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Abstract

Background: Fasting glucose and fasting insulin are glycemic traits closely related to diabetes, and understanding
the role of genetic factors in these traits can help reveal the etiology of type 2 diabetes. Although single nucleotide
polymorphisms (SNPs) in several candidate genes have been found to be associated with fasting glucose and
fasting insulin, copy number variations (CNVs), which have been reported to be associated with several complex
traits, have not been reported for association with these two traits. We aimed to identify CNVs associated with
fasting glucose and fasting insulin.

Results: We conducted a genome-wide CNV association analysis for fasting plasma glucose (FPG) and fasting
plasma insulin (FPI) using a family-based genome-wide association study sample from a Han Chinese population in
Taiwan. A family-based CNV association test was developed in this study to identify common CNVs (i.e, CNVs with
frequencies 2 5%), and a generalized estimating equation approach was used to test the associations between the
traits and counts of global rare CNVs (i.e.,, CNVs with frequencies <5%). We found a significant genome-wide
association for common deletions with a frequency of 5.2% in the Scm-like with four mbt domains 1 (SFMBTT) gene
with FPG (association p-value = 2x10™* and an adjusted p-value = 0.0478 for multiple testing). No significant
association was observed between global rare CNVs and FPG or FPI. The deletions in 20 individuals with DNA
samples available were successfully validated using PCR-based amplification. The association of the deletions in
SFMBTT with FPG was further evaluated using an independent population-based replication sample obtained from
the Taiwan Biobank. An association p-value of 0.065, which was close to the significance level of 0.05, for FPG was
obtained by testing 9 individuals with CNVs in the SFMBTT gene region and 11,692 individuals with normal copies
in the replication cohort.

Conclusions: Previous studies have found that SNPs in SFMBTT are associated with blood pressure and serum urate
concentration, suggesting that SFMBTT may have functional implications in some metabolic-related traits.
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Background

Fasting glucose and fasting insulin are glycemic traits
closely related to diabetes. Understanding the genetic
factors associated with these traits can help identify path-
ways causing pathological glucose levels and type 2 dia-
betes [1, 2]. Heritability of fasting glucose and fasting
insulin was estimated as 0.52 and 0.47, respectively, in fam-
ilies with hypertension [3], suggesting that genetic factors
are responsible for a large proportion of phenotypic vari-
ation in the traits. Single nucleotide polymorphisms (SNPs)
in several candidate genes have been identified to be asso-
ciated with fasting glucose and fasting insulin [4—6]. How-
ever, the effect sizes for the SNPs are generally modest, and
these SNPs explained only a small portion of heritability
[7]. Therefore, more causal genetic variants for fasting glu-
cose and fasting insulin remain to be found.

Common and rare copy number variations (CNVs) have
been shown to be associated with many complex traits
[8-12], including some metabolic-related traits [13-16].
However, to our knowledge, associations between CNVs
and fasting glucose and fasting insulin have not been re-
ported in the literature. Several sophisticated CNV calling
algorithms, such as PennCNV [17] and Birdsuite [18],
based on SNP arrays have been developed to infer CNV
states (i.e., deletion and duplication) with high accuracy.
Therefore, genome-wide association study (GWAS) data
that are mainly used to identify SNP associations have
been used to infer CNVs, and associations of CNVs with
complex diseases such as autism and schizophrenia have
been discovered [19, 20] using GWAS.

To investigate the role of CNVs in fasting glucose and
fasting insulin, in this study, we performed a genome-wide
CNV association study for fasting plasma glucose (FPG)
and fasting plasma insulin (FPI) based on a GWAS dataset
from the Stanford Asia-Pacific Program for Hypertension
and Insulin Resistance (SAPPHIRe) family study [21]. A
family-based CNV association test was developed to iden-
tify common CNVs (i.e., CNVs with frequencies > 5%) asso-
ciated with these traits. We also conducted simulation
studies to evaluate the type I error rates and power for the
family-based CNV association test in the present study.
Furthermore, we performed a genome-wide burden test to
investigate the associations of counts of global rare CNVs
(i.e., CNVs with frequencies <5%) with FPG and FPL The
CNVs with genome-wide significant p-values were validated
using PCR-based amplification. Moreover, we performed a
replication analysis for the significant CNVs using another
independent population-based cohort obtained from the
Taiwan Biobank (https://www.twbiobank.org.tw).

Methods

Study samples

The samples were collected from the SAPPHIRe family
study. Individuals were recruited from five sites in Taiwan,
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Hawaii, and San Francisco. The sample consisted of both
concordant sib pairs (both with hypertension) and discord-
ant sib pairs (one with and one without hypertension) from
the Chinese and Japanese populations. Subjects were re-
cruited as probands if their age at onset for hypertension
was between 35 and 60 years or if their age was >60 years
but they had records of hypertension before 60 years. Sub-
jects with pre-existing malignancies or major chronic dis-
eases (such as type 2 diabetes or chronic liver, renal, and
heart diseases) were excluded from the study. More details
of the ascertainment criteria can be found in Wu et al. [22].

Genotyping

The samples were genotyped using the Affymetrix
Genome-Wide Human SNP Array 6.0, which contains
more than 1,878,000 probes. The samples were assigned
randomly to batches of 96 samples for genotyping fol-
lowing the Affymetrix protocol. Genotypes were called
using Affymetrix Power Tools (APT), which implements
the Birdseed algorithm [18] for genotype calling. The
Birdseed algorithm produces conventional genotype calls
(ie., three genotypes AA, AB, and BB), which were used
in quality control (QC) procedures such as sex checks
and Hardy-Weinberg Equilibrium (HWE) tests.

CNV calling

Studies have found that different CNV calling algorithms
have advantages and disadvantages for different types of
analyses [23, 24]. Therefore, we applied two commonly
used CNV calling algorithms, Birdsuite and PennCNYV,
to generate CNV calls based on the signal intensity data
from the SNP arrays. Then the consensus calls from the
two algorithms were used in the following analyses. In
Birdsuite, the samples were processed as batches of 96
samples to eliminate batch effects. The CNV segments
reported by the Birdseye program, which is based on a
Hidden Markov Model (HMM), in Birdsuite were used.
PennCNYV also detects CNVs based on HMM. All sam-
ples were processed together in PennCNV, as suggested
in the user manual of PennCNV. The CNV calls gener-
ated by Birdsuite and PennCNV were classified into 3
states, which are deletion, normal, and duplication.

Quality control

We applied a two-stage QC procedure. In stage 1, PLINK
[25] was used to perform the QC based on the genotype
calls generated by APT. SNPs with call rates <90%, minor
allele frequencies <5%, or HWE test p-values <10~* were
excluded. The PLINK PI_HAT statistic, which is the pro-
portion of loci that are identity-by-descent between a pair
of individuals, was used to examine the relatedness among
samples based on the SNP genotypes that passed QC. Sam-
ples that were reported as sib pairs but with PI_HAT <0.05
were removed. We also removed an individual if the
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median of PI_HAT of the individual with others was
greater than 0.05. In stage 2, we followed the suggestions in
the PennCNV manual to perform QC based on the CNV
calls generated by Birdseye and PennCNV. Adjacent CNVs
that were classified into the same state were merged into
the same CNV if the length of the gaps (measured based
on the number of probes) between them was less than 20%
of the length of either one of the adjacent CNVs. CNVs
containing less than 10 SNPs or that were smaller than
10 kb were removed. Spurious CNV calls in regions such as
immunoglobulin, centromeric and telomeric regions were
also removed. Samples with a standard deviation for the log
ratio of observed probe intensity to expected intensity lar-
ger than 0.35 were removed, as suggested in the PennCNV
manual. Samples with more than 100 CNV calls generated
by PennCNV were removed. Because Birdsuite generated
many more CNV calls than PennCNV, samples with more
than 200 CNV calls generated by Birdseye were removed.
After the QC steps were applied to the CNV calls generated
by PennCNV and Birdseye separately, consensus calls were
generated from the two sets of calls. A consensus call was
defined as the intersection of CNV calls with the same state
from the two algorithms.

Clinical measurements

The clinical measurements of the participants were taken
at 8 am after an 8—10 h overnight fast. The glucose oxidase
method on a Beckman Glucose Analyzer II (Beckman
Instruments, Fullerton, CA, USA) was used to determine
plasma glucose concentrations, and plasma insulin was
measured using a commercial immunoradiometric kit (Bio-
Source Europe, Nivelles, Belgium). The intra-assay and
inter-assay coefficients of variation for glucose were 0.6%
and 1.5%, respectively. The intra-assay and inter-assay coef-
ficients of variation for insulin were 2.2 and 6.5%, respect-
ively. Subjects diagnosed with diabetes were excluded from
the study. Moreover, subjects with FPG levels >126 mg/dl
were defined as having diabetes and were excluded.

Statistical test

Phenotypes were first adjusted for covariates such as age,
sex, body mass index (BMI), ethnicity, and site. As sam-
ples were recruited based on the hypertension status, phe-
notypes were also adjusted for hypertension status as an
additional covariate. Moreover, as a large cohort study
suggested that genetic variants associated with BMI may
also have associations with metabolic traits such as fasting
glucose [26], adjusting for BMI may eliminate the effects
of CNVs with pleiotropic effects on BMI and the two traits
we studied. Therefore, the phenotypes were also adjusted
for only age, sex, ethnicity, and site. A linear regression
model using generalized estimating equations (GEEs) was
fit for the trait and covariates with the “exchangeable”
within cluster correlation structure to account for
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correlations among sibs. Ethnicity was considered as a
binary variable with values of Chinese and Japanese eth-
nicities. Site was considered as a categorical variable con-
sisting of nominal values for the five recruiting sites in
SAPPHIRe. Residuals from the linear model were used as
the adjusted phenotype values for subsequent analyses.

We developed a family-based association test to evaluate
the associations between CNV calls and the phenotypes.
The test statistic was the difference in the mean phenotypic
value between an abnormal CNV state (i.e., deletion or du-
plication) and the normal state calculated based on the
phenotypic values for siblings in all families. To evaluate
the significance of the test statistic, we randomly permuted
the phenotypic values for siblings within each family, and
the permuted statistics were calculated over a large number
of permutations (e.g., 5000). The p-value for the test was
the proportion of the permuted statistics that were equal to
or more extreme than the original statistic. A two-sided test
was performed. The null hypothesis was that the CNV state
is not associated with the phenotype. Because subjects can
have CNVs with different lengths in the same region,
we performed the test based on the locations of
SNPs. The CNV state of a SNP for an individual was
defined as the CNV state for the region where the
SNP was located. To account for multiple testing, the
permuted statistics were also used to calculate the
permutation adjusted p-values and false discovery rate
(FDR) [27] based on the formulas in Wang et al. [28].
Note that there were correlations among SNPs if they
were in the same CNV region. These correlations
were properly considered when we calculated the per-
mutation adjusted p-values and FDR because the cor-
relation structures were maintained in the permuted
statistics. Based on our power calculations shown in
the Results section, the test maintained reasonable
power for CNVs with frequencies > 5% given the
sample size of the study dataset. Therefore, we fo-
cused on testing CNVs with frequencies > 5%.

As some studies have suggested that genome-wide rare
CNVs are associated with complex traits, we performed a
global burden analysis for CNVs with a frequency < 5%.
PLINK was used to extract the CNVs with a frequency < 5%
and calculate the number of CNVs across the genome for
each individual. A regression analysis based on the GEEs was
used to test the association between the trait and the CNV
count, while family correlation was considered using the “ex-
changeable” within-cluster correlation structure in the GEE.

Replication analysis

We performed a replication analysis using a population-
based cohort from the Taiwan Biobank (TWB) for the
CNVs passing the multiple testing threshold. The TWB has
recruited more than 80,000 population-based samples with
survey data such as basic demographic variables, lifestyle,
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and family history of common diseases, body measure-
ments such as weight, height, and blood pressure, and
blood and urine measurements such as fasting glucose and
urinary microalbumin [29]. A portion of the TWB samples
were genotyped using customized Affymetrix Axiom chips
for Han Chinese (referred to as the TWB chips), which
consisted of 648,290 probes. The same QC procedures in
stage 1 as described in the Quality control section were ap-
plied to the TWB sample. Because Birdsuite was not applic-
able to the customized chip data, only PennCNV was used
to generate CNV calls. PennCNV was performed with the
same procedures as in Kendall et al. [30], who generated
CNV calls also based on customized Affymetrix Axiom
chips for the UK Biobank data with PennCNV. More de-
tailed descriptions of the procedures for generating CNV
calls are provided in Additional file 1. A permutation test
was also used to evaluate the significance of the CNVs with
the trait. Phenotypes were first adjusted for covariates in-
cluding age, sex, BMI, batches, and hypertension based on
a linear regression model and the residuals were used for
the association analysis. Similar to the family-based associ-
ation test, the difference in the mean phenotypic value be-
tween an abnormal CNV state and the normal state was
calculated as the test statistic. The trait values across all
samples were randomly permuted, and the permuted statis-
tics and the association p-value were calculated.

Results

Analysis flowchart

Figure 1 shows the flowchart of our analysis. The SAP-
PHIRe samples were first underwent the stage 1 QC, where
samples failing the PLINK sex checks or samples with un-
expected relatedness were removed. The two CNV calling
algorithms, Birdsuite and PennCNV, were used to generate
the CNV calls. These calls were underwent the stage 2 QC,
and the consensus calls of the CNV calls from the two algo-
rithms were generated. Common CNVs (ie, CNVs with
frequencies > 5%) were evaluated by the family-based test
developed in this study and burden tests were applied to
the rare CNVs. The CNVs with genome-wide significance
were validated using the PCR-based amplification method,
and the replication analysis was performed in the TWB
sample for the significant CNVs.

Sample characteristics

A total of 513 samples from the SAPPHIRe study were suc-
cessfully genotyped. After the two-stage QC, there were 444
samples in 192 families. Table 1 shows the summary charac-
teristics of the phenotypes in the 444 samples. The mean
CNV counts per sample were 36.69 with a standard devi-
ation (s.d.) of 11.52 and 14.15 with a s.d. of 8.17 for deletions
and duplications, respectively. The mean lengths were
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Fig. 1 Flowchart of the analysis procedures

66.85 kb with a s.d. of 252.53 kb and 237.35 kb with a s.d. of
1393.88 kb for deletions and duplications, respectively.

Association test results for the two traits

A total of 272 SNPs were tested for duplication and 188
SNPs were tested for deletion in the common CNVs. Table
2 shows the association results with test p-values <0.01 for
the CNVs with the two traits using the model adjusted for
age, sex, BMI, ethnicity, and site. As shown in Table 2, for
testing the association with FPG, the deletions at SNPs
152336721 and rs2581795 had a p-value of 2 x 107% with a
permutation adjusted p-value of 0.0478, which passed the
multiple testing threshold of 0.05. The FDR for the p-value
was 0.0669. Similar p-values of 1 x 10~ and 3 x 10~ were
observed for the two SNPs using the model that included
hypertension status as an additional covariate or the model
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Table 1 Summary statistics for the traits and covariates

Summary statistic
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adjusted p-value of 0.0776, which is close to the multiple
testing threshold of 0.05. The FDR for the p-value was
0.1593. However, the p-value for the two SNPs became

Trait
FPG (mg/d) 9136 + 1693 (444%) 0:202 using the m0f1el‘ that was noF e}djusted for BML. We
FPI (WU/m) 778+ 527 (442) did not observe significant association of the count of
genome-wide rare CNVs with the two traits. The burden
Age 4827 846 test p-values for FPG and FPI were 0.781 and 0.289, respect-
Proportion of males 45.59% ively, for deletion, while the burden test p-values for FPG
BMI 2533 + 342 and FPI were 0.844 and 0.616, respectively, for duplication.
Site® 13.32%, 14.67%, 36.79%, 34.76%, 0.46%
Ethnicity Chinese: 96.38%; Japanese: 3.62% Validation of the deletions in SFMBT1

Data presented as mean * standard deviation unless otherwise specified
“Number of samples with non-missing trait values
PPercentages of samples in the five sites

not adjusted for BMI, respectively. The two SNPs are both
in the Scm-like with four mbt domains 1 (SFMBTI) gene
and are on the same CNV segment. A total of 23 individuals
from 18 families in the sample carried the deletions with
similar lengths, as shown in Fig. 2 generated by the UCSC
genome browser. The average length of the deletions was
10.96 kb. The adjusted mean FPG level in the 23 individuals
was 89.4 with a 95% confidence interval (CI) of (83.7, 95.1),
while the adjusted mean FPG level in the remaining samples
was 93.7 with a 95% CI of (89.0, 98.4) based on the regres-
sion model. Note that the difference in the adjusted means
between the two groups would not be statistically significant
using the regression model. The results suggest that the pro-
posed family-based association test for CNV was more
powerful for identifying CNVs associated with the trait than
the regression-based test in our sample. For testing the asso-
ciation with FPI, duplications at SNPs rs1823636 and
rs438821 had a p-value of 3.8 x 107, with a permutation

Table 2 CNV association results with p-values <0.01 for FPG and FPI

We used PCR-based amplification to validate the deletions
in SFMBT1 identified in the SAPPHIRe sample. We se-
lected 20 individuals with DNA samples available in our lab
from the 23 individuals shown in Fig. 2 and also selected 2
individuals with normal copies predicted by the CNV call-
ing algorithms for the validation analysis. The average size
of the deletions in the 20 individuals identified by the CNV
calling algorithms was approximately 11 kb. Primers (For-
ward: 5'- CACCCAGTCCAACAGTCCTC-3’, Reverse: 5'-
GAACTGGAGCTTGAAGTCAGTG-3") were designed to
target the flanking region of the deletions, which was about
174 kb. The 22 individuals were amplified using the
standard 2-step protocol of PrimeSTAR GXL polymerase
(TaKaRa Bio, Shiga, Japan). The results were shown
in Fig. 3. The 20 individuals had approximately 6.4 kb
fragments, which was the expected size based on the re-
sults from the CNV calling algorithms (174 kb -
11 kb = 6.4 kb). On the other hand, also as expected, the 2
individuals without the deletions predicted by the CNV
calling algorithms did not show any deletions in Fig. 3.
Therefore, the deletions in the 20 individuals were suc-
cessfully validated using the PCR-based amplification.

Trait/CNV/SNP Chrom Position Gene Freg® P-value Adj-P° FDR
FPG
Deletion
rs2336721° 3 53,003,415 SFMBT1 0.052 0.0002 0.0478 0.0669
rs2581795 3 53,013,826 SFMBT1 0.052 0.0002 0.0478 0.0669
FPI
Deletion
rs11209948 1 72,584,492 None 0.106 0.0020 0.2442 04583
152815752 1 72,585,028 None 0.090 0.0030 0.2240 04657
rs3931686 12 9,533,761 None 0.121 0.0042 03332 0.8368
Duplication
151823636 1 4,232,580 None 0.072 0.0038 0.0776 0.1593
rs438821 1 4,232,709 None 0.072 0.0038 0.0776 0.1593
rs11031481 11 4,252,795 None 0.069 0.0070 0.1212 0.1910
2CNV frequency

PPermutation adjusted p-value for multiple testing
“Results with adjusted p-value <0.05 were marked as bold
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Window Position
Scale 5 kb}

Deletions in the SAPPHIRe sample
Human Mar. 2006 (NCBI36/hg18) chr3:53,000,782-53,017,046 (16, 265 bp)

SFMBT1
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UCSC Genes (RefSeq, GenBank, tRNAs & Comparative Genomics)
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Database of Genomic Variants: Structural Variation (CNV, Inversion, In/del)
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Fig. 2 Plot of the deletions in the 23 individuals (the black bars) as well as structural variations in the regions in other databases. The red and blue
bars indicate deletions and duplications, respectively. The plot was generated on April 14, 2017 on the UCSC Genome browser

J

Type | error and power study

We evaluated the type I error rate and power of the family-
based CNV test for detecting the association of the dele-
tions in SFMBTI with FPG. To calculate the type I error
rate, we randomly generated deletions in the family samples
with a frequency of 5.2%, which was the same as the dele-
tion frequency observed in the gene, while the trait values
for the family samples remained the same. A total of 5000
replicates of the simulated family samples were generated
to calculate the type I error rate. The estimated type I error
rate was 0.052 with a 95% CI of (0.046, 0.058) at the signifi-
cance level of 0.05, whereas the type I error rate was 0.008
with a 95% CI of (0.005, 0.011) at the significance level of
0.01. These results suggest that the type I error rates were
properly maintained by the test with a CNV frequency of
5.2%. We then used a bootstrap procedure [31] to calculate

the power. For each bootstrap, the same number of families
as that of original samples was generated by sampling the
original families with replacement, and the CNV test was
applied to the bootstrapped samples. A total of 1000 boot-
straps were performed, and the power was calculated as the
proportion of test p-values less than the specified signifi-
cance level in the 1000 tests. The power was estimated as
88.3% and 79.8% at the 0.05 and 0.01 significance levels, re-
spectively. Therefore, given the trait values and sample size,
this study had sufficient power to detect a CNV with
frequency of 5.2% associated with the trait.

Replication analysis

The association between the candidate SFMBTI deletion
region (chr3:53,003,415-53,013,826) and FPG was evalu-
ated in the TWB replication sample. After QC, there were
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Table 3 Summary statistics for the trait and covariates in the
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for the deletions with FPG was 0.065, which was

TWB sample close to the 0.05 nominal level, where the association
Summary statistic p-value for the duplication with FPG was 0.389. More
Trait interestingly, the adjusted mean for FPG in the indi-
FPG (ma/di) 9192 + 758 viduals with deletions was 87.52 with a 95% CI of
Age 4747 + 107 ‘(82.‘74, 92.30)‘, while the ad‘Justed mean FPG in the
individuals with normal copies was 91.98 with a 95%

Proportion of males  47.76%

BMI 2401 £ 3.51

Batch® 10.80%, 12.34%, 14.14%, 10.79%, 13.24%, 12.11%,
10.35%, 16.23%

Proportion of 12.78%

hypertension

?Percentages of samples in eight batches

11,701 unrelated samples. Table 3 shows the summary
characteristics of the phenotype and covariates in the
11,701 samples. The means of FPG, age, and BMI and the
proportion of males in the TWB sample were similar to
those observed in the SAPPHIRe sample. We found that
there were no probes in the deletion region
(chr3:53,003,415-53,013,826) on the TWB chips. Hence,
only individuals who had larger CNVs covering the region
would be detected by the TWB chips. A total of 9 individ-
uals with such CNVs were identified, where 8 individuals
had deletions and 1 had a duplication. The CNVs for the 9
individuals were shown in Fig. 4. The association p-value

CI of (91.82, 92.14). Therefore, the results were con-
sistent with those in the SAPPHIRe sample that the
mean FPG was lower in individuals with deletions in
SEMBTI than that in individuals with normal copies.

Discussion

Our analysis identified a candidate region of deletions in
SFMBT1 (chr3:53,003,415-53,013,826) significantly low-
ered FPG level in the SAPPHIRe sample, with a
genome-wide significant p-value of 2x107* Interest-
ingly, the same trend was also observed in the replica-
tion cohort (i.e., the TWB cohort) that samples with
deletions had lower mean FPG level than the mean FPG
level in samples with normal copies. Due to the restric-
tion of the genotyping platform in TWB, only 9 individ-
uals with larger CNVs covering the candidate SEFMBTI
region were identified. However, the association p-value
of 0.065 was close to the 0.05 significance level, support-
ing that the deletions in SFMBT1 have effects on FPG.

Window Position
Scale 200 kb}

Deletions in the SAPPHIRe sample
Human Mar. 2006 (NCBI36/hg18) chr3:52,538,011-53,296,980 (758,970 bp)
| hg18

1
chr3: | 52,600,000 52,650,000 52,700,000 52,750,000 52,800,000 52,850,000 52,900,000 52,950,000 53,000,000 53,050,000 53,100,000 53,150,000/ 53,200,000/ 53,250,000|

Taiwan Biobank Samile

UCSC Genes (RefSeq, GenBank‘ ‘IRI‘\EAS & Comparative Gehomics)
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The SFMBTI1 gene encodes a protein containing four
malignant brain tumor repeat domains. Interestingly,
SNPs in SFMBT1 have been reported to be associated with
mean systolic and diastolic blood pressure, and signifi-
cantly differential expression was observed for the gene
between hypertensive cases and normal controls in an-
other Han Chinese study in Taiwan [32]. A large GWAS
based on >140,000 samples with European ancestry identi-
fied that SNPs in the gene are significantly associated with
serum urate concentrations [33]. Another study found
that uric acid levels are positively associated with FPG
[34], and some candidate genes for uric acid have been
found to be associated with FPG in a Chinese population
[35]. Hence, SFMBT1 may have functional implications in
some metabolic related traits. As shown in Fig. 2, dele-
tions in SFMBT1 were also found in Database of Genomic
Variants (DGV) [36] and the CNV Discovery Project,
which aimed to identify common CNVs [37], suggesting
that deletions are common in this gene.

No duplications in the candidate SFMBTI region were
observed in the SAPPHIRe sample, and only one duplica-
tion was observed in the TWB sample. A total of 30 CNVs
in the gene were found in the DGV based on results
from various studies, where Caucasian samples were
mainly analyzed. Only two of the 30 CNVs were du-
plications, while the others were deletions. Therefore,
duplications in SFMBTI could also be rare in the
Han Chinese population. Further studies to evaluate
whether duplications in SFMBTI elevate fasting glu-
cose levels in the Han Chinese population will be im-
portant. However, a large sample size with dense
probes will be required to achieve the goal.

Although rare CNVs have been found to be associated
with several complex traits, our burden analysis did not
identify any significant associations between global rare
CNVs and the two traits. This may be due to the limited
size of our sample, where many rare CNVs were not ob-
served. Again, a large sample size will be required to fur-
ther evaluate the role of global rare CNVs in FPG and FPI.

Conclusions

We identified deletions in SEMBTI1 that were signifi-
cantly associated with FPG in the SAPPHIRe sample,
and the deletions also showed marginal significance in
the TWB sample. The deletions in the SAPPHIRe sam-
ple were validated using PCR-based amplification. Based
on previous findings and our results, SFMBT1 may have
functional implications in FPG and other metabolic
traits. Our power study suggest that the proposed
family-based CNV test had sufficient power to identify
the deletions associated with FPG given the sample size.
Further studies should be conducted to evaluate the role
of duplications in the SEMBT1 gene and FPG.
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