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Abstract

Background: The information content of genomes plays a crucial role in the existence and proper development of
living organisms. Thus, tremendous effort has been dedicated to developing DNA sequencing technologies that
provide a better understanding of the underlying mechanisms of cellular processes. Advances in the development of
sequencing technology have made it possible to sequence genomes in a relatively fast and inexpensive way.
However, as with any measurement technology, there is noise involved and this needs to be addressed to reach
conclusions based on the resulting data. In addition, there are multiple intermediate steps and degrees of freedom
when constructing genome assemblies that lead to ambiguous and inconsistent results among assemblers.

Methods: Here we introduce HiMMe, an HMM-based tool that relies on genetic patterns to score genome
assemblies. Through a Markov chain, the model is able to detect characteristic genetic patterns, while, by introducing
emission probabilities, the noise involved in the process is taken into account. Prior knowledge can be used by
training the model to fit a given organism or sequencing technology.

Results: Our results show that the method presented is able to recognize patterns even with relatively small k-mer
size choices and limited computational resources.

Conclusions: Our methodology provides an individual quality metric per contig in addition to an overall genome
assembly score, with a time complexity well below that of an aligner. Ultimately, HiMMe provides meaningful statistical
insights that can be leveraged by researchers to better select contigs and genome assemblies for downstream analysis.

Keywords: Genome assemblies, de novo assemblies, Sequence analysis, Hidden Markov models, Markov chains,
Stochastic processes, Supervised learning

Introduction
When constructing genome assemblies there are multiple
intermediate steps that can significantly impact the results
obtained. For instance, DNA sequencing inherently car-
ries uncertainty in the signal that is known to depend on
the position of the nucleotide in the read. Furthermore,
all currently available assemblers use heuristics that rely
on arbitrary thresholds that must be defined by the user.
As a result, even when using the same input data, an
assembler will tend to lead to different genome assemblies
depending on its particular configuration. This will also be
the case when comparing the output of different assem-
blers. Thus, it is very common for researchers to use the
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same assembler multiple times with different parameter
choices and, at the same time, to generate assemblies with
multiple assemblers. Therefore, it is of paramount impor-
tance to provide researchers with a rigorous methodology
to compare results and make sure that the assembly (or
subset of contigs) chosen for downstream analysis is as
reliable as possible.
Here we introduce HiMMe [1], a tool that allows

researchers to compare results of different assembly runs
and provides them with meaningful statistical insight
to filter, compare, and choose between them based on
genetic patterns. To this end, we take advantage of a hid-
denMarkov model (HMM). This probabilistic model is an
appealing choice since it allows one to model noisy signals
(i.e. the sequences or contigs observed after a given work-
flow). Given its flexibility, this model has been extensively
used in computational biology. For instance, hhmSeq [2]
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is a model-based hierarchical Bayesian technique that was
conceived to detect differentially expressed genes. This
tool uses HMMs to account for potential co-expression
of neighboring genes. Another precedent was established
by CodingQuarry [3], a tool that implements HMMs to
predict genes in fungal genomes. Finally, a prominent
tool in computational biology is HMMER [4], which also
relies on HMMs. More specifically, HMMER is based on
profile HMMs, and it is currently used as an alternative
to BLAST [5]. Its main purpose is searching sequence
databases for sequence homologs and making multiple
sequence alignments.
HiMMe relies on HMMs and aims to provide a new

set of quality metrics for genome assembly assessment
based on genetic content. Given some prior knowledge
about the organism, this metrics quantify how similar
the genetic patterns found in the input are to that of
the training set of sequences. A very common choice for
genome assembly assessment is BUSCO [6] and, although
its goal is the same as HiMMe’s, the approach used by
this method is very different. BUSCO bases its scores
on a homologous gene database search performed using
BLAST and HMMER. Thus, it depends on a homologous
gene database and inherently implies multiple sequence
alignment. According to HMMER’s authors, the current
release (HMMER3), is essentially as fast as BLAST [7].
Although we have not been able to find theoretical time
complexities for either of them, we estimate that they
are similar to that of the well-known Smith-Waterman
algorithm (SWA) [8]. Therefore, we can assume that the
time complexities of HMMER and BLAST are close to
O(MN), where M is the number of nucleotides in the
query sequence and N is the number of nucleotides in the
database sequence. It follows that, considering that both
sequences have the same length, the complexity of these
algorithms has a quadratic relationship with the length of
the sequences being aligned. Another common choice for
genome assembly assessment is QUAST [9], which gener-
ates a very complete report with various quality metrics
(e.g. NX, genome coverage). In addition, this tool also
reports the NAX metric, which has the same meaning as
the NX metric but only considers aligned contigs. How-
ever, when no reference genome is available, the number
of metrics available is fairly limited.
Although HiMMe also relies on HMMs, the approach

followed to model and process the data is completely dif-
ferent than that used by BUSCO. Our method involves
no alignment, making it potentially faster than BUSCO,
which will have at least the same time complexity as
HMMER and BLAST, as well as QUAST. The algorithm
proposed here takes advantage of the well-known forward
algorithm and, as a result, its time complexity is linearly
related to the product of the length of the sequence and
the square of the state space cardinality. Consequently,

even when not many computational resources are avail-
able, this method can still be used.
Furthermore, our method does not rely on heuristics in

contrast to BLAST and other multiple alignment tools.
Additionally, the user can employ different types of data
to train the model. In a classical setting, the user will
most likely choose the reference genome if available. On
the other hand, in a de-novo genome assembly setting, i.e.
when no reference genome is available, this is a scenario
that can be handled well by our method too. It is impor-
tant to note that under these conditions the researcher
would not be able to align the assembly back to the refer-
ence to assess its quality. However, HiMMe would allow
the user to employ some other prior knowledge to train
the model, such as a closely related species genome or a
database made up of homologous genes.
Finally, our method provides not only a general metric

for the entire assembly, but also an individual metric for
each contig present in the assembly as opposed to BUSCO
and other tools. In turn, the user can filter contigs based
on a cut-off in order to improve reliability of the assembly
for downstream analysis. Moreover, distributions can be
drawn for each assembly and significant differences can be
found between these through a suitable statistical test.
In conclusion, our methodology provides the user with

three different ways to assess the quality of a genome
assembly (even in a de-novo setting): (i) by looking at
individual scores of each contig, (ii) by looking at score
distributions of the entire assembly, and (iii) by looking at
the HiMMe coefficient computed for the entire genome
assembly.

Background
This section formally defines Markov chains and hid-
den Markov models. It also provides the necessary back-
ground material needed for developing our method.

Markov chain
In a Markov chain (MC) each state Xi is a random vari-
able that takes values in a set E, i.e. the state space of the
Markov chain. We denote a general sequence of states as:

X = {X1,X2, . . . ,Xm} (1)

where m is the number of states in the sequence. We
denote the set of all possible sequences of states of length
m as �m. The stochastic process X = {Xn; n ∈ N} is called
a Markov chain provided that:

P
[
Xn+1 = j|X0, . . . ,Xn

] = P
[
Xn+1 = j|Xn

]
(2)

for all j ∈ E and n ∈ N [10]. It turns out that the proba-
bility of any given path can be computed as the product of
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the initial state probability π0(·) followed by the respective
transition probabilities:

P[X]= π0(x1)
m∏

i=2
P [Xi = xi|Xi−1 = xi−1] (3)

HiddenMarkov models
Hidden Markov models (HMMs) can describe the behav-
ior of a system based on observable events. For instance,
one could try to infer the position of the upstairs neigh-
bor based on the sound of his or her steps. The observable
events (i.e. the noise produced by the steps in this case)
are called symbols. On the other hand, the underlying or
invisible factor one is trying to understand (i.e. the posi-
tion of the neighbor) is referred to as state. The probability
distribution of the symbols depends on the underlying
states while the latter form an MC. Thus, given that the
present state is known, the future states are conditionally
independent of the past.

Emission probabilities
Let us define the emission probabilities, which bridge the
gap between the symbols and the underlying sequence of
states. Each symbol Yi is a random variable that takes on a
set of possible observations O based on a probability dis-
tribution conditioned on the current underlying state. We
denote a sequence of symbols as follows:

Y = {Y1,Y2, . . . ,Ym} (4)

where m is the number of observations in the sequence.
We denote the set of all possible sequences of observations
of lengthm as �m. Since the random variable Yi takes val-
ues in O based on the current state only, we define the
emission probabilities as follows:

e(Yn|Xn) = P [Yn|Xn] (5)

Completemodel
The HMM is completely specified by the probabilities
π0(x1), P [xn|xn−1] and e(yn|xn). Here, we denote the set of
these probabilities by � for convenience. For a realization
Y and X, we have:

P [Y ,X;�] = P [Y |X;�]P [X;�] (6)

where

P [Y |X;�] = e(Y1|X1)e(Y2|X2) · · · e(Ym|Xm) (7)

and

P [X;�] = π0(X1)P [X2|X1] · · · P [Xm|Xm−1] (8)

Thus, when the underlying sequence of states is known,
the probability of observing a given sequence of symbols

can be computed readily. Note that by the Law of Total
Probability (LTP):

P [Y ;�] =
∑

x∈�m

P [Y ,X = x;�] (9)

One could potentially go through every single possible
hidden state sequence to find the distribution of the obser-
vation given the model. However, depending on how large
the state space is and the number of elements in the chain,
this might not even be feasible. Taking advantage of Bayes’
rule, Eq. (9) can be expanded in the following way:

P [Y ;�] =
∑

x∈�m

P [Y |X = x;�]P [X = x;�] (10)

and by using Eqs. (7) and (8), Eq. (10) can be written in the
following way:

∑

x∈�m

π0(x1)e(Y1|x1)
m∏

i=2
e(Yi|xi)P [xi|xi−1] (11)

Methods
This section presents our novel HMM-based method-
ology that uses the genetic content as a proxy for the
reliability of an assembly.

Modeling the state sequences
The probability of any hidden state sequence X =
{X1,X2, . . . ,Xm} can be computed as follows:

P [X;�] = π0(X1)
m∏

i=2
P [Xi|Xi−1] (12)

Here, we consider that the hidden state space E will con-
tain all the combinations that can be formed from the
set of nucleotides N = {A,C,G,T}. These combinations
are sequences of k elements and are usually referred to as
k-mers. Note however that in this case we consider non-
overlapping k-mers given that we are in an HMM setting.
It should also be noted that k-mers, in general, are derived
from sequenced reads and can be overlapping. The cardi-
nality of the hidden state space will have an exponential
relationship with the k-mer size used to model the data:

|E| = |N |k = 4k (13)

As an example, let us consider the following sequence:
S = ACTAGACAG. Furthermore, let us assume that the
k-mer size chosen to break down sequence S is three. The
probability of observing such a sequence of states would
be:

P [S;�] = π0(ACT)P [AGA|ACT]P [CAG|AGA] (14)

These probabilities can be found in the transitionmatrix
which is learned by parsing the training set of sequences
and computing the frequency of each transition.
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Modeling the symbol sequences
Each sequence present in the genome assembly being ana-
lyzed will be regarded as a sequence of symbols. The
emission probabilities will be used then to evaluate how
likely is to observe each element in the observation chain
given the corresponding hidden state.
Let us assume that the set of possible observations and

the hidden state space are the same, i.e. O = E. Con-
sider k-mers Xi = {Xi1, . . . ,Xik} and Yi = {Yi1, . . . ,Yik}.
The emission probability of observing Yi provided that
Xi is the hidden state has been introduced in Eq. (5).
The method introduced is based on the assumption that
only when the underlying state Xi is given, the random
variables Yij are independent. That is, the observed adja-
cent nucleotides are conditionally independent when the
underlying state is given. As a result, the set of possible
observations becomes the set of nucleotides, i.e. O = N ,
and its cardinality is significantly reduced when k ≥ 2.
This assumption allows one to express the emission prob-
ability of observing k-mer Yi given the hidden state Xi
as the product of the different emission probabilities at a
single base resolution:

e(Yi|Xi) =
k∏

j=1
e(Yij|Xij) (15)

For instance, if we observe the symbol Yi = {ACT}
and we know that the corresponding hidden state is Xi =
{AGT}, the emission probability would be:

P [Yi = ACT |Xi = AGT] = e(ACT |AGT) (16)

Then, assuming conditional independence, this emis-
sion probability could be computed in the following way:

e(ACT |AGT) = e(A|A)e(C|G)e(T |T) (17)
These probabilities are stored in the emission matrix.

We suggest using a SNP database might be a good way
to estimate such probabilities. However, the user is com-
pletely free to decide what values are given to the entries
of this matrix. Note that in the limit, where we have com-
plete confidence in our data, i.e. when the emissionmatrix
is diagonal (e(y|x) = 1 when y = x and zero otherwise),
then the HMM becomes an MC. On the other hand, if the
emission matrix is sparse to the point where all the entries
are the same, then maximum uncertainty is imposed on
the emission of the states. Thus, we consider this should
be a user choice since the certainty about the data will
depend on a case-by-case basis (e.g. quality of original
reads, assembler used).

Information in a k-mer
When breaking down a nucleic acid sequence into sub-
strings, different k-mer sizes can be used. As previously
introduced, the number of possible states in the hidden

layer depends on the choice of k-mer size, since there
would be as many as 4k different states. Note that the
size of the transition matrix grows quadratically with the
number of states as Fig. 1 illustrates. Therefore, the mem-
ory requirements also grow quadratically with the size of
k-mer used. In addition, there are processing time impli-
cations when using large k-mer sizes. However, one can
benefit from using large k-mers. From an Information
Theory perspective, the amount of information obtained
from observing an event A with probability pA is:

I(A) = −log(pA) (18)

Therefore, as the cardinality of the state space grows,
more information can be obtained. The average amount of
information can be quantified by the well-known Shannon
entropy:

S = −
∑

A∈E
pAlog(pA) (19)

When all k-mers in E are equally likely, (i.e. pA =
|E|−1∀A ∈ E), we have that:

S = −log(|E|−1) = −log(|N |−k) ∝ k (20)

Therefore, the amount of information is proportional to
the k-mer size. This shows that, in fact, one can learnmore
from the sequence when larger k-mer’s are used. However,
a trade-off between amount of information and compu-
tational requirements is often required since larger k-mer
sizes imply more computational power.

Adaptation of the forward algorithm
It is of interest to compute the probability of observing a
given sequence of symbols given a HMM:

P
[
Y = y;�

]
(21)

Fig. 1 Size of the transition matrix and its implications. The number of
states and the size of the transition matrix have been plotted as a
function of the k-mer size. Note how the size of the transition matrix
grows quadratically with the number of states. These, in turn, grow
exponentially with the k-mer size
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This problem is referred to as the scoring problem [11].
In this case, the corresponding underlying sequence of
states is not known. However, recall that by the LTP:

P
[
Y = y;�

] =
∑

x∈�m

P
[
Y = y,X = x;�

]
(22)

Therefore, by considering all possible underlying
sequences of states, one could eventually find themarginal
probability of a given observation P

[
Y = y;�

]
. Never-

theless, this would not be feasible for long sequences
of observations. As mentioned above, there would be as
many as |E|m possible combinations, where |E| is the car-
dinality of the state space and m the number of elements
in a given symbol sequence. Therefore, this number grows
exponentially with the length of the observation under
consideration.
The forward algorithm was conceived to deal with this

type of problem efficiently. It is based on dynamic pro-
gramming, and can compute the probability of interest in
a rather efficient way [12]. This computational approach
consists in solving a complex problem by breaking it down
into smaller problems that are much simpler, solving these
and storing the solutions to finally find the answer to the
larger problem by combining all these solutions. In this
case, the following recursive variable is defined:

α(n, i) = P
[
Y1 = y1, . . . ,Yn = yn,Xn = i;�

]
(23)

and this variable is recursively computed (Eq. 24):

α(n, i) =
⎧
⎨

⎩

π0(i)e(y1|i), n = 1
∑

s∈E
α(n − 1, s)psie(yn|i), n ≥ 2 (24)

Where psi is the transition probability from state s to
i. Note that the cardinality of the state space E defines
the number of recursive variables α(n, ·). In addition, the
number of iterations is equivalent to the number of k-mers
the symbol sequence of interest has. Once the recursions
are completed, the probability of interest can be computed
as follows:

P
[
Y = y;�

] =
∑

s∈E
α(m, s) (25)

As a result, the probability P
[
Y = y;�

]
is obtained with

a complexity ofO
(
m|E|2). Note that the complexity of the

algorithm is linear with respect to the number of symbols
m in the sequence observed and quadratic with respect
to the cardinality of the state space E. Comparing with
the original computations, which complexity grows expo-
nentially with the length of the sequence of symbols, this
approach is significantly more efficient, especially when
dealing with genome assemblies.

Numerical stability
It can be seen in Eq. (24) that when computing the proba-
bility of a given observation, each recursive variable α(·, ·)
will be equal to the sum of very small numbers. As m
becomes large, these numbers tend to zero and the same
is true for the sum. For sufficiently large m, the dynamic
range of the recursive variables computation will even
exceed double-precision range [12].
There are two different ways of dealing with this prob-

lem [13], namely (i) by employing a log-transformation or
(ii) by using scaling factors. Here, we will follow the scaling
method proposed by [12]. Thus, we propose the following
normalized score (Additional file 1):

ŝ = −

m∑

t=1
log(ct)

k · m (26)

That way one can compare scores coming from
sequences with different lengths since the length bias (see
Fig. 2) is resolved. This score is usually referred to as per-
frame log-likelihood in the speech processing field, where
it is extensively used. The greater the score in Eq. (26),
the closer to the reference the sequence is in terms of
genetic patterns independently of its length. Note that
Fig. 3 shows that, after normalizing the scores in Fig. 2,
there is no longer correlation between the length of the
sequence and the score.

HiMMe’s workflow and genome assembly metric
The workflow that we propose consists of four steps:
(i) learning the transition matrix from the training
set of sequences, (ii) defining the matrix of emission

Fig. 2 Linear relationship between contig length and non-normalized
score. The non-normalized scores of the true sequences were plotted
as a function of the sequence length and a linear model was fitted. A
clear linear relationship between the non-normalized scores and the
length of the sequences can be observed
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Fig. 3 Scores after proposed normalization. The normalized scores of
the true sequences were plotted as a function of the sequence length
and a linear model was fitted. After the normalization, there is no
longer correlation between the score and the sequence length

probabilities, (iii) scoring each contig in the assembly and
(iv) computing the overall assemblymetric. This workflow
has been represented schematically in Fig. 4. Our package
includes the following tools:

• himme_transition_matrix: builds the transition
matrix from the training set of sequences. The output
is a compressed tabulated text file that contains all
transition probabilities.

• himme_emission_matrix: builds the matrix of
emission probabilities. The output is a compressed
tabulated text file that contains all emission
probabilities. A SNP database in VCF format is
expected as input. The emission probabilities can also
be set manually based on base-calling precision or
other metrics.

• himme_scoring: computes ŝ for each contig in the
assembly. The output is a compressed tabulated text
file that contains the following information for each
contig: ID of the contig, length of the contig,
non-normalized score and normalized score.

• himme_summary: summarizes the output of
himme_scoring. The following metrics are included
in the output file: k-mer size used, number of contigs,
median length, length variance, mean score, score
variance, score interval C.I. 95%, mean corrected
score, corrected score variance, corrected score 95%
C.I. and HiMMe’s genome assembly coefficient.

The genome assembly coefficient provided by HiMMe
is computed such that those assemblies with higher aver-
age normalized scores are rewarded. On the other hand,
those assemblies with high normalized score variance are
penalized. To that end, we take the z-score for each contig
using a reference distribution drawn from real sequences.
This reference distribution has been derived from a 30,000
normalized scores benchmark. Once the z-score for each
contig is obtained, a logistic function is applied to map all
scores to the unit interval [ 0, 1], and finally the HiMMe
coefficient is computed as follows:

HiMMecoeff = mh
sh

(27)

where mh and sh denote respectively the average and the
standard deviation of the logistic score obtained for a
given assembly (Additional file 1). Note that, the numera-
tor rewards those assemblies with high normalized scores,
whereas the denominator rewards those assemblies with
low standard deviations in their normalized scores dis-
tributions. Even though this metric represents an overall
score for the assembly and makes it straightforward to
rank them, we want to stress the importance of look-
ing at each contig score individually as well as taking

Fig. 4 Flow chart of the methodology proposed



Abante et al. BMC Genomics  (2017) 18:694 Page 7 of 13

advantage of the fact that a distribution can be drawn
from the output. Since a normalized score (or per-frame
log-likelihood) is provided for each individual contig in
the assembly, the user can filter the contigs based on this
score in order to improve the reliability of the assembly for
downstream analysis. In addition, statistical tests to com-
pare distributions can be performed to find significant
differences between assemblies.

Results and discussion
We applied our novel method to two cases. In the first
case, we considered simulated data to show how the algo-
rithm is able to recognize genetic patterns in the input
data. The results suggest that the proposed method is
able to distinguish true sequences from random sequences
with an accuracy that grows with the choice of k-mer size.
In the second case, we used our method to study the

genome assemblies generated by the Genome Assembly
Gold-Standard Evaluations (GAGE) project [14]. Several
standard metrics have been computed for each assembly
and are included in Table 5, along with the coefficient
introduced in Eq. (27).

Simulated data-set
The proposed algorithm has been used to score randomly
generated sequences as well as sequences derived from a
reference used to learn the transition matrix (Additional
file 2). As genome reference, we chose the GRCh37 ver-
sion of the human genome assembly [15]. A human SNP
database was used to define the emission probabilities
[16]. In this section, we show the results for sequences
from length 10 nt to 100 nt with increments of 10 nt. The
purpose of this comparison is to see whether the algo-
rithm gives higher scores to those sequences that belong
to the reference used to obtain the transition matrix.

Potential base composition biases
In order to avoid potential base composition biases, we
measured the base composition of the reference used to
draw sequences, the sequences drawn from it and the
random sequences generated. This information can be
found in Table 1. Differences in terms of base compo-
sition between the reference and the random sequences

Table 1 Base composition of the reference, the sequences
drawn from the reference and the random sequences that were
generated

Base composition simulated data-set

Nucleotide Reference Sequences drawn Random sequences

A 25.72% 25.68% 24.74%

C 24.86% 25.14% 25.06%

G 25.35% 25.15% 25.21%

T 24.08% 24.03% 24.98%

were found to be insignificant. Therefore, we consider this
setting the worst-case scenario for our algorithm, since if
there were a case where it would be favorable, this would
be when the base composition significantly differed. That
is, we intend to show that our method is not based in k-
mer proportions, but in k-mer transitions, as opposed to
other methods available.

Discriminant power increases with k-mer size
Intuitively, one would expect to encounter more differ-
ences between scores as the k-mer size increases, since
the algorithm should be able to identify more genetic pat-
terns in the sequences. This is mainly due to the fact
that the amount of information that can be contained in
a k-mer, is proportional to k, as previously shown. As
Fig. 5 demonstrates, the score distribution for the true
sequences is always closer to zero compared to that of the
random sequences (see the HiMMe coefficient in Table 2).
It can be seen that, in general, the algorithm produced
higher scores for those sequences that were sampled from
the reference. However, some random sequences scored
higher than some true sequences by chance. In addition,
the score distributions deviate from each other more and
more as the k-mer size used increases. Thus, the discrim-
inant power of the method tends to increase with the
k-mer size as we previously anticipated.

Effect of sequence length
Although we normalize the score based on the sequence
length, we wondered whether this metric contributes
to, or penalizes in any way, the discriminant power of
our method. To that end, we run HiMMe on sequences
from length 10 nt to length 100 nt and we plotted the
average normalized score in Fig. 6. We verified that the
discriminant power of our method increases with the
k-mer size, since the lines diverge more with larger k-
mer choices. However, we did not observe an effect of
sequence length on differences between scores after the
average normalized scores converged. We thus conclude
that the sequence length neither benefits nor penalizes the
discriminant power of our algorithm in any way.

Training a naive Bayes classifier with HiMMe’s output
In order to measure the discriminant power and under-
stand the way it behaves in relation to the k-mer size
choice, we fitted each obtained distribution to a Gaussian
distribution. Once we obtained the distribution parame-
ters, we were able to compute the naive Bayes classifica-
tion error; i.e., the classification error if we were to use
those distributions as likelihood functions in a classifica-
tion problem setting (Table 3). As expected, the classifi-
cation error decreased with the k-mer size. We observed
a significant improvement when we used 3-mers instead
of 1-mers, with the error dropping from 13.43% to 6.63%.
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Fig. 5 Random sequences and true sequences. The densities of the normalized scores using different k-mer sizes for simulated random sequences
and true sequences have been plotted for length 100 nt. Note that the variance of both distributions grows with the k-mer size since the state space
becomes larger. In addition, the distance between the medians grows as the k-mer size grows

This is consistent with the fact that, when larger k-mer
sizes are used, more information can be captured by the
algorithm.
Significance of discriminant power
Finally, a t-test was performed in order to compare the
score distributions for k-mer sizes one, three, and five. The
results are summarized in Table 4. The true sequences
performed significantly better than the random sequences
for all k-mer sizes. Note that all differences were found to
be significant, even when the base composition was the
same. In addition, larger k-mer sizes resulted in a more
prominent difference in score distributions as expected.

Analysis of the Genome Assembly Gold-Standard
Evaluations data-set
We used the proposed algorithm to score the seven
Staphylococcus Aureus genome assemblies, generated by
[14]. The first reference genome used to train the model
pertained to the same species, i.e. Staphylococcus Aureus,
and was downloaded from NCBI [17]. To show how our
method performs in a de-novo setting, we also trained our
algorithm with a related reference genome (same lineage).
In this case we chose the reference genome of Staphy-
lococcus Saprophyticus, also obtained from NCBI [18].

Table 2 HiMMe coefficient for sequences in Fig. 5

HiMMe coefficient

k-mer size True Random

1 3.161 2.064

3 3.507 1.692

5 2.490 0.884

As expected, the coefficient is significantly greater for the true sequences than for
the random sequences for all k-mer sizes

Regarding the emission matrix, we considered that the
probability of observing the hidden nucleotide was 85%
and the probability of finding a variant was 15% evenly
distributed among the remaining three nucleotides (i.e.
no bias). The score distributions have been plotted in
Fig. 7 and have been binned into three different length
subgroups.
We compared the following assemblers: ABySS [19],

Allpaths-LG [20], Bambus2 [21], MSR-CA [22], SGA [23],
SOAPdenovo [24] and Velvet [25]. For each assembly
available, we summarized several metrics in Table 5 along
with the coefficient generated by our method. The met-
rics included were: number of contigs, total length of the
assembly, N50, NA50 [9], the percentage of the assembly
that aligned back to the reference, the percentage of the
genome covered by the assembly, BUSCO’s output (bacte-
ria database available on their website), and the coefficient
generated by HiMMe (Additional file 3).
Previous studies suggest that it is very hard for an

assembly to perform consistently well when assessed by
multiple metrics [26]. Discrepancies might exist due to
partial or complete orthogonality between the metrics
themselves. For instance, the metric N50 measures the
contiguity of an assembly but does not take into account
the genetic content. Thus, it is perfectly plausible that an
assembly has a high N50 even though the alignment rate
is really low when mapping it to the reference.
Our method found Allpaths-LG’s output to be the best

assembly by a wide margin. This assembly has very few
contigs when compared to the average, its total length
is the smallest and its median contig length is substan-
tially above the average. In addition, it has the highest
percentage alignment to the reference genome, an above
average N50 and a rather superior NA50 compared to
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Fig. 6 Dynamic range random and true sequences. The average normalized scores for the random and true sequences have been plotted for
lengths between 10 nt and 100 nt. The sequence length does not have an effect on the normalized scores after these converge. In addition, when
using larger k-mers to analyze the data, the difference in means becomes larger as well

the other assemblies. When looking at BUSCO’s output,
Allpaths-LG did not contain any homologous genes from
the bacteria database in its output. As Fig. 7 shows,
Allpaths-LG is the most consistent assembler through-
out all the dynamic range of contig length (small variance
in normalized score). The only caveat about the assem-
bly generated by this tool is the fact that it only covers
51% of the reference genome. However, this is an orthog-
onal metric to the output of our algorithm and can be
independently verified.
Bambus2 came in second after Allpaths-LG when look-

ing at the coefficient generated by HiMMe. Similarly to
Allpaths-LG, Bambus2 generated a rather short assembly
with very few contigs in it and the contigs were found to
be rather consistent throughout the whole length range
as well (small variance in normalized score). Although its
median contig length was rather high, clearly above aver-
age, its N50 was not as high as with Allpaths-LG. On the
other hand, the percentage of the genome covered was
higher, and its NA50 and aligned percentage were among
the best. In this case, BUSCO was able to find 2.5% of
the genes in the bacteria database, which is not as high as
expected considering the other metrics.
While far from Allpaths-LG and Bambus2, the HiMMe

coefficient was also above average for SGA. In this case,
BUSCO was able to find 40% of the homologous genes

Table 3 Classification errors if the densities obtained were to be
used as likelihood functions in a naive Bayes classification
problem setting

Naive Bayes classifier error

1-mers 3-mers 5-mers

13.43% 6.63% 6.31%

in its output, being the highest percentage across all
assemblies, and 84% of the reference genome was recov-
ered by the assembly. However, SGA was the assembly
with the highest number of contigs, a really small median
contig length and, as a consequence, the smallest N50 and
NA50, as well as smallest fraction of the assembly aligned.
Figure 7 reveals a rather high variance for contigs smaller
than 1000 bp with quite an important fraction of con-
tigs scoring very low. This observation would allow the
researcher to filter some of those contigs in order to obtain
a higher quality assembly. For contigs larger than 1000 bp,
SGA generated rather reliable contigs.
Both SOAPdenovo and Velvet performed similarly in

all metrics except for N50. Although Velvet’s N50 was
quiet low, SOAPdenovo’s N50 was well above average.
Nevertheless, both NA50’s were among the highest. The
fraction of the assembly aligned was rather high in both
cases, and so was the percentage of the genome covered
by both assemblies. As with SGA, the distribution of nor-
malized scores is rather sparse for contigs smaller than
1000 bp with some low scores. This again suggests that
these assemblies could be improved by filtering out these
contigs of small size and with low normalized scores. As

Table 4 Statistics for the simulated data-set

t-test summary

k-mer size Difference in means (95% C.I.) p-value

1 [0.0511,0.0553] < 2.2e-16

3 [0.0788,0.0835] < 2.2e-16

5 [0.1313,0.1390] < 2.2e-16

For all the k-mer sizes the distributions are significantly different. The difference in
means becomes larger as the k-mer size increases
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Fig. 7 GAGE genome assemblies assessment. Violin plot of the normalized scores when analyzing the assemblies with k-mer size 3 for the seven
assemblies generated in [14]. The scores have been binned by considering the size of the contigs

for BUSCO, no matches were identified for SOAPden-
ovo, while only 2.5% of the genes in the database were
identified in the assembly generated by Velvet.
MSR-CA generated an assembly of high quality spe-

cially when looking at contigs over 1000 bp. The total
length of the assembly generated was very close to the
length of the reference genome, and almost all the met-
rics were among the best achieving the highest fraction
of the genome covered. However, the HiMMe coefficient
was slightly below average, mainly due to the issue with
short contigs which represent a 30% of the total assembly.
Nevertheless, as Fig. 7 shows, although the distribution
of normalized scores for short contigs (under 1000 bp)
was rather poor, when looking at larger contigs, MSR-CA

appeared to be among the best. As for BUSCO, the tool
was not able to find any homologous genes in this case.
Finally, the assembly generated by ABySS scored very

low in multiple facets of the analysis. Its N50 and NA50
were among the lowest (2nd lowest in both cases). The
fraction of the assembly that was aligned back to the refer-
ence was the lowest one (only 75%), although the fraction
of the genome covered by the assembly was high. As for
HiMMe, both the coefficient generated and the distribu-
tion of normalized scores (see Fig. 7) suggest that the
assembly generated contains a fair amount of contigs of
rather low quality. On the other hand, BUSCO was able
to find about 15% of homologous genes, being this the
second highest percentage.

Table 5 Metrics for the each of the assemblers generated in [14] when using Staphylococcus Aureus as reference

Metrics summary (Staphylococcus Aureus)

Metric ABySS Allpaths-LG Bambus2 MSR-CA SGA SOAP denovo Velvet

N 5,065 51 105 98 6,854 182 301

Ltotal (bp) 3,489,706 1,674,547 2,277,291 2,862,552 3,448,095 2,631,096 2,860,307

N50 (kbp) 23.1 96.7 40.1 59.1 3.1 239.8 52.7

NA50 (kbp) 13.3 41.2 31.2 31.5 2.0 44.5 31.5

Aligned % 75% 83% 80% 83% 69% 81% 82%

Genome % 82% 51% 67% 87% 84% 78% 86%

BUSCO 15% 0% 2.5% 0% 40% 0% 2.5%

HiMMecoeff 1.412 9.053 6.928 4.217 5.036 3.953 4.606

N is the number of contigs in the assembler output. Ltotal represents the total length of the assemblers’ output. N50 is largest length L such that 50% of all nucleotides are
contained in contigs of size at least L kbp. NA50 is a corrected version of N50 provided by QUAST [9]. Aligned % is the percentage of the assembly generated that was aligned
back to the reference. Genome % is the fraction of the genome covered by the assembly generated. BUSCO’s score is the percentage of complete genes found in the
assemblies from the bacteria database provided by BUSCO. Finally, HiMMecoeff is the metric introduced in Eq. (27)
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We also proceeded to run our algorithm training it with
a relatively close reference genome (Staphylococcus Sapro-
phyticus instead of Staphylococcus Aureus). The goal of
this experiment was to show that, while the alignment
rates are misleading when not using the exact reference,
our algorithm can still be used and the results obtained are
close to those obtained when using the exact reference. As
Table 6 shows, the genome coverage obtained when align-
ing the assembly to the reference was very low (under 1%
in all cases). On the other hand, the scores produced by
HiMMe were rather close to those obtained with the exact
reference genome, leading to the same conclusions. This is
due to the fact that, although the genetic content might be
very similar, the way the genome is arranged can be rather
different. On the other hand, the transition matrices were
surprisingly close when comparing the one obtained from
the true reference (i.e. Staphylococcus Aureus) to that of
the relatively close reference (i.e. Staphylococcus Sapro-
phyticus). That allowed our method to produce reliable
metrics in a simulated de-novo setting.

Conclusions
The method presented in this article is capable of iden-
tifying genetic patterns in data regardless of the underly-
ing base composition. The most frequent transitions are
learned from the training set of sequences. By adding
emission probabilities in the formulation, the method
allows for biological variability and errors in all intermedi-
ate steps of the process (e.g. sequencing errors, assembler
errors).
The transition matrix can contain as much previous

knowledge about a certain organism as one desires and
it is not required to be learned strictly from the refer-
ence genome of an organism. For instance, the transition
matrix could be learned from the reference genome of a
closely related species or even from a gene database. In
addition, uncertainty can be introduced to the system by
using a sparse emission matrix.
We have shown that our algorithm has a significant dis-

criminant power even when using 1-mers, with the power
increasing for large k-mer sizes. Appreciable improve-
ment was observed when using 3-mers instead of 1-mers,
reducing the naive Bayes classifier error by a half. How-
ever, we did not observe much improvement when using
5-mers instead of 3-mers. Therefore, k-mer size three

was a good trade-off between performance and compu-
tational requirements in this case. Nevertheless, other
k-mer sizes might be a better fit in other cases, depending
on the complexity of the organisms and the nature of the
study.
In addition to a score for each contig, our method

also provides an overall metric for the entire assembly.
After analyzing the assemblies from [14] we have found
Allpaths-LG’s output to be the best assembly when look-
ing exclusively at our coefficient. These results were con-
sistent with standard metrics. On the other hand, our
method showed ABYSS’ assembly to be the worst one.
These results are consistent with the fact that both the
fraction of assembly aligned and the resulting NA50 were
rather low.
Our method presents several advantages when com-

pared to other genome assembly assessment alternatives.
Besides an overall score for the entire assembly, our
method includes an individual score for each contig (per-
frame log-likelihood). Thus, our method allows the use
of a cut-off value to filter contigs, which can be used to
improve the reliability of the assembly for downstream
analysis. We want to emphasize again the importance of
looking at the normalized score distribution and using
this distribution to perform statistical tests to find signifi-
cant differences between assemblies. For instance, ABySS’
assembly could be improved by filtering out those contigs
with low scores (specially short contigs) and, as a result,
improve the overall quality of the assembly.
In addition, the time complexity of our method is sig-

nificantly smaller than that of an aligner such as BLAST
or HMMER and, in turn, much smaller than BUSCO’s.
Moreover, our method does not use any heuristics as
opposed to BLAST and other multiple sequence aligners.
However, we want to stress the fact that the purpose of
our work was not to program a fast tool at this point,
but instead demonstrate that HMMs provide an excel-
lent framework for assessing genome assemblies without
a need for alignment tools and with limited computational
resources.
Finally, our model can be trained not only by using a ref-

erence genome but by employing any FASTA file. Thus,
even when the reference genome is not available (i.e. in
a de-novo genome assembly setting) our tool could still
be trained with a set of homologous genes or with the

Table 6 Percentage of the genome covered by the assembly (using QUAST) and HIMMEcoeff obtained when using a relatively close
reference (Staphylococcus Saprophyticus instead of Staphylococcus Aureus)

Using a different reference: Staphylococcus Saprophyticus

Metric ABySS Allpaths-LG Bambus2 MSR-CA SGA SOAP denovo Velvet

Genome % 0.241% 0.120% 0.231% 0.637% 0.354% 0.254% 0.322%

HiMMecoeff 1.399 9.025 6.936 4.126 4.986 3.973 4.588
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reference genome of a closely related species and still
provide the researcher with well-founded metrics. Under
these circumstances, it would not be possible to assess
the quality of a genome assembly via alignment rate,
since there would be no reference genome available and a
closely related genome would be problematic.
The scoring method for genome assemblies proposed in

this article must be regarded as complementary to well-
known standards used by the scientific community for
evaluation (e.g., N50, median contig length, etc.). It is
also complementary to the scoring methods that software
like BUSCO or QUAST provide. Each metric focuses on
a particular aspect of the problem and, thus, we recom-
mend using as many metrics as possible when assessing
genome assemblies so that more factors can be taken into
account. In agreement with [26], we recommend not to
placemuch faith in a single metric and instead take several
into account when possible.
Finally, the main objective of the method introduced

in this article is to use the genetic patterns as a proxy
for genome assembly reliability. As a future direction, we
will explore other potential applications of the proposed
model. For instance, using the well-known Viterbi algo-
rithm errors could be identified, reported and fixed. In
addition, the same scoring method could be used to assess
transcriptome assemblies or to classify meta-genomics
data, considering the potential of our method for clas-
sification. However, the discriminant power require-
ments will depend on the application, and a trade-off
between discriminant power and computational require-
ments might be required in some cases.
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