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Abstract

Background: Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated.
Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change.
Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as

climate continues to shift.

Results: Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape
may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from
three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected
for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association
analysis between landrace co-expression module expression values and environmental parameters of landrace origin to
elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of
landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature
parameters of landrace origin and queries into their ‘hub’ genes suggested that temperature may have led to
differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We
identified several 'hub’ transcription factors and kinases as candidates for the regulation of these responses.

Conclusions: These findings indicate that natural selection may influence the transcriptomes of crop landraces along
an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local
adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified,
combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common
garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape.
Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic

diversity in a time of climate change.

Keywords: Maize, Landraces, Transcriptomics, WGCNA, RNA-seq, Chiapas, Adaptation

Background

Maize was domesticated from Zea mays ssp. parviglumis
in the Balsas River Valley of Mexico 9000 to 10,000 years
ago [1-3]. There are around 59 phenotypic classes, or
races, of maize in Mexico [4] and maize landraces (i.e.,
traditional varieties) of Mexico contain the highest number
of alleles per locus of any country in the Americas [5]. Gen-
eral factors contribute to the high level of maize diversity
in Mexico, including: (i) being the center of crop origin [6];
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(ii) gene flow between wild teosinte species and maize land-
race populations [7-9]; (iii) diverse selection previously
imposed by ecological and environmental heterogeneity
[10, 11]; and (iv) the cultural diversity present among
Mexican maize landrace farmers [7, 11, 12]. These factors,
along with neutral evolutionary processes, have shaped the
morphological, phenological, and physiological characteris-
tics of maize throughout Mexico [13], as well as the genetic
diversity underlying these traits.

Farmers in the southernmost state of Chiapas, Mexico,
and the surrounding region, grow a diversity of maize.
They maintain upwards of 20 races of maize, 11 of
which are common [14], and three are dominant [15].
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The distribution of maize races in southern Mexico and
Guatemala is strongly determined by environmental fac-
tors, which vary with elevation [15, 16]. As is the case for
many crops, culture also influences the distribution and
differentiation of maize landraces in the region [15-21].
However, phenotypic differentiation has not always corre-
sponded with genetic differentiation in these studies, a fact
that warrants study of ‘selected variation; or differentiation
induced by natural selection [17, 18]. Mercer et al. [22]
provided evidence that elevation has shaped maize land-
race diversity in Chiapas producing patterns of local adap-
tation. This has provided a foundation for determining the
underlying mechanisms of local adaptation in the maize
landraces along the study gradient, including developmen-
tal timing (Mercer et al. under review) and physiology
(Pace et al. unpublished manuscript).

Differential global gene expression analysis performed
on differentially adapted populations, grown together in
a common garden, provides a way to identify genes puta-
tively involved in adaptation. In some cases, the planting
of diverse populations in common gardens can illuminate
genetic differences underlying phenotypes, such as gene
expression. Such an approach with diverse populations of
Sitka spruce [23] identified genes putatively relevant to
cold acclimation. Differentially expressed (DE) genes that
were overrepresented in gene ontology (GO) abiotic stress
categories or that had functional annotations for cold ac-
climation provided fodder for further validation. Similarly,
in maize, Hayano-Kanashiro et al. [24] performed a micro-
array study using three Mexican landraces originating
from different moisture environments to identify putative
candidate genes underlying drought tolerance. RNA-seq
can now be employed to investigate DE genes [25-28];
however a reductionist approach of investigating DE genes
individually may not be ideal for gaining insight into
quantitative traits, such as those involved in adaptation to
abiotic and biotic stresses.

By contrast, weighted gene co-expression network ana-
lysis (WGCNA), a powerful bioinformatics tool, may more
holistically determine how the environment shapes genetic
diversity across the landscape. Co-expression network ana-
lyses provide a systems biology perspective on the tran-
scriptomes of biological samples by identifying gene
modules co-expressed among samples [29]. Genes within a
co-expressed module are assumed to be co-regulated and
involved in the same biological function or pathway, a
phenomenon of ‘guilt by association’ [30]. A number of
studies have used WGCNA to identify correlations be-
tween expression values representative of each module and
variation in trait values across biological samples [31-34].
This type of analysis can lead to the identification of mod-
ules underlying study traits and can be followed up with
GO enrichment analysis and/or the identification of ‘hub’
genes (i.e., highly connected genes in pathways/networks).
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To identify how the environment shapes genetic diversity
across the landscape, we propose that environmental
parameters of population origin can be used as the “traits”
in module eigengene — trait analyses. Such analyses may
elucidate: (i) environmental factors that have led to differ-
entiation among samples; and (ii) potential adaptations to
particular environmental conditions, whether governed by
single genes or highly connected ‘hub’ genes that can influ-
ence entire gene networks.

We conducted a landscape level RNA-seq analysis on
maize landraces collected along an elevational gradient
in Chiapas, Mexico, where Mercer et al. [22] reported
signals of local adaptation. A total of 15 landraces, five
from each of three elevational zones (highland, 2100 m;
midland, 1550 m; lowland, 600 m), were planted in a
midland common garden at 1531 m. RNA-seq libraries
were generated using leaf tissue collected early in the
growing season. Differential expression analysis, principal
component analysis (PCA) and WGCNA were then con-
ducted to address the following objectives. (i) Determine if
elevation of landrace origin shaped the gene expression
profiles of the 15 maize landraces. (ii) Identify correlations
between co-expression modules and environmental pa-
rameters of landrace origin. (iii) Identify enriched GO
categories and functions of ‘hub’ genes in modules exhibit-
ing strong correlations with environmental parameters of
landrace origin. As a whole, these analyses aimed to eluci-
date how environmental differences along the elevational
gradient may have structured genetic diversity involved in
local adaptation.

Methods

Study region and maize landrace collections

Chiapas, the southernmost state of Mexico, constitutes a
prime location to study how natural selection has shaped
genetic diversity in maize landraces. From the highlands
of the Sierra Madre de Chiapas to the lowlands of the
Mexico-Guatemala border, near Frontera Comalapa,
exists an elevational gradient of more than 2000 m.
Accompanying this elevational gradient are both abiotic
and biotic gradients [35]. Temperature tends to nega-
tively correlate with elevation and is known to organize
maize diversity at larger scales [10].

Chiapas maize landrace seeds employed in this study
were provided by farmers along this same elevational gra-
dient—collections were performed in 2009. Communities
sampled fell into one of three distinct elevational zones:
highland (~ 2100 m; ranging from 2060 to 2153 m); mid-
land (~ 1550 m; ranging from 1531 to 1584 m); and low-
land (~ 600 m; ranging from 563 to 684 m). Five
landraces were collected from each of the three zones for
a total of 15 landraces (Table 1). When collecting a land-
race population from a given farmer we requested at least
100 maize ears to ensure a representative sample. The 15



Kost et al. BMC Genomics (2017) 18:707 Page 3 of 14

Table 1 Chiapas, Mexico maize landraces provided by landrace farmers

Elevation Landrace ID Municipality/Community Latitude, longitude Elevation (m) Race

Lowland 1 Chicomuselo/Raizal 158939 N, 92.2537 W 648 Tuxpefo
4 Frontera Comalapa/Benito Judrez 158229 N, 92.2042 W 563 Tuxpeno
6 Frontera Comalapa/Benito Juédrez 15.8229 N, 92.2042 W 563 Tuxpeno
7 La Trinitaria/Juan Aldama 158554 N, 91.9377 W 598 Tuxpeno
9 La Trinitaria/Nuevo Llano Grande 158390 N, 91,9363 W 595 Tuxpeno

Midland 10 La Trinitaria/El Rosario Tierra Blanca 16.0770 N, 91.7461 W 1533 Comiteco
12 La Trinitaria/Miguel Hidalgo 16.1056 N, 91.7780 W 1524 Comiteco
13 Comitadn de Dominguez/San Francicsco El Ricon 162814 N, 92.1357 W 1584 Comiteco
17 Las Margaritas/Ignacio Zaragoza 163515 N, 91.9194 W 1531 Comiteco
18 Las Margaritas/lgnacio Zaragoza 16.3515 N, 91.9194 W 1531 Comiteco

Highland 20 Comitén de Dominguez/Ignacio Zaragoza 16.3612 N, 92.1792 W 2089 Olotillo
26 San Cristobal de Las Casas/Carrizal 16.6714 N, 92,6544 W 2153 Oloton
27 San Cristobal de Las Casas/Carrizal 166735 N, 926618 W 2137 Olotén
29 Teopisca/San Isidro Chichiuistdn 16.5979 N, 92.5656 W 2060 Olotén
30 Teopisca/San Isidro Chichiuistan 166021 N, 925591 W 2060 Oloton

Elevation, elevational zone collected from; Landrace ID, arbitrary ID given to each landraces; Municipality/Community, locations where landraces were collected;
Latitude, longitude, precise location of collections; Elevation (m), elevation in meters of where collections were obtained; Race, the race category of the landrace

landraces belonged to four maize races. The highland
landraces were either Olotillo or Olotén; midland land-
races were all Comiteco; and all lowland landraces
consisted of Tuxperio (Table 1).

Environmental parameters

For the WGCNA module — environmental parameter
analysis we used thirty years of data (1971-2000) on seven
temperature-, three precipitation-, and one evaporation-
related environmental parameters, collected from weather
stations nearest each of the landrace collection sites
(Comisiéon Nacional del Agua — Servicio Meteoroldgico
Nacional, México; www.smn.cna.gob.mx/es/). For detailed
information on weather station locations see Additional
file 1. Annual averages for each parameter were calculated
and used in subsequent analyses. Definitions of all envir-
onmental parameters are in Additional file 2. Although we
used all eleven environmental parameters in our analyses,
we are more confident about results related to the
temperature parameters. This is because: (i) the accuracy
of the precipitation- and evaporation- related parameters
may be less due to collection methods; and (ii) had our
focus been on precipitation and evaporation we would
likely have selected a study area with greater gradients for
these parameters.

Common garden design and tissue collection

In 2011, we planted a common garden in the midland
elevational zone (1531 m) to provide a uniform environ-
ment in which to assay gene expression differences and
correlate them with environmental conditions at the
origin of each landrace. The midland garden in 2011

provided beneficial growing conditions where survival
was uniformly high for all types. While common garden
experiments do allow researchers to isolate genetic dif-
ferences among groups of plants, they can be differen-
tially benign to plants of different origins, affecting
phenotypes, including seed production or gene expres-
sion. Only reciprocal transplant experiments, which
were outside the scope of this study, can remedy that by
discerning genetic variation at local and non-local sites
for each type and any genotype by environment interac-
tions influencing the phenotype of interest.

All 15 maize landraces were sown in a modified split-
plot design at the midland garden. Randomized main
plots were assigned a given elevation of origin for land-
races, and individual landraces were randomly assigned
to subplots within the appropriate main plot. This modi-
fication was necessary due to the difference in growth
and phenology of landraces from the different elevations.
Each landrace was sown in a row made up of 10 matas
(planting locations) containing three seeds, totaling 30
seeds planted per landrace per block. Each main plot
was surrounded by an edge row of landrace seeds from
that main plot’s elevation to reduce edge effects. There
were three blocks.

We collected the most newly emerged leaf possessing
a leaf collar early in the growing season (24 June 2011, ~
3rd leaf stage) on three randomly selected plants per
landrace per block for a total of nine individuals sampled
per landrace and 135 plants overall. We immediately
froze tissue in liquid nitrogen to conserve ribonucleic
acid (RNA) integrity and stored the samples at — 80 °C
until we performed RNA extractions. Leaf tissue was
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chosen since responses to temperature, precipitation,
and evaporation (as well as ultraviolet B (UVB), analyzed
elsewhere) are often mediated through the leaf.

RNA extraction, library preparation and sequencing

RNA extractions and RNA-seq library construction were
performed on all collected leaf tissue. To gain a represen-
tative landrace-level RNA expression profile, we pooled
RNA from the three individuals collected per landrace per
block before library preparation. The 45 RNA-seq libraries
maintained the field replication structure. RNA-seq librar-
ies were constructed as in Zhong et al. [36]. The 45 RNA-
seq libraries were sequenced in four flow cell lanes of the
[lumina HiSeq2500 (12 libraries per lane with paired end
sequencing at 50 base pairs (bp)).

Library quality, read trimming, and mapping

A version of Galaxy [37] maintained by the Molecular
and Cellular Imaging Center Computation Biology La-
boratory (MCBL) at the Ohio Agricultural Research and
Development Center (OARDC) facilitated the imple-
mentation of software to determine library quality and
to perform read trimming. All settings were maintained
as default with exceptions noted. FastQC version 0.10.1
[38] was used for general statistics and for read quality
and quantity determination before and after cleaning of
RNA-seq reads. Cutadapt version 0.9.5.a [39] was used
to remove polyA/polyT tails and adapter sequences.
Quality trimming was executed in Galaxy [40] with the
Trim the reads by quality (version 1.2.2). The minimum
length threshold was set to 25 because of our short,
50 bp read size.

Preprocessed libraries were mapped to the maize
B73 v2 5b.60 genome, which was downloaded from
Phytozome (www.phytozome.net) [41], with the splice
junction mapper Tophat2 version 2.0.10 [42]. Tophat2
settings were kept at default with the following excep-
tions: (i) mean inner distance between mate pairs and
standard deviation (s.d.) for distance between mate
pairs set to 150 bp; (ii) maximum and minimum in-
tron length set to 20,000 bp and 70 bp, respectively;
and (iii) maximum and minimum intron length that
may be found during split-segment search set to
20,000 bp and 50 bp, respectively. The final setting
for read mismatches was maintained at two per read.
Since differential mapping may occur among RNA-
seq libraries due to genetic differentiation among the
populations used to create them when mapping to
the same reference genome, we tested for this by per-
forming a second mapping run with read mismatches
set to zero. We then used the Zmays 191 gene.gff3
(www.Phytozome.net) annotation file and htseq-count
version 0.6.1 [43] to determine the number of reads
mapping to each gene. Raw read counts from each of
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the 45 RNA-seq libraries were then compiled into a
counts matrix for subsequent analysis.

Differential expression and VST counts

DESeq? version 2.13 [44] was used for both differential ex-
pression analysis between highland and lowland maize
landraces and for generation of variance stabilized trans-
formed (VST) counts for downstream analysis. We
imported raw read counts for all 45 libraries into DESeq?2.
Our differential expression analysis model was con-
structed with both elevation of landrace origin and block
(Design = ~Block + Landrace origin) so that variance due
to block could be accounted for as we focused on differen-
tial expression due to elevation of landrace origin. Genes
exhibiting an adjusted false discovery rate (FDR) of 0.05 or
less were considered DE. We also used DESeq2 to gener-
ate homoscedastic VST counts for all libraries, which were
subsequently used for both PCA and downstream
WGCNA. We then used DESeq?2 to generate a PCA plot
of all our libraries. VST counts for each landrace were
averaged across block in preparation for WGCNA.

Weighted correlation network analysis (WGCNA)

We used the weighted correlation network analysis
(WGCNA) R package [45], to identify: (i) gene co-
expression modules across our 15 maize landraces;
and (ii) module eigengene value — environmental as-
sociations. VST data for all annotated genes in our 15
libraries were loaded into WGCNA. The similarity
matrix was raised to the power of seven to identify
co-expression modules. Once modules were formed,
we sought to identify those having strong correlations
with environmental parameters of landrace origin; these
environmental parameters were inputted into our
WGCNA data frame as landrace “traits”. For each of the
44 identified co-expression modules (Additional file 3),
eigengene values were generated for each of the 15 land-
races. Pearson correlations and their associated p-values
were then generated for all pairwise comparisons of the
44 module eigengene expression values across the 15
landraces and the 11 environmental parameter values of
landrace origin. Bonferroni adjustments corrected for
multiple comparisons (n = 484). We were unable to ac-
count for genetic structure in our analysis using RNA-seq
data due to the pooling of our samples and our small sam-
ple size (i.e., for each landrace we sequenced three pooled
samples where RNA from three individual plants was
bulked = 9 samples). Several modules exhibiting high cor-
relations with temperature parameters were further stud-
ied to identify: (i) module expression patterns across the
elevations where landraces originated; (ii) overrepresented
GO categories; and (iii) highly connected module ‘hub’
genes related to temperature parameters of landrace ori-
gin. Thus, we focus here on two co-expression modules
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highly correlated with temperature related variables
(turquoise & yellow).

The correlations between the turquoise module and
maximum normal mean temperature and the yellow
module and minimum daily mean temperature were the
greatest and most significant correlations between mod-
ules and temperature related environmental variables
(see results below). In order to determine the biological
functions of these environmentally relevant modules, we
extracted turquoise module genes along with their mod-
ule membership (MM) and gene significance (GS) values
for maximum normal mean temperature; we also ex-
tracted yellow module genes, MM values, and GS values
for minimum daily mean temperature. GS values are the
correlations between the expression value of single genes
and environmental trait values across samples. By con-
trast, MM values are the correlations between single
gene expression values and module eigengene values
across samples. Genes from each module were screened
for enriched GO categories using AGRIGO and were
also used for ‘hub’ gene analyses (see below).

Genes belonging to the >85th percentile for both
MM and GS for both module — temperature parameter
correlations were retained for subsequent inquiry as
these genes are likely ‘key drivers’ (i.e. ‘hub’ genes)
within the pathways making up co-expression modules
[46]. 85% has been used in WGCNA analyses e.g., [46]
as a useful cut-off for focusing on the most highly
connected genes. 85th percentile genes from both mod-
ules were functionally annotated using Phytozome [41]
and MaizeGDB [47]. We obtained gene name informa-
tion from The Arabidopsis Information Resource
(TAIR) [48]. TAIR descriptions were used to assign
‘hub’ genes to ‘Functional Category’ (see Table 2 &
Additional file 4). For ‘hub’ genes lacking descriptions
we searched the literature for their putative functions.
Finally, maize transcription factor information was
collected from GrassTFDB on the Grass Regulatory
Information Server GRASSIUS [49, 50].

Results
Read counts and mapped reads
We assessed read quality and quantity for each of the 45
RNA-seq libraries in preparation for mapping to the
maize reference genome. Using FastQC, we confirmed
libraries were of high quality both before and after reads
were preprocessed. Raw read counts ranged from ap-
proximately five to 21 million per library (majority nine
to 14 million; Additional file 4). After trimming, paired-
end reads ranged from five to 20 million, showing that a
majority of reads were still paired.

By independently mapping the preprocessed reads
from each library to the maize reference genome, we
found that between 70 and 80% of the initial raw reads
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from each library uniquely mapped to the maize genome
when allowing a two base pair mismatch (except for low-
land landrace 6 (block 2) with 66%; calculated from Add-
itional file 5; uniquely mapped reads/raw reads). When
allowing zero mismatches, the mapping percentages de-
clined to between 61 to 72% and were not significantly dif-
ferent (@ = 0.05; data not shown), suggesting that
elevation of origin did not influence mapping percentages.
During the remainder of our analyses we used results
from the two base pair mismatch mapping run—the de-
fault parameter value in TopHat2.

Elevation has shaped the maize landrace transcriptomes
To test whether elevation of landrace origin was associ-
ated with differences in transcript profiles we carried out
PCA. The first principal component (PC1) identified in
our PCA grouped the 45 RNA-seq libraries by replica-
tion (i.e., spatial block) while the second (PC2) grouped
them by elevation of landrace origin (Fig. 1). While all
elevations of landrace origin were clearly distinguished,
highland and midland maize landraces grouped with
each other to a greater extent than either did with the
lowland landraces. Highland landrace 20, the only
Olotillo (Table 1), was more similar in its expression
profile to the midland landraces than were the
remaining four highland landraces. These findings sug-
gest that elevation of landrace origin has influenced the
transcriptome profiles of the maize landraces.

Environmental variation

To determine whether environmental factors of landrace
origin other than elevation varied along our study gradi-
ent we queried 11 climatic parameters in the region
(Additional file 2). We observed a salient pattern of a
decrease in temperature, precipitation, and evaporation
with an increase in elevation of landrace origin (Fig. 2 &
Additional file 6). Despite this broad pattern, other
forms of environmental variation can be seen across the
study area likely due to particular landscape features
(Additional file 7).

44 co-expression modules identified

Co-expression modules are groups of highly intercon-
nected nodes (ie., genes) exhibiting similar gene
expression patterns [51]. Using WGCNA, we found 44
co-expression modules among the 15 maize landraces
collected from the three elevational zones in Chiapas,
Mexico (Additional file 3). The co-expression modules
contained between 44 and 4794 genes and satisfied
approximate scale-free topology (Additional file 8).
Importantly, co-expression modules may be expressed
at different intensities across samples. Thus, the mod-
ules that we identified were co-expressed in all 15
maize landraces, albeit, as discussed below, at different
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Table 2 ‘Hub' genes of interest. Turquoise module ‘hub’ genes upregulated in the highland (A) and lowland (B) landraces; yellow
module ‘hub’ genes upregulated in the highland (C) and lowland (D) landraces organized by functional categories

Functional category Maize gene ID MaizeTF TAIR symbol Arabidopsis TAIR10 definition
A. Turquoise module — Highland landraces
Transcription GRMZM2G010920 ZmGLK18 - myb-like HTH transcr. Regulator family
GRMZM2G097275 ZmSBP27 SPL2 squamosa promoter binding protein-like 2
GRMZM2G154169 - GIF3 GRF1-interacting factor 3
GRMZM2G398124 - TAF9 TATA binding protein associated factor 21 kDa subunit
GRMZM2G414141 - - transcription coactivators
GRMZM5G828396 ZmbHLH81 ClB2 basic helix-loop-helix (bHLH) DNA-binding superfamily protein
Kinases GRMZM2G053117 - MPK20 MAP kinase 20
GRMZM2G079303 - RLP48 receptor like protein 48
GRMZM2G144028 - LRK10L1.2 Protein kinase superfamily protein
GRMZM2G144245 - NARA5 pfkB-like carbohydrate kinase family protein
GRMZM2G160853 - - S-locus lectin protein kinase family protein
GRMZM2G473104 - NARAS pfkB-like carbohydrate kinase family protein
GRMZM2G049510 - KIP1 Kinase interacting (KIP1-like) family protein
B. Turquoise module — Lowland landraces
Transcription GRMZM2G033413 ZmbZIP100 ABF4 ABRE binding factor 4
GRMZM2G035103 - ZAT10 salt tolerance zinc finger
GRMZM2G067624 ZmSBP29 SPL4 squamosa promoter binding protein-like 4
GRMZM2G079727 ZmMADS36 FUL AGAMOUS-like 8
GRMZM2G113078 ZmEREB117 WRI Integrase-type DNA-binding superfamily protein
GRMZM2G138976 ZmARID4 - ARID/BRIGHT DNA-binding domain
GRMZM5G842484 ZmHMG12 SSRP1 high mobility group
GRMZM5G873335 - - ARID/BRIGHT DNA-binding domain
Kinases GRMZM2G159678 - - Domain of unknown function (DUF303)
GRMZM2G172900 - NEKS NIMA-related kinase 5
GRMZM2G474546 - - Protein kinase superfamily protein
C. Yellow module — Highland landraces
Transcription AC186524.3_FG005 - HMGB4 high mobility group B4
GRMZM2G052667 ZmEREB102 HRE1 Integrase-type DNA-binding superfamily
GRMZM2G098227 - ARIA ARM repeat protein interacting with ABF2
GRMZM2G308034 ZmMYB46 MYB103 myb domain protein 103
Kinases GRMZM2G126858 - - Leucine-rich repeat transmembrane protein kinase
GRMZM2G139157 - - protein kinase superfamily protein
GRMZM2G316907 - - Leucine-rich repeat protein kinase family
GRMZM2G403719 - CRK23 cysteine-rich RLK (RECEPTOR-like protein kinase) 23
D. Yellow module - Lowland landraces
Transcription GRMZM2G077197 - NPR1 regulatory protein (NPR1)
GRMZM2G327349 ZmWRKY99 WRKY42 WRKY family transcription factor
Kinases GRMZM2G002542 - - kinase family protein w/leucine-rich repeat
GRMZM2G119714 - - protein kinase superfamily protein
GRMZM2G316474 - - Leucine-rich repeat protein kinase family

Functional category, broad categories defining function; Maize gene IDs, gene IDs from MaizeGDB; Maize TF; TF IDs from the Grassius GrassTFDB; TAIR symbol,
gene symbol from The Arabidopsis Information Resource (TAIR); Arabidopsis TAIR10 definition, functional annotation from Phytozome; Hyphens, nonexistent data
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landraces outlined in black are replicates from highland landrace 20 (Olotillo)
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levels in different landraces. The genes within a given
module were assigned a common ‘module color’
(Additional file 3).

Environmental parameter - Module correlations

To identify co-expression modules exhibiting strong
correlations with environmental parameters of landrace
origin, we searched for significant correlations among

these parameters and module eigengene expression
values. We observed many strong correlations; 16 of the
44 modules correlated with at least one environmental
parameter at a raw p < 0.05 significance level, three had
parameters with correlations significant at a raw
p < 0.001 level (Fig. 3). The turquoise and yellow co-
expression modules had the greatest number and
strength of correlations to environmental traits. In fact,
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they were the only two modules retaining significant
correlations with any of the environmental parameters
after Bonferroni adjustment for multiple comparisons
(p < 1.03e-4 in Fig. 3 are considered significant at <0.05
after Bonferroni adjustment). For the yellow module,
only correlations with the three minimum temperature
parameters (for all three, r > 0.87) remained significant
after adjusting the p-value cut-off (Fig. 3). The most
significant correlation for the yellow module was with
minimum daily mean temperature (Fig. 3; r = 0.93,
p = 8e-07, Bonferroni corrected p-value = 0.00039). For
the turquoise module, three of the four environmental
parameters most negatively correlated (r < —0.89) were
temperature  related (maximum normal mean
temperature, normal mean temperature and minimum
normal mean temperature), and the fourth was max-
imum daily mean precipitation. The greatest and most
significant correlations in the turquoise module were
with maximum normal mean temperature and max-
imum daily mean precipitation (Fig. 3; both r = -0.93,
p = 7e-07, Bonferroni corrected p-value = 0.00034). Due
to the strength of the correlations between these envir-
onmental parameters and the turquoise and yellow mod-
ules, we focus our attention here. Since each of these
modules had some of their strongest correlations with
temperature related parameters, and the fact that we
were more confident with the temperature related
variables, we limit our subsequent analyses to investigat-
ing their correlations with maximum normal mean
temperature (turquoise) and minimum daily mean
temperature (yellow). However, it is important to note
that for the turquoise module, maximum daily mean
precipitation, an indicator of extreme precipitation

events, may also be worthy of study due to its high cor-
relation with the module.

Turquoise/yellow module expression among landraces
and GO enrichment

Next, we sought to clarify the extent that elevation of
landrace origin influenced module expression values of
the environmentally relevant turquoise and yellow mod-
ules. Since module eigengene expression values are the
first principal components of modules [45], they provide
insight into the behavior of a given module across a set
of biological samples. If a majority of the module genes
of a given sample (i.e., here, a given maize landrace) are
under-expressed, then the eigengene value will be nega-
tive (i.e., down-regulated). Alternatively, if they are over-
expressed, then it will be positive (i.e., up-regulated). All
five lowland maize landraces exhibited negative eigen-
gene values for the turquoise module, while the midland
and highland landraces had positive eigengene values
(Fig. 4a). The yellow module eigengene values for the
lowland and midland landraces were all positive with
lowlands generally having higher values than midland
landraces. The highland landraces on the other hand all
exhibited negative eigengene values for the yellow
module (Fig. 4b). These results are consistent with the
finding of the turquoise and yellow modules being corre-
lated with clinal environmental variation (e.g., as found
with temperature).

We performed GO enrichment analysis on genes mak-
ing up the turquoise and yellow modules to elucidate
general biological processes in which these modules
were involved. Both the turquoise and yellow modules
were enriched for GO terms. The 4470 genes within the
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turquoise module were enriched for four GO terms:
cellular nitrogen compound metabolic process, cata-
Iytic activity, coated membrane and membrane coat
(Additional file 9). The 1862 genes present in the yel-
low module were enriched for 15 GO terms, five of
which were descendent (i.e. detailed) GO terms. The
descendent GO terms included adenosine triphos-
phate (ATP) binding, protein tyrosine kinase activity,
calcium ion binding, protein serine/threonine kinase
activity and oxidoreductase activity (Additional file 9).

Identification and functional annotation of ‘hub’ genes

Since ‘hub’ genes are centrally located within coexpres-
sion modules (i.e., highly connected) that often represent
biological pathways and/or networks [45], they can
provide insight into the biological function(s) of modules
and can lead to the identification of transcription factors
involved in the regulation of these functions [34]. As the
turquoise and yellow modules were the most relevant to
temperature (Fig. 3), we queried these modules for ‘hub’
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genes relevant to maximum normal mean temperature
and minimum daily mean temperature of landrace
origin, respectively.

Turquoise module ‘hub’ genes related to maximum normal
mean temperature

We identified 155 ‘hub’ genes upon further investigation
of the correlation between the turquoise module and
maximum normal mean temperature (Additional file 10).
Of these ‘hub’ genes, 133 (86%) were DE (FDR < 0.05)
between highland and lowland maize landraces—59 were
up-regulated in the highland landraces while 74 were up-
regulated in lowland landraces (Additional file 10).

Six of the 59 ‘hub’ genes up-regulated in the highland
landraces were functionally annotated as being transcrip-
tion factors (TFs) or involved in transcriptional regula-
tion (Table 2A). Nineteen of the remaining 53 ‘hub’
genes up-regulated in the highland landraces were func-
tionally annotated as being involved in general and abi-
otic stress responses, mRNA stability, DNA repair,
flowering time, carbon capture, the citric acid cycle, and
kinase activity (Additional file 4).

Of the 74 ‘hub’ genes up-regulated in the lowland
landraces, eight were functionally annotated as being
TFs or influencing transcription (Table 2B). Twenty-
seven of the remaining 66 ‘hub’ genes were functionally
annotated as playing a role in hormone signaling, photo-
synthesis/respiration, abiotic stress, leaf shape/develop-
ment, and kinase activity (Additional file 4).

Yellow module ‘hub’ genes related to minimum daily mean
temperature

We identified 88 ‘hub’ genes upon inquiry into the
yellow module — minimum daily mean temperature cor-
relation (Additional file 10). Seventy-four of these 88
genes (84%) were DE (FDR < 0.05) between highland
and lowland maize landraces along our study gradient.
Of these 74 DE genes, 42 were up-regulated in the low-
land landraces while 32 were up-regulated in those from
the highlands.

Four of the 32 genes up-regulated in the highland
landraces were TFs or interact with transcription factors
(Table 2C). Eighteen of the remaining 28 ‘hub’ genes up-
regulated in the highland landraces were functionally an-
notated as being involved in hormone signaling, RNA
processing, abiotic/biotic stress, and kinase activity
(Additional file 4).

Of the 42 ‘hub’ genes up-regulated in the lowland
landraces, two were TFs (Table 2D). Twenty of the
remaining 40 ‘hub’ genes up-regulated in the landraces
from the lowlands were annotated as being involved in
hormonal signaling, general and biotic stress, RNA edit-
ing, the citric acid cycle/electron transport chain, and
kinase activity (Additional file 4).
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Discussion

Novel RNA-seq based WGCNA approach at the landscape

level

It is an essential evolutionary question to determine how
genetic variation changes across diverse landscapes,
thereby illuminating potential patterns of adaptation and
the biological processes that underlie adaptation in plant
populations. We sought to identify putative selective
pressures along our study’s elevational and environmen-
tal gradient, while simultaneously determining the ways
these pressures may have led to genetic differentiation
along that gradient. To meet these objectives we
combined a novel, common garden, transcriptomics
approach with environmental parameter — module
eigengene correlation analysis (WGCNA) at the land-
scape level. Elucidating strong environmental parameter
— module correlations among populations can illuminate
putative selective pressures potentially governing genetic
differentiation across the landscape. Understanding of
the potential biological functions of environmentally im-
portant modules can be gained through analysis of GO
categories and ‘hub’ genes.

Here we report on genetic differentiation in maize
landraces cultivated along an elevational gradient in
Chiapas, Mexico. In particular, we demonstrated that the
transcriptomes of the maize landraces from distinct ele-
vations are differentiated (Figs. 1 and 4). The turquoise
and yellow module expression values were highly corre-
lated with maximum normal mean temperature and
minimum daily mean temperature of landrace origin
(Fig. 3), respectively, suggesting these environmental var-
iables may have acted as selective pressures that shaped
the transcriptomes. Overrepresented GO categories for
these modules further suggest that environmental pres-
sures, such as temperature, may indeed be responsible.
Upon inquiring into the function of the maximum
temperature-relevant turquoise module ‘hub’ genes and
the minimum temperature-relevant yellow module ‘hub’
genes that were DE between highland and lowland land-
races, we revealed that temperature may have selected
for distinct, abiotic and biotic (respectively) stress coping
mechanisms at different elevations (Additional file 4). In
both modules, a number of transcription factors and ki-
nases were identified as being ‘hub’ genes and deserve
further attention as they may be key factors in the ob-
served patterns of transcriptome differentiation (Table 2).

Yet signals of differential adaptation can be influenced
by neutral processes [52], such as drift or isolation by
distance. In maize, isolation by distance can be identified
at around 50 km [5] or at shorter distances when gene
flow is reduced by ethnolinguistic barriers to seed ex-
change [53] or other factors (e.g., flowering time differ-
ences) [17]. Thus, given the proximity of our elevations
of origin and the ethnolinguistic diversity in the area, it
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is likely that some of the differentiation we have identi-
fied may have been influenced by neutral processes [52].
Nevertheless, our findings provide essential preliminary
data on which to build further validation of putative
adaptive genes.

Differential adaptation of maize races

Elevation has shaped the transcriptomes of maize in
Chiapas. In our study, landraces grouped by elevation of
origin (Fig. 1), which was confounded with race with the
exception of the Olotillo samples (landrace 20; Table 1).
Olotillo is rarely cultivated in the highlands of Chiapas,
which is reflected by the Olotillo transcriptome profiles
being more similar to midland (Comiteco) landraces than
were the rest of the highland landraces (Fig. 1). Interest-
ingly, only portions of the Olotillo transcriptome
followed this trend. Yellow module eigengene expression
levels of the Olotillo landraces were more similar to
those of the midland landraces, while Olotillo expression
levels of the turquoise module were more similar to
landraces from the highlands (Fig. 4). This suggests that
a portion of the Olotillo genome may not be adapted to
the highland environment and that there may be con-
straints on its evolution.

GO categories of environmentally relevant modules
indicative of stress responses

High temperature (or a factor highly correlated with it)
may have selected for differentiation in plasma mem-
brane repair mechanisms or environmental signaling in
the maize landraces along our study gradient. Strong
correlation between the turquoise module expression
and maximum normal mean temperature of landrace
origin (Fig. 3) pointed to enrichment of two GO categor-
ies involved in membrane vesicle trafficking (i.e., coated
membrane/membrane coat; Additional file 9). The mod-
ule itself and over 90% of the genes making up these GO
categories, some of them clathrin-related, were up-
regulated in the highland and midland landraces when
compared to those from the lowlands (Fig. 4a,
Additional file 11). Plasma membranes are essential to
environmental signaling, as well as targets of injury dur-
ing abiotic stress, since they directly interface with the
outside environment [54].

Minimum temperature along our study gradient may
have differentiated maize for environmentally relevant
signaling cascades. Strong correlations between the
yellow module expression and minimum temperature
(Fig. 3) pointed to enrichment of several GO categories
related to signal transduction, including calcium ion
binding, protein tyrosine kinase activity, and protein
serine/threonine kinase activity (Additional file 9). All of
these can play a role in stress responses [55, 56].
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Temperature differentiates expression of genes related to
hormones, abiotic stress response, and development

A number of DE ‘hub’ genes in the maximum
temperature related turquoise module suggest that tran-
scriptional differentiation has occurred in the maize
landraces for genes associated with hormonal regulation,
abiotic stress responses, and development. Highland and
lowland maize landraces were differentiated for expres-
sion of genes related to hormone biosynthesis and sig-
naling, which may represent distinct adaptations to
maximum temperatures of landrace origin. The tur-
quoise module (Fig. 3), contained a number of auxin-,
abscisic acid- (ABA), and gibberellic acid- (GA)related
genes. These hormone-related genes, such as YUC2,
AAQO3, HOS3, ABF4, GA1, GA20X8, were up-regulated
in the lowland landraces when compared to the highland
landraces (Table 2B & Additional file 4). Thus, max-
imum temperature differences along our study gradient
may have led to the genetic differentiation of hormone
biosynthesis and signaling in the maize landraces.

Since genes making up co-expressed modules are as-
sumed to be involved in the same biological function [30],
other DE ‘hub’ genes in the turquoise module may provide
information on how differential control of hormone bio-
synthesis and signaling in the maize landraces influenced
physiological responses. For instance, the up-regulation of
‘hub’ genes known to affect leaf architecture (PLL4, PIP2,
SPK1, ALE2) and contribute to abiotic stress responses
(VTE1, GST30, SEP1, OSA1, and CBL10) in the lowland
landraces (Additional file 4) may have been induced by in-
creased levels of auxin, ABA, and/or alterations in GA
levels in these landraces. In fact, leaf architecture ‘hub’
genes identified here have been reported as being respon-
sive to auxin signals [57, 58] and plant hormones in gen-
eral have been reported to partake in a number of abiotic
stress responses [59-61].

Several ‘hub’ genes involved in responses to abiotic condi-
tions and abiotic stress responses were identified in the tur-
quoise module as highly correlated with maximum
temperature and DE among elevations of landrace origin.
The highland landraces exhibited up-regulation of a num-
ber of turquoise ‘hub’ genes indicative of responses to abi-
otic conditions (Additional file 4), including genes involved
in photosynthesis (PPC3, c-NAD-MDH?2) and several gen-
eral stress related genes (FSD3-like, GRMZM2G005526;
FSD3-like, GRMZM2G081585; SHM1; OTS1), which may
indicate diverse stress responses. We also found up-
regulation in the lowland landraces of multiple ‘hub’ genes
involved in cellular respiration (GAMMA CA1l, ETFAL-
PHA, UCP1, and COX2) (Additional file 4).

Maximum temperature where maize landraces origi-
nated may have also differentiated development, such as
flowering time. We found TFs and genes related to the
regulation of developmental transitions that were ‘hub’
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genes in the turquoise module and were DE between
highland and lowland landraces. The lowland landraces
were up-regulated for ZmSBP29, FUL, and a SSRP1-like
gene, while the highlands were up-regulated for ZmSBP27
and a VRN5/VIL1-like gene (Tables 2 & Additional file 4:
Table S4), all of which are relevant to developmental
phase changes and flowering. In sum, conditions in the
lowlands and highlands may have differentially selected
upon gene expression controlling a range of traits, from
hormonal signaling to flowering time, that can affect inter-
actions with abiotic factors.

Temperature induced differences in genes related to
hormone signaling in biotic stress responses

The nature of many of the ‘hub’ genes in the minimum
temperature related yellow module (Fig. 3) suggest that
hormone signaling related to biotic stress responses was
differentiated among landraces of maize from high and
low elevations. Hormones play an important role in
biotic stress responses [62—64]. Expression of genes
related to hormones involved in biotic responses were
differentiated between highland and lowland landraces.
For instance, highland landraces were up-regulated for
the jasmonic acid-related ‘hub’ gene, OPR1, and two
ABA-related genes (CPK32, ARIA), as well as five genes
related to the hormonal regulation of pathogen response
(LAP2, LAZ1, VAD1, MOS1, and CNGC2) (Table 2 &
Additional file 4). Similarly, we found at least four other
‘hub’ genes, up-regulated in the lowland landrace, that
indicated differentiation in hormone-induced responses
to pathogens (RPS2, RPS3, WAK3, WAKS5, and ACD11)
(Additional file 4). Additionally, the lowland landraces
showed up-regulation of ‘hub’ genes involved in the
biosynthesis and signaling of phytosterols and sali-
cylic acid, including CAS1, NPR1, and RLK (Table 2
& Additional file 4). Thus, different environmental
conditions in the lowlands and highlands may have
led to differential selection by pathogens and, there-
fore, expression of genes involved in biotic stress
responses.

Transcription factors and kinases—Targets for further study
A range of DE TFs and kinase ‘hub’ genes were found
in the turquoise and yellow modules (Table 2). These
genes may play central roles in the apparent
temperature induced differentiation of biotic and abi-
otic stress responses in the maize landraces of
Chiapas. Since genes making up co-expressed mod-
ules are assumed to be co-regulated and involved in
the same biological function [65], transcription factors
and kinases within modules can play important roles in
regulating those functions and signaling cascades. The
eight unannotated turquoise module TF ‘hub’ genes — four
up-regulated in the highland landraces (ZmGLK18,
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GRMZM2G154169, GRMZM2G414141, ZmbHLHS81)
and four in the lowland landraces (ZAT10, ZmEREB117,
ZmARID4, GRMZM5G873335) (Table 2) — may regulate
key aspects of the abiotic stress response differences ob-
served between the highland and lowland landraces. Like-
wise, three unannotated yellow module transcription
factor ‘hub’ genes up-regulated in the highland landraces
(HMGB4, ZmEREB102, and ZmMYB46), along with the
one up-regulated in the lowland landraces (ZmWRKY99),
may play regulatory roles in the apparently different biotic
stress responses. Similarly, the additional turquoise and
yellow module kinases (Table 2) may have been involved
in the differential abiotic and biotic stress response. Given
the apparent ‘cross-talk’ between abiotic and biotic stress
responses [66], there may also be interesting relationships
between these regulator genes.

Conclusions

Here, we have presented a novel approach of using RNA-
seq in combination with WCGNA that can be employed
to understand how genetic diversity shaped by natural se-
lection is distributed across the landscape. We have shown
that the transcriptomes of maize landraces spanning an
elevational gradient in Chiapas, Mexico are differentiated
according to elevation of landrace origin. Upon further
inquiry, we identified two co-expression modules that
were associated with temperature related parameters of
landrace origin. As we might expect, temperature appears
to be an important selective pressure in Chiapas that likely
led to the differentiation in hormone biosynthesis/signal-
ing and subsequent abiotic and biotic stress responses in
the maize landraces. Among the ‘hub’ genes identified in
each module were a number of transcription factors and
kinases, some as yet unannotated, that may be involved in
regulating and signaling the apparent abiotic and biotic
stress responses, respectively. Hypothesis-driven studies
looking at the role of these transcription factors along
with physiological studies aimed at better understanding
the precise mechanisms and selective pressures respon-
sible for the apparent genetic differentiation would en-
hance our understanding of local adaptation in the maize
landraces of Chiapas.
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