estimate.
The p-value calculation is obtained from the bootstrap
analysis described in Algorithm 1. The latter can be used to
filter probes with low statistical confidence on their phase
estimate. We used the mouse annotation data (available
from Affymetrix and on the shared github source code) to
identify multiple probe sets interrogating expression of the
same gene. All probes that correspond to the same gene
symbol are gathered in a same probe set. The next step of
the analysis is to generate phase differences within each
probe set. All probe pairs in each probe set are used to
compute the absolute value of phase difference.
Figure 2 shows the distribution of phase differences for

three mouse tissues. We used a threshold p-value of 0.1 to
filter probes with very low confidence on phase estimation.
There is a peak around the zero phases for the different
tissues. This result is expected since the probes are de-
signed to provide a robust estimation of expression levels.
Probe sets and separate probes within each set reporting
results inconsistent with other probes and probe sets for
the same gene tend to be eliminated from the chip on
early design stages. As a result, the majority of alternative
probe sets report abundance of the same transcript and
shows no phase difference. There is a degree of uncer-
tainty in identification of phase, considering the low sam-
pling rate and high level of technical variation in
microarray data. Thus, we expect high number of



Fig. 2 Distribution of the number of probes as function of phase difference for three mouse tissues (from left to right: white adipose tissue,
brown adipose tissue, liver). In all three tissues there are many genes with multiple probe sets oscillating in a different phase. Moreover, there is a
pronounced peak corresponding to probes oscillating in opposite phases
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alternative probesets with phase difference by one time
point (second bar on the diagrams in Fig. 2). Likewise,
there should be progressively fewer alternative probesets
with larger phase difference. However, the diagrams show
pronounced peaks corresponding to approximately oppos-
ite phases of oscillation.
We tested the significance of these visible bumps on dia-

grams in Fig. 2. Let’s assume that in ideal microarray design
all probe sets report consistent abundance of transcripts and
there is no phase difference between alternative probe sets.
In this case the first bar on Fig. 2 would be dominating, but
we would still observe other bars due to technical variation
and uncertainty in peak time estimations. However, if per-
ceived phase difference was caused by stochastic variation
only, we would observe progressively fewer cases with larger
phase difference. It is expected that as the phase difference
increases the count would decrease in an exponential man-
ner. Therefore we can test the hypothesis that the observed
distribution of phase difference has some stochastic decay.
In order to test this hypothesis we fitted the phase difference
distribution by a Poisson distribution. The advantage of
using a Poisson distribution is that it can capture random
variables that have stochastic decays. In addition since we
have a discrete number of bins for phase difference, Poisson
distribution is a good choice for discrete support. After fit-
ting the distribution to the phase difference data, we applied
a Chi-Square test to verify if this fitting is statistically valid
G. Table 1 summarizes the Poisson distribution fitting and
Table 1 Phase difference distribution and stochastic decay
hypothesis testing

Dataset Lambda X-squared p-value

Brown adipose tissue 1.64 74.21 5.5e-14

White adipose tissue 1.5 46.45 2.4e-08

Liver 1.46 267.06 2.2e-16

Arabidopsis (UC Davis) 2.12 403.19 2.2e-16

Arabidopsis (Warwick) 2.07 272.88 2.2e-16

Lambda denotes the parameter of the Poisson distribution, X-square and p-value
are the X2 hypothesis testing result. The Null hypothesis is that the phase difference
distribution follows a Poisson distribution
the hypothesis testing results. We observe that, in the five
datasets, the null hypothesis can be rejected and that the
stochastic decay does not completely explain the phase dif-
ference distribution. We are aware that Poisson distribution
does not capture all possible distributions with stochastic
decay. We also performed non-parametric estimation of the
phase difference distribution. The results are consistent with
the tests in Table 1 (data not shown, see Additional file 1:
Supplemental method). The distributions in Figs. 2 and 3
cannot be explained by stochastic variation and reflects a
fraction of probes that oscillate consistently in opposite or
near-opposite phase to each other. This observation is also
true for all analyzed datasets (see complete list of probe sets
with phase differences in Additional files 2 and 3).
We applied the same analysis to Arabidopsis thaliana cir-

cadian gene expression data. The data comes from the pub-
lished sources (GEO GSE8365, GSE5612) and the primary
analysis has been previously published [14, 15] and later re-
analyzed and published again [16]. Additional challenges in
identifying alternative probesets in Arabidopsis thaliana
microarray come from the less extensive annotation (also
available from Affymetrix). For this analysis we considered
probesets representing the same gene if any of the following
fields were identical: RefSeq Transcript ID, AGI and Entrez
Gene. Figure 3 shows that overall the phase difference dis-
tribution is similar to the analysis based on mouse data with
some differences in the distribution shape. The occurrence
of alternative transcripts oscillating with pronounced phase
difference in such distant organism leads to conclusion that
the mechanism creating phenomena is likely to be common
for all eukaryotic organisms.

Discussion
Regardless of the source of oscillation, the rhythmic na-
ture of expression demands a significant revision of the
way we understand and model the function and regulation
of genes. One of the previously published models pre-
dicted that for a rhythmically expressed gene addition of
miRNA may have two different effects: either expected de-
crease or surprising increase of transcript abundance, de-
pending on timing of miRNA action [17]. In case of



Fig. 3 Distribution of the number of probes as a function of phase difference for Arabidopsis thaliana. The results are similar for both
data sets from the University of Warwick [14] (left figure) and from UC Davis [13] (right figure). In both data the highest bar corresponds
to pairs of alternative probesets that oscillate as expected with no phase difference. However, in both cases the second largest number
of probe pairs oscillates with a significant phase difference
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alternative polyadenylation, we have first noted, investi-
gated and reported a strange abnormality in expression of
alternative probe sets reporting activity of the same genes
[13]. Disagreement in intensity among alternative probe
sets is usually attributed to cross-hybridization, flaws in
microarray design or manufacturing or other factors
reflecting technical rather than biological variation. In-
deed, experiments comparing only single points in time
are insufficient to explain such discordance. Observation
of complete circadian (or other periodic) time leaves no
doubt that at least some of the alternative probe sets re-
port biologically relevant rather than technical variation.
Our model shows that such strange behavior of alterna-

tive probes is not only natural; they are performing an im-
portant function. This function eliminates the effect of
oscillation in transcription mechanism. Other studies have
already reported pervasive oscillation of the entire transcrip-
tome (see [18, 19, 20] for review). Current study presents
the mechanism for rectification of constant baseline oscilla-
tion. If there is such mechanism than the default state of
gene expression must be rhythmic. Our observations show
that this mechanism is common in among plant, mouse
and human genes. However, our study tends to underesti-
mate the occurrence of alternative transcripts. On the chips
used to produce this data thousands of genes are interro-
gated by a single probe set only. In cases when original CEL
files are available for Affymetrix microarrays it is possible to
analyze more genes with alternative transcripts by low level
single probe analysis. However, individual probes may not
be uniformly distributed to represent all transcripts and are
less reliable in quantitative estimation of transcript abun-
dance. The true occurrence of such mechanism is yet to be
determined in a specially designed experimental study using
a different detection mechanism.
Most of approaches in bioengineering and synthetic biol-

ogy make no account for oscillation [21]. We believe a
significant advancement in Pathway Engineering will re-
quire better understanding of the principles on which com-
plex biological systems are organized. One of the principles
is oscillation in production of cellular components, signal
transduction and energy metabolism. Ignoring the fact of
oscillation is only possible on the early steps or when imple-
menting most primitive constructions. This study offers one
of the components for building artificial cellular systems or
re-engineering the existing cells based on the knowledge of
the rhythmic nature of gene expression. This component is
a functional analog of a diode in electronic circuits and can
rectify oscillations occurring in biological circuits due to the
oscillatory nature of gene expression.
Conclusion
The findings described in this paper may have practical
applications in pathway engineering and synthetic biology.
Our model provides the mechanism for re-engineering of
existing biological pathways in a living cell or de novo de-
sign of cellular circuits. The model predicts that it is pos-
sible to find the parameters (such as miRNA site with
certain affinity) regulating the ratio of alternatively adeny-
lated transcripts. Manipulating such ration allows chan-
ging the amplitude of a particular gene expression or even
complete elimination of oscillation. Constant abundance
of a gene product can be used for production purpose to
maximize the output of a peptide or an enzyme producing
the product of interest. Alternatively this mechanism can
be engineered to block unwanted pathways such as apop-
tosis or cell motivity, etc., or to keep certain pathways ac-
tive at any time. Likewise, the same model can be used to
create a blueprint for constructing artificial genes with
certain properties. For example, the formula given in the
description can be used to select parameters of the artifi-
cial gene (affinity of early and late PolyA sites, affinity of



Fig. 4 Geometric solution for the phase shift between oscillating
transcript isoforms. See detailed description in the text
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microRNA binding site) in order to create the desirable
amplitude of oscillating product abundance.

Methods
Data sources
The mouse gene expression profiles was obtained in the
original study of circadian gene expression in adipose tis-
sues [22]. The AKR/J mice acclimated to a 12 h light: 12 h
dark cycle, were harvested in sets of 3–5 mice at 4 h inter-
vals in duplicates over a 24 h period. Total RNA samples
from inguinal (iWAT) white adipose tissue, brown adipose
tissue (BAT), and liver have been assayed by Affymetrix
U74 GeneChip microarrays.

The plant (Arabidopsis thaliana) data sets
We used two independent data sets similar in experiment
design [14, 15]. Seedlings were entrained in 12-h white light
(light source was cool white fluorescence tubes)/12-h dark
cycles for 7 days before being released into free-running
conditions of continuous white light at 22 °C. Starting at
subjective dawn of day 8 [14] or day 9 [15], tissue was har-
vested every 4 h over the course of the next 44 h. Following
standard protocols labelled cRNA targets were prepared
from total RNA and hybridized to Affymetrix Arabidopsis
expression GeneChips according to the manufacturer’s
instructions.

Analytic solution
We integrate each equation separately with respect to
time. The solution of the system is:

n1 tð Þ ¼ −
pa
ω

cos ωt þ α1ð Þ þ b
ω
cos ωt þ α2ð Þ;

n2 tð Þ ¼ − 1−pð Þ a
ω
cos ωt þ α1ð Þ þ c

ω
cos ωt þ α3ð Þ;

8>>><
>>>:

ð4Þ

The rotating-vector description of simple harmonic
oscillation provides a neat way of rewriting n1 and n2 as
single harmonic oscillations:

n1 tð Þ ¼ A cos ωt þ β1ð Þ; ð5Þ

n2 tð Þ ¼ B cos ωt þ β2ð Þ; ð6Þ

The following geometric solution is illustrated in Fig. 4.
The harmonic oscillations x1 and x2 can be represented as
two vectors a1 and a2 that rotate around their tails, which
are pivoted at the origin O. The angular speed of the rota-
tion is equal to ω. As the vectors rotate around the origin
their projections x1 and x2 on the horizontal axis vary cosi-
nusoidally. Hence we have
γ ¼ 2π−2ðπ−α1 þ α2Þ
2

¼ α1−α2;

ð7Þ

A2 ¼ a1j j2 þ a2j j2−2∣a1∣∣a2∣ cos α1−α2ð Þ; ð8Þ

A2 ¼ pa
ω

� �2
þ b

ω

� �2

−
2pab
ω2

cos α1−α2ð Þ; ð9Þ

Therefore n1(t) = A cos(ωt + β1), with

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa
ω

� �2
þ b

ω

� �2

−
2pab
ω2

cos α1−α2ð Þ;
s

ð10Þ

tanβ1 ¼
∣a2∣ sinα2−∣a1∣ sinα1
∣a2∣ cosα2−∣a1∣ cosα1

¼ b sinα2−pa sinα1
b cosα2−pa cosα1

; ð11Þ

Similarly, we can get the expression for n2:

n2 tð Þ ¼ B cos ωt þ β2ð Þ;

where.

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pð Þ2 a

ω

� �2
þ c

ω

� �2
−
2 1−pð Þac

ω2
cos α1−α3ð Þ;

r
ð12Þ

tanβ2 ¼
c sinα3− 1−pð Þa sinα1
c cosα3− 1−pð Þa cosα1 ; ð13Þ

And the phase difference is.
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β2−β1 ¼ arctan
c sinα3− 1−pð Þa sinα1
c cosα3− 1−pð Þa cosα1

� �

− arctan
b sinα2−pa sinα1
b cosα2−pa cosα1

� �
:

ð14Þ

Phase assignment and phase confidence algorithm
The algorithm used in the analysis of the data is based
on resampling techniques. Indeed, we use the maximum
entropy bootstrap algorithm to generate a large number
of replications of a given gene expression time series.
Then, we calculate a bootstrapped p-value to test for cir-
cadian genes, and finally we construct a bootstrap per-
centile confidence interval that will be used to assign a
phase to each oscillating gene.
The complete description with source code and test

results has been published in [23].

Additional files

Additional file 1: Supplemental method. In addition to Chi-Square test
summarized in Table 1 we run a Monte Carlo simulation with 1000 repetitions
with the option simulate.p.value as described in https://stat.ethz.ch/R-manual/
R-devel/library/stats/html/chisq.test.html. This supplemental file provides de-
scription and p-values obtained in simulations. (DOCX 10 kb)

Additional file 2: Supplemental Data Tables. This zip archive contains
the results of analysis of phase difference among redundant probe sets
in mouse liver, mouse brown fat, mouse white fat and two independent
studies of Arabidopsis thaliana timeline gene expression. (ZIP 32 kb)

Additional file 3: Supplemental Initial Data Tables. This zip archive contains
the initial timeline data for probe sets in mouse liver, mouse brown fat, mouse
white fat originally published in Zvonic et al. [21]. (ZIP 3710 kb)
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