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Abstract

Background: A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise
results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way
to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes.
However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we
performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred
horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training.
We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of
high-intensity exercise.

Results: An extensive set of genes was observed to be significantly differentially regulated in response to a single
bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity
exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several
biological processes related to energy metabolism were common to both the exercise and training responses.
We then developed a novel network-based computational analysis pipeline to test the hypothesis that these
transcriptional changes also influence the contextual molecular interactome and its dynamics in response to
exercise and training. The contextual network analysis identified several important hub genes, including the
autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for
mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative
interactions ‘re-wired’ in the exercise and/or training responses.

Conclusion: Here we have generated for the first time, a comprehensive set of genes that are differentially
expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that
consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the
demands of the next exercise bout. Furthermore, this may also lead to an extensive ‘re-wiring’ of the molecular
interactome in both exercise and training and include key genes and functional modules related to autophagy and
the mitochondrion.
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Background
Equine athletes have a genetic heritage that has been influ-
enced by millions of years of evolution as grazing animals
on prairie and steppe. More recently, centuries of intense
selective breeding in the Thoroughbred horse has led to the
refinement of multiple physiological adaptations for athletic
performance, resulting in an ideal model of a natural athlete
for the investigation of exercise and adaptive training
responses. Equine skeletal muscle shows a remarkable abil-
ity to adapt to physical exercise and long-term training;
however, the genetic, epigenetic and molecular changes
underlying these adaptive responses have yet to be fully
elucidated [1–3]. Cyclic muscle contraction during repeated
bouts of exercise over time (training or conditioning) is
known to induce physiological adaptation in skeletal
muscle, which exhibits remarkable plasticity in structure
and function [4]. In equine athletes, training generally leads
to an increase in muscle mass and aerobic capacity but the
specific response, in terms of muscle fibre type and meta-
bolic adaptation, depends mainly on the type of training
regime (e.g. endurance or sprint type exercise) [5–7], nutri-
tion [8–10] and an individual’s specific genetic potential
[11–13]. Principal genetic determinants of muscle fibre type
include the myostatin gene (MSTN), which encodes a lig-
and of the TGF-beta receptor family that negatively regu-
lates muscle growth, and that has been associated with
strength and performance in both human [14] and equine
athletes [15]. Sequence polymorphisms in the equine
MSTN gene are highly predictive of optimal race distance
in Thoroughbred horses [13, 15–19]. Horses homozygous
for the ‘sprint’ variant (C-allele or SINE insertion) have
12.5% more type 2X myofibers than horses with the alter-
nate allele [20]. Following a period of training in Thorough-
bred horses an increase in type 2A and a concurrent
decrease in type 2X fibres along with an overall increase in
muscle mass is typically observed [6]. As type 2A fibres can
sustain high power outputs for longer than 2X the
functional implication of this is increased endurance.
Concurrent with changes in muscle mass and fibre type,
exercise training elicits metabolic adaptations. This primar-
ily involves an increased capacity for oxidative phosphoryl-
ation [5], increased mitochondrial density [21] and a shift
toward oxidizing proportionately more fats and less glucose
during exercise [22].
It has been hypothesized that the adaptive response to

training is caused by incremental changes in gene ex-
pression following a single bout of exercise, which will
“accumulate” during the traing period leading to new
baseline levels of gene expression. This would result in a
significant overlap in the exercise and training response
genes [23–25]. The alternate hypothesis is that transient
differential expression of genes in response to exercise
precedes adaptive changes through secondary mecha-
nisms. In this case little overlap would be seen between

the exercise and training response genes [26]. While
there is an assumption that “accumulative” changes play
a major role in the adaptive response no study has
clearly demonstrated this. In human skeletal muscle the
mRNA expression of key transcription factors is transi-
ently induced by exercise training leading to increases in
downstream transcriptional and mitochondrial proteins
[25]. In equine athletes it has been shown that a single
bout of high-intensity exercise consisting of an incre-
mental step-test to fatigue elicits a modulation of the ex-
pression of genes involved in metabolism and muscle
hypertrophy, signatures of endurance and resistance ex-
ercise, respectively [27]. Following a period of training
the basal levels of genes related to the mitochondrion,
oxidative phosphorylation and fatty acid metabolism
have been shown to be significantly upregulated [28],
supporting the hypothesis that training may cause a
transcriptional reprogramming of the muscle.
A range of approaches has been taken to better under-

stand the molecular adaptations to exercise and training
with many factors needing to be considered for appropri-
ate experimental design [6, 22, 28–32]. Generally, the ana-
lysis of the impact of an experimental variable (e.g.
environment, treatment, mutation, disease etc.) on a cell,
tissue or organism results in a list of statistically significant
response variables, such as genes. It is common, owing to
the modular architecture of biological systems, to then
examine this list for statistical over-representation of
known functional modules (e.g. pathways or complexes)
to assist biological interpretation (often referred to path-
way enrichment analysis, or similar). Although valuable,
such analysis is confined by the limits of the current
knowledge of functional modules which tends to be biased
[33] and incomplete [34]. However, less supervised ap-
proaches that are informed more by the similarity of entity
(i.e. gene) behaviour, are more open to uncovering un-
known or context-specific gene relationships [34, 35].
The function of most genes, or gene products (pro-

teins, miRNA, lncRNAs, etc.), can only be carried out in
combination with other biomolecules as part of a
functional module [36]. Therefore, to fully elucidate the
functional relevance of a set of genes we must also
model the related set of molecular interactions and their
dynamics. There are several methods for direct detection
[37, 38] or inferral [39–41] of molecular interactions.
Once determined, the set of molecular interactions may
be modelled as a network of nodes (genes) and edges
(interactions) and interrogated with an extensive toolbox
of established network analysis methods [34, 42]. Com-
mon metrics include the centrality indices ‘degree’ and
‘betweeness’, which are used to measure the importance
of individual network nodes in terms of the local con-
nections and their network wide influence respectively.
In the context of biomolecular interaction networks,
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these ‘hub’ and ‘bottleneck’ nodes tend to be fundamen-
tally important to the behaviour of the network [43] and
indeed to the biological process, cell, tissue or organism
as a whole [44]. Other higher level node grouping or
clustering methods, such as ‘community detection’ [45,
46], allow modelling of the underlying functional mod-
ules (e.g. complex or pathway) in a particular molecular
interaction network [36, 42]. Other methods extend this
concept further to analyse multi-state, or ‘dynamic’ net-
works recorded over various time points or experimental
treatments [47].
Although hundreds of thousands of protein-protein in-

teractions (PPIs) have been recorded across many organ-
isms, cell types and experimental conditions and made
publicly available [48], proteome-scale detection of PPIs
still remains beyond the budget and expertise of most re-
searchers. Genome-wide gene expression analysis, how-
ever, is now relatively affordable and commonplace. Thus,
high-throughput gene expression data generated for an
experimental context is often integrated with the universal
set of known molecular interactions (i.e. the global inter-
actome) to infer putative contextual molecular interaction
networks. However, most implementations of this ap-
proach only attempt to predict the contextual state of the
nodes in the network (e.g. the set of genes expressed in or
associated with the condition of interest) and include all
associated PPIs as edges, regardless of the experimental
conditions or cell types in which they were detected,
which is clearly a gross over-simplification [49–51]. It has
been recognized for over a decade that genes that exhibit
highly correlated co-expression profiles, as determined by
Pearson’s correlation coefficient for example, often inter-
act within the same biological module [40, 52]. This raises
the prospect of using gene expression information to also
infer the contextual state of the edges in a molecular in-
teraction network but this in itself is hampered by ex-
ceedingly high false positive rates [41]. Here we have
developed a novel pipeline to integrate contextual infor-
mation, derived from gene expression data, with publicly
available PPI data [48] to predict both the nodes and edges
in the contextual PPI network. Ultimately, this more
refined contextual model should lead to an improved
elucidation of the interactions and functional modules
that are active in each of the experimental conditions
considered in this study.
In summary, the aim of this study was to investigate

changes in the transcriptome of the skeletal muscle of
untrained Thoroughbred horses (UR) in response to a
single bout of high-intensity sprint exercise (UE), and
following an exercise conditioning (training) regime
(TR). We hypothesised that regular bouts of high-
intensity exercise training would prime the transcrip-
tome of Thoroughbred skeletal muscle for the demands
of the next exercise bout. Furthermore, by integrating

this information on contextual transcriptional changes
with known molecular interactions, we also tested the
hypothesis that these transcriptional adaptions may lead
to a ‘re-wiring’ of the molecular interactome in response
to high-intensity exercise and training. Lastly we have
demonstrated that a refined computational network-
based approach, which considers both context-specific
nodes (genes) and edges (interactions), has the potential
to uncover novel features indicative of specific biological
processes when compared to standard supervised
approaches.

Methods
Study cohort
University College Dublin Animal Research Ethics Com-
mittee approval, a licence from the Department of
Health (B100/3525) and explicit owner/trainer informed
consent were obtained for the use of all horses and pro-
cedures in this study.
The study cohort comprised a subset of Thoroughbred

horses, trained for Flat racing at a single training estab-
lishment under the management of a single trainer. The
UR cohort comprised of yearling Thoroughbred horses
(n = 51; 23 males and 28 females; 19.5 ± 1.5 months old)
in submaximal training prior to entering sprint training.
The UE cohort consisted of the same group of horses
undertaking their first or second ‘work day’ (WD, high-
intensity sprint exercise simulating a race) on an all-
weather gallop. The TR cohort consisted of horses at the
end of the racing season following approximately six
months of sprint training. All horses in this group had
achieved “race fitness” with an average of 15.1 ± 9.1 SD
WDs (range 6–43). Table 1 summarises details of sam-
pling and physiological measurements.

Tissue sampling time-points
All resting skeletal muscle samples (see protocol below)
were collected between 7:30 am and 11:30 am. UE
samples were collected from a subset of the UR horses
(n = 46; 23 males and 23 females; 24.6 ± 2.3 months old)
approximately four hours following high-intensity exer-
cise. The study cohort comprised horses in active race
training and therefore the number of biopsies that could
be sampled was limited. A single 4 h post-exercise time-
point was selected that represented the time previously
shown to have the greatest number of differentially
expressed genes [27] and the greatest magnitude of
effect on transcripts in equine skeletal muscle post-
exercise [30]. In addition, the time point was selected to
avoid potential disruption to routine activity on the yard.
TR samples were collected at rest following a sprint

training period of approximately six months from a
subset of the UR horses (n = 22; eight males, and 14
females; 31.1 ± 1.5 months old). Only horses that were
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sampled as part of the UR cohort and had a matching
sample in the UE or the TR cohort were used in subse-
quent analysis. The final experimental cohorts contained
n = 22 (UR), n = 17 (UE) and n = 22 (TR) horses. Sum-
mary statistics are shown in Table 1.

Exercise and training protocols
Horses exercised six days per week, with gradual intro-
duction and increased frequency of WDs, following
which horses entered competitive racing. Training was
modified based on soundness, fitness and aptitude, with
all decisions made by a single trainer. Prior to exercise,
each horse was fitted with a heart rate (HR) telemetry
system (Polar Equine S810i heart rate monitor system)
and global positioning system (GPS, GPSports Systems
SPI10, Canberra, Australia) which recorded speed, HR
and exercise distance. The WD exercise protocol was as
follows: horses were warmed-up on a horse walker for
10 min (walk and trot) and then walked under saddle for
5–10 min. On the gallop, horses walked for 300 m,
trotted for 700 m, walked for approximately 100 m and
then galloped up to a maximum velocity for approxi-
mately 500-800 m (average distance of 698.8 ± 223.9 m).

Biopsy sampling and RNA sequencing protocols
Percutaneous needle muscle biopsies (approx. 300 mg)
were obtained from the ventral compartment of the
middle gluteal muscle from standing unsedated horses

using a previously described method [53] and preserved
in RNAlater (Thermo Fisher, Massachusetts, United
States). Total RNA was extracted from approximately
70 mg tissue, using a protocol combining TRIzol reagent
(Thermo Fisher, Massachusetts, United States), DNase
treatment (RNase free DNase) (Qiagen, Hilden, Germany)
and RNeasy Mini-Kit (Qiagen). RNA was quantified using
a Nano Drop ND1000 spectrophotometer V 3.5.27 and
RNA quality and purity were assessed using the 18S/28S
ratio and RNA integrity number (RIN) on an Agilent
Bioanalyser with the RNA 6000 Nano LabChip kit6
(Agilent, Cork, Ireland). The RNA isolated from UR, UE
and TR samples had an average RIN of 8.1 (7.2–9.3), 8.2
(7–9.1) and 8.1 (5.4–8.6), respectively. RNA sequencing
was performed by the Research Technology Support
Facility Michigan State University. Indexed, strand-
specific Illumina sequencing libraries were prepared using
the TruSeq Stranded mRNA Library Preparation Kit
LT (Illumina, San Diego, United States). Libraries
were pooled with ten indexed libraries per pool and
sequenced on an Illumina HiSeq 2500 using Rapid
Run flow cell and reagents (Illumina). Dual lane load-
ing was employed, meaning a single pool was loaded
across both lanes of the flow cell. Each pool was
sequenced on one flow cell (two lanes). Sequencing
was performed in a 2 × 100 bp paired end (PE100)
format. Sequence data was demultiplexed and con-
verted to FastQ format files.

Table 1 Cohort information and experimental conditions

Untrained Rest Untrained Exercise Trained Rest

(UR) (UE) (TR)

n 22 17 22

Male 8 8 8

Female 16 9 16

Mean age in days (Range) 590 (513–673) 765 (649–896) 947.6 (884–1051)

Exercise parameters (WD1):

-Mean Peak Velocity (m/s) . 16.2 (14–17.1) .

-Mean Peak Heart Rate (bpm) . 224 (212–233) .

-Mean Peak Plasma Lactate (mmol/l) . 26.7 (20.8–32.2) .

Mean sub-maximal training weeks prior to sampling (canter) 0 4.7 (1.6–13.1) 27.7 (10.1–47.0)

Mean work days prior to sampling: 0 1 15.1 (6–43)

n = 0 22

n = 1 0 17 0

n > 1 0 0 22

> 5 n ≤ 11 0 0 8

> 10 n ≤ 20 0 0 9

n > 20 0 0 5

Number of individuals (n), males and females, and mean age are given for experimental cohorts Untrained Rest (UR), Untrained Exercise (UE) and Trained Rest
(TR). Details of exercise and training regimens for each Thoroughbred cohort prior to sampling day are also shown. Sampling of the Untrained Exercise (UE)
cohort was performed ~4 h post-exercise on the first work day (WD1). Sampling of the Trained Rest (TR) cohort was performed after an average of ~15 WDs over
a six-month training period
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RNA-seq data pre-processing
FASTQC [54] was used to assess sequencing quality and
STAR [55] was used to align reads to the horse reference
genome (Ensembl release 62). SAMtools [56] was used to
convert files from Sam to sorted indexed Bam format and
featureCounts [57] was used to assign reads to exons. The
correlation between lanes (two technical replicates) for
each sample was checked to ensure a correlation of >99%
prior to merging data. Differentially expressed (DE) genes
were identified using the limma [58] R package. Count
data was scale normalised using the calcNormFactors
function from the EdgeR [59] package. The voom trans-
formation was applied to the normalised data and a linear
model was fitted to the data using the horse as a blocking
factor to take into account the pair effect. The empirical
Bayes method was used to calculate P values. Ensembl IDs
of small RNAs (BioMart biotypes: rRNA, snRNA, mis-
c_RNA, snoRNA, miRNA) were first removed from the
dataset. Differentially expressed (DE) genes were defined
as those that were significantly upregulated or downregu-
lated (Benjamini-Hochberg corrected P-value <0.05) and
that were upregulated or downregulated by at least 25%
between the two cohorts being compared (i.e. UE versus
UR, TR versus UR).

Statistical over-representation analysis
To facilitate a complete downstream analysis pipeline,
equine Ensembl IDs were first uniquely mapped (one-to-
one relationship only) to their better annotated human
orthologs, retrieved from the BioMart database [60]. All
subsequent analyses were performed with these human
orthologs and their annotations. Over-representation of
the gene ontology (GO) categories [61] and KEGG and
Reactome pathway annotations [62, 63] was performed
in an automated manner using the RDAVIDWebService
[64]. The expected or background gene list used in the
over-representation analysis included all genes that had
a one-to-one mapping with human orthologs and were
expressed in skeletal muscle during at least one time
point (n = 14,688). The statistical significance of gene
category over-representation was calculated based on
the DAVID software EASE score (P-value based on a
modified Fisher Exact t-test) [65] and corrected for
multiple testing using the Benjamini-Hochberg step-
down correction.

Construction of putative contextual molecular interaction
networks
Two dynamic gene interaction networks were constructed,
the first to model the molecular interactions before and
after exercise in untrained horses (UR vs. UE) and the sec-
ond to model the training response (UR vs. TR). In each
case the set of nodes (genes) in the dynamic network were
confined to those that had been found to be differentially

expressed in the respective response. An edge (gene inter-
action) was drawn between nodes (genes) a and b if (i)
there was any previous experimental evidence of a molecu-
lar interaction and (ii) if their expression levels were found
to be significantly correlated in the respective cohort (i.e.
UR, UE or TR). Experimentally validated protein-protein
interactions (PPIs) for human, that were annotated to the
IMEx (International Molecular Exchange consortium)
standard [66], were then obtained (12–09-2016) from the
IntAct database [48] using the PSICQUIC web-service [67]
(see Additional file 1 for the specific query used). These in-
teractions were recorded across many cell types, tissues and
experimental conditions and represent the global set of all
possible interactions in human as defined by IntAct DB.
Gene expression correlations were calculated across all
samples within the relevant cohort (i.e. UR, UE or TR)
using Spearman’s rank correlation and only positive, statis-
tically significant correlations (i.e. greater than the mini-
mum critical value given the number of samples in the
cohort) were used to generate contextual edges.

Network analysis
Network analysis and visualization was implemented in
the R statistical programming language and primarily
used tools from the igraph package [68]. The most ‘in-
fluential’ nodes (genes) in each network were deter-
mined based on both degree (edge number) and
betweeness (number of shortest paths that pass through
that node) [69]. These metrics highlight the nodes
(genes) that have the most influence on information flow
in the network at a local (i.e. hubs) and global (i.e. bot-
tlenecks) level respectively. Hubs are scored based sim-
ply on node degree (number of edges attached to a node)
and bottlenecks are scored based on the node betweeness
(number of shortest paths that pass through a node).
The modular or systems level architecture of a network
was interrogated in an unsupervised manner (i.e. based
only on network topology) by partitioning the nodes
(genes) into groups such that the edge (gene interaction)
density was higher within groups than between. This
was performed using the fastgreedy community detec-
tion method, which also utilizes edge weights (based on
expression correlation in this case) [45] and was also
implemented via igraph. In practice, we retained only
non-trivial clusters (i.e. containing two or more genes)
and validated these clusters (putative functional mod-
ules) by functional enrichment analysis based on path-
ways and GO terms (implemented as before).

Results
Identification of genes and known functional categories
associated with the exercise and training responses
We applied both a fold-change and multiple test correction
cut-off to identify differentially expressed genes in the
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exercise (UR vs. UE) and training (UR vs. TR) responses.
We identified 3241 genes that were significantly (BH-cor-
rected P-value < 0.05) differentially expressed (>1.25-fold)
and mapped uniquely to human orthologs in the exercise
response (Additional file 2: Table S1). A similar number of
genes (3405) were associated with the training response
(Additional file 2: Table S2). Approximately one third of the
exercise response genes (1025) were also associated with
the training response and 95% of genes were expressed in
the same direction (relative to UR) in both responses. There
were 2216 and 2380 genes uniquely associated with the ex-
ercise or training response respectively.
To attempt to uncover the underlying biological pro-

cesses involved in the adaptation of skeletal muscle to exer-
cise and training, the gene lists derived from differentially
expressed transcripts were assessed for statistical over-
representation of known functional modules based on five
functional annotation schemas. Two schemas related to
biological pathways (curated by KEGG [63] and Reactome
[62] databases) and three related to Cellular Component
(CC), Molecular Function (MF) and Biological Process (BP)
gene ontology (GO) sub-categories [61].
For the exercise response gene list several KEGG and

Reactome pathways were found to be significantly over-
represented and were observed to fall into one of three
general themes, namely: energy metabolism (Integration
of energy metabolism: P = 4.97 × 10−11, Diabetes path-
ways: P = 3.57 × 10−06, Oxidative phosphorylation:
P = 0.0047 and Pyruvate Metabolism and TCA Cycle:
P = 0.0204); muscle contraction (Muscle contraction:
P = 3.57 × 10−06, Cardiac muscle contraction:
P = 0.0222) and hemostasis (Hemostasis: P = 3.76 × 10
−05, Signaling by PDGF: P = 0.0167). There was also sig-
nificant enrichment for several pathways related to neuro-
degenerative diseases (Alzheimer’s Disease: P = 4.95 × 10
−06, Huntington’s Disease: 9.15 × 10−06 and Parkinson’s
Disease: 2.75 × 10−05). Statistical enrichment was also ob-
served for similar themes for the GO Biological Process
sub-category (e.g. Cellular respiration: P = 0.0004, Muscle
contraction: P = 0.0004, Vasculature development:
P = 0.0307). GO term enrichment also provided more
refined annotation relating the Cellular Component sub-
category (e.g. Mitochondrion: P = 4.14 × 10−15, Contractile
fibre: P = 6.40 × 10−11, Mitochondrial respiratory chain:
P = 7.41 × 10−05) and the Molecular Function sub-
category (e.g. Cytoskeletal protein binding: P = 1.41 × 10−06,
Actin binding: P = 0.0006).
The functional modules related to muscle contraction

were the most downregulated modules associated with the
exercise response gene list. For example, the largest over-
represented module, Contractile fibre, contained 56 genes,
which were mostly (44/56) downregulated (mean: −1.52-
fold) in exercise relative to the untrained rest cohort. These
muscle contraction related modules were also found to be

unique to the exercise response (i.e. this theme was not
found to be associated with the training response, see
below). The top twenty most significantly over-represented
functional modules in the exercise response gene list are
provided in Additional file 2: Table S3 and illustrated via
five barcharts (one per annotation schema) in Fig. 1.
This analysis was also repeated for the exercise-specific

subset of 2216 genes (i.e. exclusively associated with the ex-
ercise response relative to the training response gene list).
KEGG pathways Dilated cardiomyopathy and Hypertrophic
cardiomyopathy remained marginally statistically signifi-
cantly over-represented (P = 0.0252 and P = 0.0472 resp.).
Reactome pathways Muscle contraction (P = 1.52 × 10−05)
and Hemostasis (P = 0.0031) and Transmembrane transport
of small molecules (P = 0.0034) also remained significantly
over-represented. Significant enrichment for the Lysosome
(P = 0.0437) pathway, which was not found in the full exer-
cise response gene list, was also observed. Several gene
ontology sub-category terms also remained statistically sig-
nificant, such as Cytoskeletal binding (P = 4.32 × 10−05),
Contractile fibre (P = 1.12 × 10−06) and Membrane lipid
metabolic process (P = 0.0057). The top twenty most signifi-
cantly over-represented functional modules for this
exercise-specific gene list are given in Additional file 2:
Table S4 and illustrated in Fig. 2.
For the training response gene list (3405 genes) there

was significant enrichment for several KEGG and Reac-
tome pathways related to energy metabolism (e.g. Oxi-
dative phosphorylation: P = 3.59 × 10−08, Citrate cycle
P = 5.12 × 10−05, Integration of energy metabolism:
P = 4.66 × 10−14, Diabetes pathways: P = 3.10 × 10−08,
Pyruvate metabolism: P = 2.93 × 10−07). Additionally,
several KEGG and Reactome pathways related to signal
transduction (e.g. Signaling by GPCR: P = 8.94 × 10−14,
Olfactory transduction: P = 7.68 × 10−12, Neuroactive
ligand-receptor interaction: P = 0.0001, Calcium signal-
ing pathway: P = 0.0190, Signaling by FGFR: P = 0.0169
and Complement and coagulation cascades: P = 0.03)
were also significantly over-represented in the training
response. There was also a significant enrichment for
neurodegenerative disease associated KEGG pathways (e.g.
Alzheimer’s Disease: P = 6.57 × 10−06, Huntington’s Disease:
4.5 × 10−05 and Parkinson’s Disease: 2.56 × 10−13). Gene
ontology term analysis for the training response also re-
vealed a highly significant over-representation of
neurological processes (Neurological system process:
P = 4.85 × 10−27, Cognition: P = 1.92 × 10−22, Sensory
perception: P = 4.21 × 10−21) and the extracellular re-
gion (Extracellular region: P = 1.40 × 10−10). Mitochon-
drial related molecular functions and components
were also significantly over-represented (Mitochon-
drial respiratory chain: P = 1.45 × 10−08, Mitochon-
drial inner membrane: P = 2.53 × 10−08, NADH
dehydrogenase/ Respiratory chain complex I:
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P = 1.29 × 10−06, Mitochondrial proton-transporting
ATP synthase complex: P = 0.0007) in the training re-
sponse gene list. The top twenty most significantly
over-represented functional modules for the training

response are given in Additional file 2: Table S5 and
illustrated in Fig. 3.
This analysis was repeated for the training-specific

subset of 2380 genes that were uniquely associated with
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Gene Ontology: Cellular Component

Fig. 1 Cellular functions of the exercise response. Bar charts showing over-representation of functional categories (described by KEGG and REACTOME
pathways and Gene Ontology: Biological Process, Molecular Function and Cellular Component) for the list of genes (n = 3241) that showed statistically
significant differential expression, of at least +/− 1.25-fold, between the muscle tissue (gluteus medius) from the untrained rest (UR) and the untrained
exercise (UE) Thoroughbred cohorts. Bars represent the most significant functional modules (up to 20) for each of the five annotation schemas. Bar height
represents statistical significance (−log10 transformed Benjamini-Hochberg (B-H) Corrected P-value) of the over-representation, based on the EASE-score
(conservative Fisher Exact t-test). Bar color represents the mean differential expression (log2(UE/UR) for the genes in this module (see color key). Category
name, ID and size (number category genes in gene list/category size) are given above each bar. For example it can be seen that the fourth most significant
Gene Ontology:Biological Process is ‘Cellular respiration’ and that it is one of the most up-regulated functional categories on average (red color) and that 39
out of the 97 genes assigned to this category are differentially expressed between UE and UR cohorts. Full results are provided in Additional file 2: Table S3
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the training response (relative to the exercise response
gene list). This training-specific gene list was also
enriched for both signalling and neurological related
categories (e.g. Signalling by GPCR:P = 2.5 × 10−28,
Neurological system process: P = 2.3 × 10−46). The over-

representation of the cellular component: Extracellular
region was also highly significant (P = 1.90 × 10−16). The
top twenty most significantly over-represented func-
tional modules for this training-specific subset are given
in Additional file 2: Table S6 and illustrated in Fig. 4.
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Gene Ontology: Cellular Component

Fig. 2 Cellular functions of the exercise-specific response. Bar charts showing over-representation of functional categories (described by KEGG
and REACTOME pathways and Gene Ontology: Biological Process, Molecular Function and Cellular Component) for the list of genes (n = 2216) that
showed statistically significant differential expression, of at least +/− 1.25-fold, between the muscle tissue (gluteus medius) from the untrained rest
(UR) and the untrained exercise (UE) but not the trained rest (TR) Thoroughbred cohorts. Bars represent the most significant functional modules
(up to 20) for each of the five annotation schemas. Bar height represents statistical significance (−log10 transformed Benjamini-Hochberg (B-H)
Corrected P-value) of the over-representation, based on the EASE-score (conservative Fisher Exact t-test). Bar color represents the mean differential
expression (log2(UE/UR) for the genes in this module (see color key). Category name, ID and size (number category genes in gene list/category size)
are given above each bar. For example it can be seen that the most significant Reactome pathway is ‘Muscle contraction’ and that it is one of the most
down-regulated functional categories on average (blue color) and that 16 out of the 31 genes assigned to this category are differentially expressed
between UE and UR cohorts only (i.e. not differentially expressed between TR and UR cohorts). Full results are provided in Additional file 2: Table S4

Bryan et al. BMC Genomics  (2017) 18:595 Page 8 of 26



Prediction of molecular interaction networks and their
‘re-wiring’ in exercise and training
The functional relevance of a gene or gene list in a context
can only be fully appreciated by also examining how the

genes, or their products, interact in that context. We there-
fore attempted to reconstruct context-specific dynamic PPI
networks by integrating our exercise and training response
gene lists and per cohort co-expression correlations with
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Gene Ontology: Cellular Component

Fig. 3 Cellular functions of the training response. Bar charts showing over-representation of functional categories (described by KEGG and REAC-
TOME pathways and Gene Ontology: Biological Process, Molecular Function and Cellular Component) for the list of genes (n = 3405) that showed
statistically significant differential expression, of at least +/− 1.25-fold, between the muscle tissue (gluteus medius) from the untrained rest (UR)
and the trained rest (TR) Thoroughbred cohorts. Bars represent the most significant functional modules (up to 20) for each of the five annotation
schemas. Bar height represents statistical significance (−log10 transformed Benjamini-Hochberg (B-H) Corrected P-value) of the over-representation,
based on the EASE-score (conservative Fisher Exact t-test). Bar color represents the mean differential expression (log2(TR/UR) for the genes in this
module (see color key). Category name, ID and size (number category genes in gene list/category size) are given above each bar. For example it
can be seen that the most significant Gene Ontology:Biological Process is ‘Integration of energy metabolism’ and that this functional categories is
up-regulated on average (orange color) and that 95 out of the 219 genes assigned to this category are differentially expressed between TR and
UR cohorts. Full results are provided in Additional file 2: Table S5
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the global set of experimentally validated PPIs as described
by EBI’s IntAct Database. First, two dynamic networks were
constructed to model how the genes associated with the ex-
ercise and training responses may ‘interact’ in each of the
experimental cohorts. The set of genes (network nodes) in
each dynamic interaction network was confined to those
genes associated with that response. The putative interac-
tions (network edges) were inferred from the gene expres-
sion correlations in each experimental cohort. The edges in
each dynamic network had two states, the ground state, de-
rived from the untrained rest (UR) cohort, and the active
state, derived by either the exercise (UE) or trained (TR) co-
hort. Edges were also weighted with cohort specific correl-
ation coefficients. To better model the putative contextual
protein-protein interactions (PPIs) these correlation-based
interaction networks were then rigorously pruned to re-
move edges with no supporting experimental PPI evidence,
retrieved via EBI’s IntAct database. An overview of this
process is illustrated in Fig. 5, where output networks (i)-
(vi) reflect Figs. 6 and 7, and further details are given in
Methods. The final putative dynamic PPI network for the
exercise response contained 513 nodes (edgeless nodes
were removed) and 514 edges in the untrained rest (UR)
state, see Fig. 6(a), and 426 nodes and 390 edges in the ex-
ercise (UE) state, Fig. 6(b).
In the exercise network the top twenty most influential

genes, in terms of both degree and betweeness were iden-
tified (see Table 2 and Fig. 6). We found that the
GABARAPL1 gene (GABA type A receptor associated
protein like 1), which was upregulated (+1.49-fold;
P = 6.5 × 10−12) in the exercise response, was the top
hub and bottleneck in both the untrained rest (UR) and
exercise (UE) network states. The edges of GABARAPL1
were partially ‘re-wired’ with it gaining 14 edges, losing
22 and retaining 11 interactors in the exercise state rela-
tive to the rest state (see Additional file 1: Section 3.1).
We also observed that relative influence of other hub
and bottleneck genes appeared to change between net-
work states. For example, DNAJB (dnaj hsp40 member
B1), FN1 (fibronectin 1) and LIMA1 (LIM domain and
actin binding 1) all had a greater influence in the exercise
network state than the rest state as determined by both
betweenness rank (FN1 from 12th to 2nd; LIMA1 from
73rd to 5th; DNAJB from 174th to 3rd) and degree rank
(FN1 from 5th to 2nd; LIMA1 from 40th to 3rd), see Table
2 and Fig. 6. The additional edges gained by DNAJB1 in
the exercise state included a new putative interaction with,
GABARAPL1, which effectively boosts the network-wide
influence (i.e. betweeness) of DNAJB1 by proxy.
We then performed a systems level analysis of the ex-

ercise response dynamic network by applying Newman’s
fastgreedy community detection algorithm [45] to cluster
the nodes in the network based only upon network top-
ology. Twenty-eight non-trivial clusters (i.e. containing

at least two genes) were detected in the untrained rest
(UR) network state. The functional relevance of each of
these clusters (de novo putative gene modules) was then
evaluated by over-representation analysis and twenty-
two clusters were found to be significantly enriched for
known functional modules. The largest clusters were pri-
marily enriched for the cellular components Contractile
fibre (Cluster 1: 55 genes; P = 8.9 × 10−07), Proton-trans-
porting ATP synthase/ Mitochondrial respiratory chain
complex V (Cluster 4: 35 genes; P = 2.5 × 10−10), NADH
dehydrogenase/ Mitochondrial respiratory chain Com-
plex I (Cluster 6: 32 genes; P = 3.5 × 10−35) and the bio-
logical process Pyruvate metabolism and TCA cycle
(Cluster 7: 32 genes; P = 2.1 × 10−18), see Fig. 6(a). To il-
lustrate how these clusters are ‘re-wired’ in the exercise
state we then overlaid the rest state cluster membership
onto the exercise network state, by applying the same
node format (colour and shape) to common nodes, see
Fig. 6(b).
We observed changes in the interactions of several clus-

ters in the exercise state relative to the rest state. The clus-
ter enriched for Pyruvate metabolism and TCA cycle
(Cluster 7) for example, which contained 32 genes that
were upregulated (mean:1.41-fold) in the exercise re-
sponse, became disconnected in the exercise state and had
far fewer internal interactions (seven edges) relative to the
rest state (39 edges), see Fig. 6(a) and (b). The top hub
within this cluster, SIRT4 (sirtulin 4) which was upregu-
lated in the exercise response (+1.69-fold; P = 2.4 × 10−14),
had 18 interactions in the rest state and only three int-
eractions in the exercise state. The cluster enriched for
Contractile fibre however (Cluster 1) became mostly
downregulated (38/55 genes; mean: −1.2-fold) in the exer-
cise state relative to rest state. It also lost many putative
interactions in the exercise state (22 edges) relative to the
rest state (60 edges) and became fragmented. For example,
phosphoinositide-3-kinase regulatory subunit 1 (PI3KR1),
which was upregulated in the exercise state (1.7-fold;
8.1 × 10−12), formed a new independent sub-cluster. This
new cluster included new putative interactions with Clus-
ter 31 members STAT3 (signal transducer and activator of
transcription 3) and SP1 (Sp1 transcription factor) which
were also upregulated in the exercise response 1.35-fold
(P = 2.8 × 10−12) and 1.26-fold (P = 0.0056) respectively
(see Fig. 6b). Other clusters, however, were upregulated
in a more coordinated manner in the exercise state
(i.e. retained many intra-cluster edges). For example,
the cluster enriched for NADH dehydrogenase/Mitochon-
drial respiratory chain complex I (Cluster 6), which is up-
regulated in the exercise response (mean:1.35-fold),
retained 23 of its 52 rest state edges in the exercise state.
Most these retained edges (20/23) were between genes
that encode subunits of NADH dehydrogenase/ Respira-
tory chain complex I. The top hub in this cluster, in both

Bryan et al. BMC Genomics  (2017) 18:595 Page 10 of 26



the rest (19 edges) and exercise state (16 edges), was
NDUFA6 (NADH: ubiquinone oxidoreductase subunit A6).
This cluster (Cluster 6) also became detached from the
main network in the exercise state (along with 5 ATP

synthase complex/ Respiratory chain complex V genes from
Custer 5), see Fig. 6(b), and its expression appears to be
more independent from the rest of the network relative to
rest state (where it previously had seven external edges).
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Gene Ontology: Cellular Component

Fig. 4 Cellular functions of the training-specific response. Bar charts showing over-representation of functional categories (described by KEGG and
REACTOME pathways and Gene Ontology: Biological Process, Molecular Function and Cellular Component) for the list of genes (n = 2380) that
showed statistically significant differential expression, of at least +/− 1.25-fold, between the muscle tissue (gluteus medius) from the untrained rest (UR)
and the trained rest (TR) but not the untrained exercise (UE) Thoroughbred cohorts. Bars represent the most significant functional modules (up to 20)
for each of the five annotation schemas. Bar height represents statistical significance (−log10 transformed Benjamini-Hochberg (B-H) Corrected P-value)
of the over-representation, based on the EASE-score (conservative Fisher Exact T-Test). Bar color represents the mean differential expression (log2(UE/
UR) for the genes in this module (see color key). Category name, ID and size (number category genes in gene list/category size) are given above each
bar. For example it can be seen that the most significant Reactome pathway is ‘Signaling by GPCR’ (where GPCR = G protein-coupled receptors) and
that it is one of the most up-regulated functional categories on average (orange color) and that 186 out of the 631 genes assigned to this category
are differentially expressed between TR and UR cohorts only (i.e. not differentially expressed between UE and UR cohorts). Full results are provided in
Additional file 2: Table S6
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Some clusters became more central in the exercise
state relative to the rest state, as determined by betwee-
ness. For example, two genes in the cluster enriched for
Apoptosis (Cluster 8), namely CDC37 (cell division cycle
37; −1.27-fold; P = 1.92 × 10−07) and DNAJB (DnaJ Hsp4
member B1;+4.27-fold; P = 3.59 × 10−14), gained a
greater network influence in the exercise state relative to
the rest state, being promoted from 174th and 6th to
3rd and 4th respectively in rank based on betweenness
(see Table 2). Additionally, two genes in the cluster
enriched for Cytoskeleton (Cluster 5), FN1 (fibronectin 1;
+1.29-fold; P = 0.0018) and LIMA1 (LIM domain and
actin binding 1;+1.55-fold; P = 9.7 × 10−12), were also
promoted from 8th and 73rd to 2nd and 5th respectively
(see Table 2).
In the exercise-specific network (genes associated with

the exercise but not the training response) the cluster
enriched for Cytoskeleton (Cluster 5) was the largest up-
regulated cluster (see Fig. 6(c)). This upregulation also ap-
pears to be coordinated as it retained a majority of its
intra-cluster interactions (14/26 edges). Genes in this clus-
ter, FN1 and LIMA1, also became the top two bottlenecks
in this exercise-specific network. FLNB (filamin B), which
was also upregulated in exercise-specific response (+1.66-

fold; P = 1.1 × 10−09), shared edges with both FN1 and
LIMA1 and was the third most influential bottleneck in
the exercise-specific response network.
In the training response putative dynamic PPI net-

work, which was constructed as for the exercise re-
sponse, there were 199 nodes and 186 edges in the
untrained state (UR) and 188 nodes and 176 edges in
the trained (TR) state (see Fig. 7). The top twenty most
influential genes, determined by betweenness and de-
gree, are given in Table 3 and highlighted in Fig. 7. As in
the exercise response network, GABARAPL1 was the
top bottleneck in the training response network both in
the untrained state and trained state and was signifi-
cantly upregulated (+1.37-fold; P = 0.0001) in response
to training. GABARAPL1 was partially ‘re-wired’ in the
trained state (15 edges), gaining three and losing seven
interactions relative to the untrained state (19 edges) of
the network (see Additional file 1: Section 3.2). The
highest degree node in both states was NDUFA6 (NADH
ubiquinone oxidoreductase subunit A6), which was up-
regulated (+1.36-fold; P = 0.0007) in the training re-
sponse and encodes a subunit of NADH dehydrogenase/
Mitochondrial respiratory complex I. Other top bottle-
necks across both the untrained and trained network

Fig. 5 Pipeline for construction of putative dynamic PPI networks in the exercise and training responses. Each putative contextual PPI network is
composed from nodes, V, (genes) and edges, E, (interactions) related to one of the experimental contexts (cohorts). For example, the putative PPI
network for the exercise in the untrained rest state, (1): G = (VUE, EUR), contains the nodes (genes) that are associated with exercise (VUE) and the
edges (based on gene expression correlations) from the untrained rest (EUR) cohort that are also supported by known protein-protein interactions (PPIs) in
the IntAct molecular interaction database. This can be considered the ‘ground state’ of the dynamic exercise network and can be compared to the exercise
‘active state’, (2): G = (VUE, EUE), or the sub-network that is exclusive to exercise, (3):G = (VUE – TR,EUE) to model how these putative PPI interactions might be
re-wired in the exercise response and the exercise-specific response respectively. Networks (1)–(3) are illustrated in Fig. 6(a)-(c) and networks (4)–(6) are
illustrated in Fig. 7(a)-(c)
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Fig. 6 (See legend on next page.)
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states included several genes that also encode subunits of
this complex (NDUFA2, NDUFA4, NDUFA6, NDUFB3,
NDUFV3) and ATP synthase complex/Respiratory chain
complex V (ATP5A1, ATP5B, ATP5C1, ATP5F1, ATP5J2).
These genes were all significantly upregulated in the
trained cohort (mean:1.38 fold; P = 0.0018).
We observed that the network influence, as determined

by hub or bottleneck status, of several genes changed in
the trained state (TR) relative to the untrained network
state (UR). SPTBN1 (spectrin beta, non-erythrocytic 1),
which was upregulated in response to training (+1.38-fold;
P = 0.0052), was promoted in rank from 55th in the un-
trained state, to 3rd top bottleneck in the trained network
state. SPTBN1 maintained its edge with GABARAPL1 but
also appears to have undergone a ‘re-wiring’ of other
edges. For example, SPTBN1 gained edges with ‘uncon-
ventional’ myosins (as opposed to Class II myosins that
are directly involved in muscle contraction [70]), MYO19
and MYO18A, and an actin-associated protein gene
SYNPO (synaptopodin). Conversely, the GRB2 (growth fac-
tor receptor bound protein 2) gene, which was downregu-
lated (−1.33-fold, P = 0.0002) in the training response,
became less influential in the trained (TR) state relative to
the untrained network state, dropping from 5th to 49th
place in the betweenness-based rankings.
Community analysis, performed as above, uncovered

twenty-three clusters within the training response net-
work untrained state. Of these, twelve non-trivial (more
than two genes) clusters were significantly enriched for
one or more known functional category (see Fig. 7(a)).
Three of the clusters uncovered were interconnected
(six edges) and were enriched for NADH dehydrogenase/
Mitochondrial respiratory complex I (Cluster 1), ATP
synthase complex/ Mitochondrial respiratory complex V
(Cluster 34) and Pyruvate metabolism and TCA cycle
(Cluster 3). The genes in these clusters were mostly up-
regulated (i.e. 32/36, 12/14 and 10/20 genes respectively)
in the training response (see Fig. 7(b)). These clusters

also appeared to be upregulated in a coordinated man-
ner due to the retention of many intra-cluster (internal)
edges in the trained network state relative to the un-
trained state. The cluster enriched for NADH dehydro-
genase/ Mitochondrial respiratory complex I (Cluster 1)
retained 32/36 edges, the cluster enriched for ATP syn-
thase complex/Respiratory complex V (Cluster 34)
retained 12/14 edges and the cluster enriched for Pyru-
vate metabolism and TCA cycle (Cluster 3) retained 10/
20 edges (see Fig. 7(b)). Furthermore, these three clus-
ters also retained 5/6 inter-cluster edges (between clus-
ters) in the trained network state, implying coordination
at the system level also. Another six-gene cluster,
enriched for Signaling by VEGF/Focal adhesion (Cluster
6), was entirely upregulated (mean: 1.59-fold) in a coor-
dinated manner (retained all intra-cluster edges) in the
training state but remained independent from the other
clusters (see Fig. 7(b)). In contrast to the above clusters,
the cluster enriched for ERBB Signaling pathway/Signal-
ing by PDGF (Cluster 2), which was the largest cluster
(24 genes), became entirely downregulated (mean: −1.6-
fold) and dis-coordinated (retained only 6/25 intra-
cluster edges) in the trained network state compared to
the untrained network state (see Fig. 7(b)). Another 10-
gene cluster, which was enriched for Unfolded protein
binding/ Postsynaptic density (Cluster 5), contained heat-
shock protein genes DNAJB1(DnaJ hsp40 member B1),
HSF2BP (heat shock transcription factor 2 binding protein)
and co-chaperone genes CDC37 (cell division cycle 37)
and CDC37L1 (cell division cycle like 1). This cluster be-
came partially downregulated (five genes; −1.54-fold) and
upregulated (five genes; mean: +1.38-fold) and ‘re-wired’
(lost seven edges and gained one) in the training response.
The training-specific network (genes associated with

the training response but not the exercise response)
contained 25 putative interactions and little modular
structure (only two modules with a diameter > 2) (see
Fig. 7(c)). The largest contained six genes (including

(See figure on previous page.)
Fig. 6 Putative dynamic PPI network for the exercise response. a The putative PPI network for exercise rest or ‘ground state’ contains 513 nodes (genes),
after edgeless nodes were removed, and 514 edges (interactions)(see also Fig. 5 and Methods). This network was partitioned by Newman’s fastgreedy
community detection (based on network topology only and with no prior information relating to gene function) into forty-three communities or node
‘clusters’. A subset of twenty-eight of these clusters had greater than two nodes (genes) and were found to be significantly enriched for at least one
functional category (described by KEGG, Reactome or Gene Ontology). Node colour and shape (i.e. circle, square, up-pointing triangle and down-pointing
triangle) signifies cluster membership (only functionally enriched cluster shown in legend). Node size is proportional to node ‘betweeness’ score, with the
largest nodes ‘controlling’ the most network ‘traffic’ (along shortest paths). The top twenty ‘bottleneck’ nodes have white labels. b The network for the
exercise state, which contains 426 nodes (genes), after edgeless nodes are removed, and 390 edges (interactions). Nodes (genes) are both up (‘+’ nodes)
and down-regulated (‘-’ nodes) and ‘re-wired’ (loss/gain of edges) in the exercise response compared to the rest state depicted in (a). Cluster membership
from (a) is transposed onto (b) to highlight how each cluster changes in the exercise network state (i.e. common nodes are given the same colour and
shape with new nodes depicted by uncoloured circles). For example, it can be seen that Cluster 1 (red circles), which is most enriched for the ‘Contractile fiber’
functional category becomes extensively fragmented into 10 (mostly two-node) clusters and most genes are down-regulated (19/26) signifying possible
dysregulation of this functional modules in the exercise response. Conversely we also see that the Cluster 6 (yellow circles), which is most enriched for
‘NADH dehydrogenase/ Mitochondrial respiratory chain complex I’, is mostly up-regulated and remains largely intact, signifying possible coordinated up-
regulation of this functional module in the exercise response. c Depicts the sub-network of (b) whose nodes (genes) are exclusive to the exercise response
(i.e. not associated with the training response)
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three genes from Cluster 13), which were all upregulated
(mean: +1.3-fold) in the training response, namely APP
(amyloid beta precursor protein), ARRB1(arrestin beta 1),
MAPK10 (mitogen-activated protein kinase 10), JUN (jun
proto-oncogene AP-1 transcription factor subunit), EGLN3
(egl-9 family hypoxia inducible factor 3), and CAT (cata-
lase) (Fig. 7(c)). Another module containing five genes
was also upregulated in response to training (mean:1.49-

fold) and contained part of the cluster enriched for
Cytoskeleton (Cluster 8), namely KDR (kinase insert
domain receptor, a.k.a. VEGFR-2), NRP1 (neuropilin 1)
and FLT4 (fms related tyrosine kinase 4, a.k.a. VEGFR-3).
This cluster also gained two additional interactions in the
training response, NCOA4 (nuclear receptor coactivator 4)
and USP43 (ubiquitin specific peptidase 43), that were
present in this training-specific sub-network.

(See figure on previous page.)
Fig. 7 Putative dynamic PPI network for the training response. a The putative PPI network for untrained or ‘ground state’ contains 199 nodes (genes),
after edgeless nodes were removed, and 186 edges (interactions)(see also Fig. 5 and Methods). This network was partitioned by Newman’s fastgreedy
community detection (based on network topology only and with no prior information relating to gene function) into forty-three communities or node
‘clusters’. A subset of twenty-eight of these clusters had greater than two nodes (genes) and were found to be significantly enriched for at least one
functional category (described by KEGG, Reactome or Gene Ontology). Node colour and shape (i.e. circle, square, up-pointing triangle and down-
pointing triangle) signifies cluster membership (only functionally enriched cluster shown in legend). Node size is proportional to node ‘betweeness’
score, with the largest nodes ‘controlling’ the most network ‘traffic’ (along shortest paths). The top twenty ‘bottleneck’ nodes have white labels. b The
network for the trained state, which contains 188 nodes (genes), after edgeless nodes are removed, and 176 edges (interactions). Nodes (genes) are
both up (‘+’ nodes) and down-regulated (‘-’ nodes) and ‘re-wired’ (loss/gain of edges) in the training response compared to the untrained state
depicted in (a). Cluster membership from (a) is transposed onto (b) to highlight how each cluster changes in the trained network state (i.e. common
nodes are given the same colour and shape with new nodes depicted by uncoloured circles). For example, it can be seen that Cluster 2 (green circles),
which is most enriched for the ‘ErbB signaling pathway/Signaling by PDGF’ functional category becomes fragmented into 4 clusters and all visible genes
(edgeless nodes are not depicted) are down-regulated. Conversely we see that the Cluster 1 (red circles), which is most enriched for ‘NADH
dehydrogenase/ Mitochondrial respiratory chain complex I’, is mostly up-regulated and remains largely intact, signifying possible coordinated
up-regulation of this functional module in the training response. c Depicts the sub-network of (b) whose nodes (genes) are exclusive to
the training response (i.e. not associated with the exercise response)

Table 2 The top twenty hub (based on node degree, D) and bottleneck (based on node betweenness, B) genes in the Exercise
Response network in the Untrained Rest (UR) and Untrained Exercise (UE) states

Untrained Rest Untrained Exercise Unique to Untrained Exercise

Hubs D Bottlenecks B Hubs D Bottlenecks B Hubs D Bottlenecks B

GABARAPL1 33 GABARAPL1 20,436 GABARAPL1 25 GABARAPL1 6905 FN1 15 FN1 888

TCTN3 21 ESR1 18,589 FN1 19 FN1 6881 LIMA1 11 LIMA1 826

NDUFA6 19 TRIM54 13,553 LIMA1 16 DNAJB1 6327 APOA1 5 FLNB 756

SIRT4 18 GNB4 13,514 NDUFA6 16 CDC37 5983 TRIM54 5 APOA1 394

FN1 16 CDK18 13,394 CDC37 14 LIMA1 2799 TMEM216 5 CAV1 346

GRB2 16 CDC37 10,875 MYO18A 13 TRIM54 2444 ESR1 5 ESR1 246

NDUFA2 15 FLNB 10,484 TMEM216 11 HSPH1 2338 BAG3 4 TMEM216 210

FASTKD3 15 AHNAK 10,125 MYO19 10 NR4A1 2210 TCTN3 4 TNS3 207

ESR1 10 MYO18A 9786 SPTBN1 9 FLNB 2123 TUBB3 4 RAB1A 158

TRIM54 9 TCTN3 9292 TRIM54 8 SMAD3 2094 FLNB 4 TUBB3 156

NCK1 9 GRB2 8676 ESR1 8 APOA1 1759 PIK3R1 4 AHNAK 120

MEOX2 8 FN1 7852 TCTN3 7 CAV1 1707 SMAD3 3 KIT 107

ATP5F1 8 HOMER3 7598 FLNB 7 RARG 1691 KIT 3 SCRIB 106

CDC37 8 ZBTB4 7364 MEOX2 6 TMEM216 1659 TNS3 3 FAS 54

TMEM216 8 CCDC57 7154 ATP5F1 6 ESR1 1603 CAV1 3 DMWD 54

ACAD9 7 CEP57L1 6650 SYNPO 6 SPTBN1 1484 CETN3 3 ITPR3 54

PCM1 7 PCM1 6593 SMAD3 5 RAB1A 1322 RAB1A 3 FASN 54

HDAC1 6 SYNPO 6545 TUBB3 5 PRKAR1B 1300 NR4A1 3 ANXA1 54

NDUFS2 6 PPP1R12B 6084 APOA1 5 PFKL 1162 HSF2 3 ELMSAN1 54

TTN 6 SIRT4 5093 PLEC 5 MYO19 1095 FASN 3 STOM 54

The top twenty hub and bottleneck genes are also provided for the sub-network that was unique to the Exercise Response (i.e. constructed from genes differentially
expressed in response to exercise but not training)
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Discussion
Using a transcriptome-wide RNA-seq approach in a
large cohort of active racehorses, we have for the first
time generated a comprehensive set of genes that are
differentially expressed in Thoroughbred skeletal muscle
in response to both exercise and training. We have also
developed a novel computational strategy to integrate
these data with publicly available, experimentally vali-
dated PPIs in a bid to model the contextual interactome,
its functional modules and how it may respond to
exercise and training. We observed that approximately
one third of genes that were diffientially expressed in
response to a single bout of exercise accumulate with
training leading to new baseline levels of gene expres-
sion, suggesting that increases in aerobic capacity may
be brought about mainly through this mechanism.
Therefore, consecutive bouts of exercise training seem
to result in a priming of the skeletal muscle transcrip-
tome for the demands of the next exercise bout. We
have also demonstrated that this may further lead to an
extensive ‘re-wiring’ of the molecular interactome in
both exercise and training and have identified key genes
and functional modules that may be involved in control-
ling and mediating these responses.

In this study the training period was six months,
therefore it is possible that some of the changes in gene
expression attributed to training may be age-related. As
this study was undertaken in collaboration with an active
racing yard, which offers considerable advantages in
terms of cohort size, consistent exercise/training regi-
men and consistent environmental factors, such as nu-
trition, certain controls, such as untrained mature
horses were not possible to obtain at the same time
point as the TR samples. However, training standards
ensured that all time points in the study (>513 days)
were well beyond the end of the pubescent period for
Thoroughbred horses (<450 days) [71]. Furthermore, a
small subset of the UR cohort (N = 4) was sampled after
a two-week period of detraining, Detrained Rest (DR),
and while there was some overlap among DE genes (28
genes), there was very little difference in terms of overall
DE (144 genes after correction for multiple compari-
sons) between these two cohorts (See Additional file 1:
Section 5 and Additional file 2: Table S7.)
Our initial functional over-representation analyses sup-

ported a central role for modules related to energy metab-
olism in both the exercise response and training response.
Interestingly, several functional modules of this type, which

Table 3 The top twenty hub (based on node degree, D) and bottleneck (based on node betweenness, B) genes in the Exercise
Response network in the Untrained Rest (UR) and Trained Exercise (TR) states

Untrained Rest Trained Rest Unique to Trained Rest

Hubs D Bottlenecks B Hubs D Bottlenecks B Hubs D Bottlenecks B

NDUFA6 20 GABARAPL1 819 NDUFA6 19 GABARAPL1 2137 KDR 3 MAPK10 6

GABARAPL1 19 NDUFA4 459 GABARAPL1 15 ATP5C1 1631 TUBA1A 3 ARRB1 6

NDUFA2 15 NDUFA6 432 NDUFA2 14 SPTBN1 1135 NCOA4 2 KDR 5

ATP5F1 8 NDUFA2 320 ATP5F1 8 NDUFB3 1067 NIN 2 JUN 4

GRB2 7 GRB2 177 SPTBN1 5 PRDX2 935 JUN 2 APP 4

CDC37 6 MYO18A 158 ACAD9 5 NDUFA2 933 MAPK10 2 NCOA4 3

ACAD9 6 ATP5F1 125 MYO19 5 SYNPO 842 ARRB1 2 TUBA1A 3

NCK1 6 NDUFV3 98 MYO18A 5 A2M 814 APP 2 NIN 1

TUBA1A 5 ATP5A1 88 MAPK6 4 NDUFA6 777 RIPK4 2 RIPK4 1

MYO18A 5 ASB16 85 ARAF 4 MYO18A 608 TNKS2 1 TNKS2 0

CACNA1A 4 ATP5B 82 LUZP1 4 ARAF 565 IPO4 1 IPO4 0

ATP5B 4 NCK1 82 KDR 4 MYO19 549 EGLN3 1 EGLN3 0

HSF2BP 4 CAPZB 78 PRDX2 4 APP 509 LUZP1 1 LUZP1 0

ATP5C1 4 ACAD9 76 PDLIM7 4 ACAD9 401 C1QB 1 C1QB 0

MAPK6 3 ATP5J2 76 SYNPO 4 ATP5F1 395 C1QA 1 C1QA 0

EGLN3 3 ATP5C1 72 ATP5C1 4 TPRN 323 SPRY1 1 SPRY1 0

HDAC1 3 NDUFB3 64 HDAC1 3 PDLIM7 320 FGF2 1 FGF2 0

CAPZB 3 PHYHIP 50 SPRY1 3 ACADM 320 FGFBP1 1 FGFBP1 0

KDR 3 DLD 50 NDUFS2 3 ARRB1 246 CACNA1A 1 CACNA1A 0

NDUFA4 3 PRDX2 50 CDC37 3 MYO1B 246 DYNLL1 1 DYNLL1 0

The top twenty hub and bottleneck genes are also provided for the sub-network that was unique to the Training Response (i.e. constructed from genes differen-
tially expressed in response to training but not exercise)
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were common to both, were more significantly associated
with the training response than the exercise response in
terms of module significance (see Fig. 1 vs. Fig. 3). For ex-
ample, the exercise response was enriched for Integration of
energy metabolism with a significance level of P = 4.97 × 10
−11; however, this increased to a significance level of
P = 4.66 × 10−14 in the training response. We also observed
a similar trend for Pyruvate metabolism and TCA cycle
(from P = 0.0204 to P = 2.93 × 10−07) and NADH dehydro-
genase/Mitochondrial respiratory chain complex I (from
P = 0.0017 to P = 1.29 × 10−06). Furthermore, some func-
tional modules related to energy metabolism were only
found to be significantly over-represented in the training
response gene list. These included the Citrate cycle
(P = 5.12 × 10−05) and the respiratory chain component
Proton-transporting ATP synthase / Respiratory chain com-
plex V (P = 0.0007). These results support the hypothesis
that trained skeletal muscle may exhibit an unstimulated
transcriptome inherently primed to respond to the energy
demands of exercise. More generally this information also
provides support for the view that ‘accumulative’ changes
play a role in the adaptive response.
There is also some evidence that epigenetic regulation

may play a role in modulating these transcriptomic adapta-
tions. For example, four of the five genes reported by Barrès
and colleagues to be hypomethylated and expressed in hu-
man skeletal muscle in response to acute exercise, namely
PPARD (peroxisome proliferator activated receptor delta),
PPARGC1A (PPARG coactivator 1 alpha), PDK4 (pyruvate
dehydrogenase kinase 4) and CS (citrate synthase), [72] were
significantly upregulated either in the exercise response
(PPARD:+1.97-fold; P = 1.2 × 10−13, PPARGC1A:+10.17-
fold; P = 7.25 × 10−26, PDK4:+2.17-fold; P = 0.0092) or the
training response (CS:+1.33-fold; P = 1.40 × 10−05). In par-
ticular, we found that PPARGC1A, which was reported by
Barrès and colleagues to be hypomethylated in response to
acute exercise, was the 6th most significantly upregulated
gene (10-fold, P = 7.25 × 10−26) in the exercise response.
PPARGC1A was also shown previously to be up-regulated
at the protein level after high intensity exercise [73].
PPARGC1A directly links external physiological stimuli
and mitochondrial biogenesis [74], regulates muscle fibre
type [75] and is associated with endurance exercise [76]. It
has also been shown to mediate the epigenetic regulation of
insulin secretion [77] and regulate oxidative energy metab-
olism during exercise in equine skeletal muscle [30]. Our
previous work has also supported the involvement of
PPARGC1A in the adaptation of equine skeletal muscle to
training [32, 78].
Another gene highlighted by Barrès et al., CS, which en-

codes citrate synthase that catalyses the synthesis of citrate
from oxaloacetate and acetyl coenzyme A, was upregulated
in the TR cohort. This may contribute to the trained co-
hort’s constitutive priming for exercise. Indeed, increased

CS activity has previously been reported in trained human
[79] and equine [80, 81] muscle and is a validated bio-
marker for skeletal muscle mitochondrial density and oxi-
dative adaptation to a training [82].
We also observed that several functional modules un-

covered by over-representational analysis were exclu-
sively associated with either the exercise response or the
training response. Only the exercise response, for ex-
ample, was significantly enriched for functional modules
related to muscle contraction. The largest module of this
type was Contractile fibre (P = 6.35 × 10−11) and con-
tained a majority (44/56) of downregulated genes. This
observation is in line with the previous finding of an in-
hibitory effect of NAD+/NADH ratio on MYOD1 regu-
lated gene expression and differentiation [83]. NAD
+/NADH ratio is generally found to increase in muscle
cells post-exercise in animals but, curiously, not in
humans [84, 85]. We also observed that MYOD1, which
is known as a ‘master switch’ of muscle cell differenti-
ation [86], was significantly downregulated at the tran-
script level (−1.9-fold; P = 0.0008) but only in the
training response, which suggests that it may form part
of the adaptive response to training.
We also found that the Hemostasis pathway was exclu-

sively significantly over-represented (P = 3.76 × 10−05) in
the exercise response, it being mostly (46/69 genes) upreg-
ulated in exercise relative to rest cohort. This response in-
cluded several upregulated growth factors, such as EGF,
Epidermal Growth Factor, (+1.73–fold; P = 6.80 × 10−08),
TGF-beta 2, transforming growth factor beta 2 (+1.29-fold;
P = 0.0006) and VEGFA, vascular endothelial growth
factor A, (+2.33-fold, P = 4.67 × 10−19), VEGFC, vascular
endothelial growth factor C (+1.79-fold, P = 6.65 × 10−10)
and VEGFD vascular endothelial growth factor D, (+1.48-
fold, P = 5.77 × 10−09). This observed association of
hemostasis with the exercise but not the training response
gene list aligns with recent findings in human of a transi-
ent hypercoagulability state post-exercise, particularly in
untrained individuals, that is largely reversed in trained
individuals [87].
Conversely, the training response gene list was also

exclusively enriched for certain functional modules, such
as the pathways Signalling by GPCR (P = 1.22 × 10−17)
and Neurological systems processes (P = 4.85 × 10−27),
that were not associated with the exercise response. G-
protein-coupled receptors (GPCRs) mediate physio-
logical responses to hormones, neurotransmitters and
environmental stimulants [88]. The GPCR family also
includes opioid receptors (ORs), discussed in further
detail below in relation to the network analysis results.
Interestingly, we also observed over-representation of

several disease related pathways in both our exercise and
training associated gene lists. For example, both gene
lists were enriched for Reactome’s Diabetes pathways,
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which were more associated with the training response
(P = 3.10 × 10−08) than the exercise response
(P = 3.57 × 10−06). It is recognized that regular physical
exercise, particularly aerobic and resistance exercise, has
considerable health benefits for people with both type 1
and type 2 diabetes [89]. Our over-representation results
also appear to provide some support for a relationship
between our exercise phenotypes and diabetes and it
would be interesting, in future studies, to investigate the
extent of this mechanistic link. We also observed that
several neurodegenerative disorders, namely Alzheimer’s
Disease (AD), Huntington’s Disease (HD) and Parkinson’s
Disease (PD), were amongst the most significantly
enriched KEGG categories associated with both the exer-
cise response and the training response. The links between
these neurodegenerative diseases and mitochondrial dys-
function have been well established [90] and the over-
representation of these pathways may be due in part to
the effect that intense exercise has on mitochondrial func-
tion in skeletal muscle. Interestingly, an early deficit of
synaptic mitochondria and motor function has been asso-
ciated with AD [90, 91], physical exercise has been shown
to be protective in both AD and PD [92] and increased
mitochondrial biogenesis has recently been shown to im-
prove symptoms in HD [93]. Our results also appear to re-
flect this mitochondrial-driven mechanistic relationship
between exercise and this group of neurodegenerative
disorders.
Standard over-representation analysis, as performed

here, is based on well-established, carefully curated,
functional annotations of genes and gene products
(e.g. KEGG, Reactome, gene ontology). However, these
resources are far from complete. For example 85% of
Ensembl genes are not mapped to a KEGG pathway [34],
and some genes may have additional undescribed roles
[94]. For example, the kappa opioid receptor (KOR)
signalling pathway, which we discuss below, was not
described in sufficient detail by KEGG (only as part of the
Neuro-active ligand receptor pathways) or fully labelled by
Reactome (covers the mu but not the kappa-OR, see [95])
to be identified by our above over-representation analysis.
Furthermore, even well established and fully annotated
pathways/complexes may behave in an unexpected man-
ner in a particular context (e.g. cell type, species or experi-
mental condition) [96]. In addition, due to the group-wise
nature of over-representation analysis the chief drivers or
regulators of biological processes may not always be ap-
parent (nor are these, of course, necessarily highlighted by
basic statistical association of expression gene). These lim-
itations, however, may be somewhat overcome by employ-
ing a less supervised, network analysis-based approach.
When we constructed our putative contextual PPI net-

works for exercise and training we first identified the most
influential genes in the various states as determined by

hub and bottleneck status (see Tables 2 and 3). Interest-
ingly, we found that some nodes appeared to gain influ-
ence in response to exercise and/or training relative to the
untrained rest network state. In the exercise response net-
work for example, FN1 (fibronectin) became more influen-
tial in the network after exercise relative to the untrained
rest state (promoted from 11th to 2nd top bottleneck).
FN1 is involved in cell adhesion, migration, growth and
differentiation [97], and interestingly, has previously been
used as an indicator of myofibre damage, such as may
occur after intense exercise [98]. Another gene that ap-
peared to become more influential in the post-exercise
network state, LIMA1 (LIM Domain and actin binding 1),
has been shown to stabilize the vascular capillary network
in vitro [99]. This information, and the fact that neither
FN1 nor LIMA1 expression was associated with the train-
ing response, might indicate involvement in muscle or
microvascular recovery and repair following intense exer-
cise. Continuing in this theme, the top differential bottle-
neck gene DNAJB1 (DnaJ Hsp40 Member B1), which was
significantly (P = 3.6 × 10−14) upregulated (>4-fold) in re-
sponse to exercise, has previously been found to be upreg-
ulated in skeletal muscle in response to heat shock [100].
Interestingly this is one of the few genes whose expression
is also significantly reversed in the training response
(−1.6-fold, P = 0.0005). This also supports previous studies
which reported the significant upregulation (between 1.5
fold and 4.8-fold) of heat shock proteins both immediately
after and 4 h post-exercise in Thoroughbred horses [27].
Together these data suggest that these genes may be
involved in the stress response induced by intense exercise
in the untrained cohort.
Several other genes, such as SIRT4 (sirtulin 4), GRB2

(growth factor receptor bound protein 2), GNB4 (G pro-
tein subunit beta 4) and CDK18 (cyclin dependent kinase
18), became less influential in the exercise network state
relative to untrained rest network state (i.e. their hub/
bottleneck ranks were all down-graded after exercise).
Although SIRT4 had far fewer edges in the exercise state
relative to rest state (4 vs. 18 edges) it was highly signifi-
cantly upregulated (+1.69-fold; P = 2.4 × 10−14) in the
exercise response. This perhaps suggests a shift in func-
tion in response to exercise. SIRT4 has been shown to
associate with mitochondria and to have ‘strong and
reproducible’ ADP-ribosyltransferase activity [101]. SIRT4
is also required for protection against cell death caused by
nutrient starvation via a role in the maintenance of mito-
chondrial NAD+ levels [102]. Interestingly, the only novel
edge that was gained by SIRT4 in the exercise response
was with SLC25A5 (solute carrier family 25 Member 5),
which was also highly significantly upregulated in the
exercise response only (+3.2-fold; P = 5.3 × 10−21) relative
to untrained rest. SLC25A catalyses the exchange of
mitochondrial ATP with cytoplasmic ADP across the
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mitochondrial inner membrane [103]. SIRT4 also retains
an edge with ETHE1 (persulfide dioxygenase), which was
also upregulated in the exercise response (+1.3-fold;
P = 9.5 × 10−08). This mitochondrial matrix sulphur dioxy-
genase is involved in catabolizing hydrogen sulphide
[104], a by-product of energy metabolism that inhibits
mitochondrial functioning [105]. Together these data sug-
gest that the re-wiring of SIRT4 interactions in the exer-
cise state may be part of the exercise-induced stress
response and may contribute to the maintenance of meta-
bolic homeostasis in mitochondria.
In the trained network, we also observed evidence of a

re-wiring of key hubs. SPTBN1 (spectrin beta chain non-
erythrocytic 1), which was upregulated in the training re-
sponse (+1.38-fold; P = 0.0052), appears to gain network
influence in the trained network state (promoted in rank
from 55th to 3rd top bottleneck). Functionally, SPTBN1
is involved in secretion, interacts with calmodulin in a
calcium-dependent manner and has been isolated from
post-synaptic density preparations [106]. Furthermore,
SPTBN1 has previously been shown to be associated
with skeletal muscle adaptation, specifically during the
torpor phase of hibernation in mammals [107]. Meta-
bolic adaptation and the prevention of muscle atrophy
during hibernation induced starvation have also been
previously linked to athletic endurance adaptions [108].
In further support of a mechanistic connection between
these seemingly disparate physiological states, the re-
duced expression of the myostatin (MSTN) gene, re-
ferred to as the Thoroughbred ‘speed gene’ [13], has also
been associated with hibernation in ground squirrels
[109]. Similarly, another gene, PDK4 (pyruvate dehydro-
genase kinase), has also been previously associated with
hibernation in mammals as well as intense exercise in
Thoroughbred horses [31, 110]. These data suggest
perhaps that a similar biological mechanism may be
involved both in the process of muscle growth during
training and prevention of muscle wasting during pro-
longed inactivity and nutrient starvation.
The inferred contextual network may also provide some

additional mechanistic insight into the activity of SPTBN1
in the context of skeletal muscle adaptations to training.
In the trained network, the SPTBN1 bottleneck mediates
the ‘flow of information’ between the module containing
GABARAPL1 and the module containing unconventional
myosins, MYO19 and MYO18A, and SYNPO (synaptopo-
din). MYO19, which was upregulated in both the exercise
(+1.5-fold; P = 3.9 × 10−08) and trained (+1.3-fold;
P = 0.0046) responses, is known to be involved in
mitochondrial motility [111]. Furthermore, SYNPO, which
was downregulated in both the exercise (−1.66-fold;
P = 6.7 × 10−14) and trained (−1.59-fold; P = 7.2 × 10−05)
responses, is known to be part of the post-synaptic density
[112]. ATP and Ca2+ flux is particularly important at the

synapse, and mitochondria are usually present in pre-
synaptic terminals [113]. Taken together the above ‘re-wir-
ing’ of SPTNB1 interactors may possibly reflect changes to
the neuromuscular junction that occurs in response to ex-
ercise and training and may also suggests an increased in-
fluence of SPTNB1 in the training response.
Although we observed MSTN to be highly significantly

downregulated in both the exercise (−5.9-fold;
P = 1.4 × 10–19) and training (−6.4-fold; P = 1.5 × 10−06)
responses, it was absent from our putative contextual
PPI networks as none of its contextual (correlation-
based) edges were supported by experimentally validated
PPIs. This may be partially explained by the stringency of
our protocol (e.g. the exclusion of inverse co-expression
correlations, inclusion only of PPIs supported by IMEX
standard) and also lack of recorded interaction evidences
for MSTN, due in part to that fact the MSTN ligand gen-
erally interacts with membrane-bound proteins, which are
under-represented in PPI databases [114]. However, by
examining the larger non-validated correlation-based net-
works we observed some evidence of a change in MSTN-
related activity in the exercise and training responses. We
saw a reduction in MSTN edges in both the exercise and
training network states relative to the untrained rest state.
Also, approximately 20% (43/231) of exercise-induced
MSTN edges were also observed in the trained state, sug-
gesting that there may be some sustained adaptation of
the MSTN-related signalling network in the trained co-
hort, although, of course, further support is required to
substantiate this. Interestingly however, this list of 43
genes includes PVALB (parvalbumin), which was the
most downregulated gene in both the exercise response
(−25.43-fold; P = 3.5 × 10−20) and the training response
(−33.27-fold; P = 7.8 × 10−10). PVALB is involved in
calcium sequestration after muscle contraction to support
muscle relaxation and a recognized fast-twitch phenotype
gene [115].It has also been found that double-knockout
PV−/− mice have prolonged muscle relaxation time, due
to the maintenance of muscle Ca2+ levels, but also gener-
ate ~40% more force per contraction than PV +/− and
WTanimals [116].
By far the most influential gene, as determined by hub

and bottleneck analysis, across both the exercise and
training response networks was GABARAPL1 (GABA
type A receptor associated protein like 1), where it
ranked as top bottleneck across all network states (Ta-
bles 2 and 3). We found GABARAPL1 to be highly
significantly upregulated (+1.49-fold; P = 6.5 × 10−12) in
response to exercise and significantly upregulated
(+1.37-fold; P = 0.0001) in the trained cohort compared
to the untrained cohort.
The product of GABARAPL1 is a ubiquitin-like

modifier associated with the autophagosome and known
to cause an increase in cell-surface expression of the G
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protein-coupled receptor (GPCR) kappa type opioid re-
ceptor (KOR), through facilitating anterograde traffick-
ing of the receptor [117]. KOR is the product of the
OPRK1 gene. In our data OPRK1 mRNA expression
showed no association with the exercise response, however
it was significantly upregulated (+1.74-fold; P = 0.0075) in
the training response. Taken together this information sup-
ports the model of an initial post-translational upregulation
of the KOR cell-surface expression by GABARAPL1 in re-
sponse to exercise and then, upon adaption, a transcrip-
tional upregulation in the trained cohort. However, the
downstream effect of the putative upregulation of the KOR
in the context of exercise and training still needs to be clari-
fied. KOR mediated signal transduction is known to stimu-
late several kinase cascades depending upon the specific
activating ligand [118]. For example, dynorphin activation
of KOR has been shown to be involved in the stress re-
sponse (e.g. to stressors such as forced swim) in mice [119].
This same ligand-receptor interaction has also been associ-
ated with pro-addictive behaviour [120]. Further work is
needed in this context, but we hypothesize that the regula-
tion of aversive/motivational behaviour by KORs may play
a role in the adaptation of the organism to regular and sus-
tained bouts of intense exercise.
We can also attempt to extract additional mechanistic

and functional insight into GABARAPL1 in the context
of exercise and training from community analysis.
GABARPL1 is a member of the exercise network cluster
that is significantly enriched (P = 2.56 × 10−10) for the
Proton-transporting ATP synthase/Mitochondrial respira-
tory chain complex V (MRC complex V). This cluster
also has four putative interactions with the cluster that
is significantly enriched (P = 9.69 × 10−38) for NADH
dehydrogenase/ Mitochondrial respiratory chain complex
I (MRC complex I) (see Fig. 6(a)). In the exercise re-
sponse, we observed a general upregulation of the genes
in both clusters and a general disturbance in the rest of
the network (see Fig. 6(b)). These clusters became
‘re-wired’ but remained largely intact except for a major
de-coupling of the MRC complex I-enriched cluster (along
with genes encoding members of MRC complex V) from
the rest of the network in the exercise state (see Fig. 6(b)).
We observed that correspondingly enriched clusters (i.e.
also enriched for MRC complexes I and V) were also
present and upregulated in the trained state network (see
Fig. 7(b)). However, in this case, the upregulation of these
clusters was better coordinated with the rest of the network
and was not accompanied by the similar de-coupling.
Interestingly, this apparent ‘de-coupling’ of MRC complexes
I and V during exercise, may be a reflection of the recog-
nized physiological response to oxidative stress known as
uncoupling and mediated by UCP3 in skeletal muscle [23].
This is also supported by the highly significant upregulation
of UCP3 (+4.8-fold; P = 7.6 × 10−22) in the exercise

response. Interestingly, we did not see the differential ex-
pression of UCP3 in the training response (although we did
observe a significant increase (+1.27-fold; P = 0.0007) of
UCP1 and a decrease of UCP2 (+1.47-fold; P = 0.0175)).
It has been suggested that NADH dehydrogenase/

Mitochondrial respiratory chain complex I activity is
among the major rate-controlling steps in mitochondrial
oxidative phosphorylation [121], thus its coordinated up-
regulation in the training response may represent a sig-
nificant adaption for the overall process of oxidative
phosphorylation. The central position of GABARAPL1
in both the exercise and trained networks may suggest a
driver/regulatory role in these responses, perhaps medi-
ated in part via its control of kappa OR cell-surface ex-
pression, and downstream effects may include the
altered regulation of the components of the mitochon-
drial respiratory chain. Previous studies have shown that
the knock-down of GABRAPL1 leads to many cellular
bioenergetic changes, including increased basal oxygen
consumption rate, increased intracellular ATP (possibly
due to OR-mediated dysregulation of adenylyl cyclinase/
cAMP signalling), increased total glutathione, and an ac-
cumulation of damaged mitochondria [117]. It has also
recently been reported that the dysregulation of autoph-
agy, in which GABARAPL1 has a central role, is linked
to several neuromuscular disorders in human [122]. In
the context of exercise and training, autophagy has
already been shown to be activated by high-intensity,
but not low-intensity, exercise in human [123] and to be
involved in the maintenance of muscle mass in Atg7
(autophagy related 7) knock-out mice [124]. It has also
been proposed that autophagosomal proteins, of which
GABARPL1 is one, may act as sensors for oxidative
stress (via redox signalling) and mediate cross-talk
between this and other cellular processes such as
mitochondrial turnover [125]. This latter relationship, in
particular, would explain the tight coupling of GABAR-
APL1, NADH dehydrogenase/ Mitochondrial respiratory
chain complex I and Proton-transporting ATP synthase/
Mitochondrial respiratory chain complex V clusters that
we observed in the exercise (rest state) and training
networks. There is already some experimental evidence
to support a role for autophagy in muscle cell homeosta-
sis during exercise [126, 127]. Furthermore, there is
support for GABARAPL1 being directly involved in me-
diating the autophagic energy stress response in heart
muscle, involving both mitophagy and glycophagy, via
its interaction starch binding domain 1 (STBD1) protein
[128]. Our results indicate that GABARAPL1 may play a
central role in the adaption to oxidative stress induced
by intense exercise and may also play a key role in the
adaptive response to training, perhaps in part via a role
in the recycling and upregulation of mitochondria
via mitophagy.
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The training response network also contains evidence
of ancillary adaptations. For example, a small three-gene
module, containing APP (amyloid beta precursor pro-
tein), ARRB1(arrestin beta 1) and MAPK10 (mitogen-ac-
tivated protein kinase 10), that is enriched for Enzyme
inhibitor activity/Response to radiation was initially dis-
connected from the main network in the untrained rest
state (see Fig. 7(a)). This module however was upregu-
lated and ‘re-wired’ in the trained network state (see Fig.
7(b)), gaining several second-degree connections with
GABRAPL1. Importantly, this module was also unique to
the trained network (i.e. genes not associated with the ex-
ercise response) (see Fig. 7(c)). Arrestins such as ARRB1
are known to promote agonist-mediated desensitization of
G protein-coupled receptors [129] and kappa and delta
OR-mediated G protein activation has been shown to be
attenuated by over-expression of ARRB1 in fibroblast-like
cell lines [130]. This module is also extended with the
addition of several genes also unique to the training re-
sponse (see Fig. 7(c)), namely CAT (catalase) and EGLN3
(egl-9 family hypoxia-inducible factor 3) and JUN (Jun
proto-oncogene, AP-1 transcription factor subunit), which
were also upregulated at a transcriptional level in the
trained cohort. Catalase helps protect the cell against
hydrogen peroxide mediated cytotoxicity especially when
levels of pyruvate are low [131]. EGLN3 is one of the most
important isoenzymes in modulating the hypoxic response
[132] and has also been reported to regulate myogenin ex-
pression and skeletal muscle differentiation. Interestingly,
JUN is known to be activated by ORs [133] and has been
found to be involved in oxidative stress-mediated suppres-
sion of insulin gene expression [134]. Another six-gene
cluster in the training response network, that was upregu-
lated in a coordinated manner in response to training,
contained genes that encode ligands and receptors of the
VEGF signalling pathway. Several of these, namely KDR,
NRP1 and FLT4, were exclusive to the training response.
In support of this, skeletal myofiber VEGFA has been
found to be essential for the exercise training response in
mice [135]. These data suggest that there may be coordi-
nated upregulation of several genes specific to the training
response that may control ancillary processes in the
adaptive response to training in the skeletal muscle of the
Thoroughbred.

Conclusion
Functional category over-representation analysis is a com-
monly used and valuable aid to the biological interpret-
ation of gene/protein lists. However, this analysis may be
improved with additional information (e.g. molecular in-
teractions inferred from gene expression) derived from
the experimental context in question (e.g. post-exercise
skeletal muscle) and a contribution from unsupervised
methods (e.g. community analysis) in defining functional

classes. The absence of these considerations risks under-
exploiting rich high-throughput datasets and overlooking
novel information that might help to expand knowledge
of biological systems. As this is the first demonstration of
this computational method, we have applied a stringent
implementation to maximize quality over scale; however,
in the future more refined implementations could be de-
veloped. Our results clearly demonstrate that network
analysis and its capacity to predict influential nodes is very
useful for highlighting putative control points. For ex-
ample, our hypothesis that GABARAPL1 and autophagy
may play a central role in the response to exercise and
training was generated solely from this network analysis
approach. Standard over-representation analysis enabled
some insight into downstream effects (e.g. enrichment for
energy metabolism, neurodegenerative disease etc.) but
did not highlight the autophagy process nor point to a pu-
tative driver gene. Neither was this indicated by differen-
tial gene expression analysis (GABARAPL1 was outside
the top 250 genes most significantly associated with exer-
cise or training). Therefore, we have demonstrated the
benefits of a novel network-based approach, which may
serve as a model for future transcriptomics-based investi-
gations into the molecular dynamics of biological systems
in health and disease.
Taken together our results, both from the over-

representation analysis and our novel network analysis
approach, support the involvement of mitochondrial
respiratory complexes I (NADH dehydrogenase) and V
(ATP Synthase) in both the exercise and training re-
sponses. As expected, the exercise response in the un-
trained cohort appeared to include elements of a stress
response but also included the downregulation of genes
involved in myogenic differentiation. Neither of these
features were observed in the trained cohort, although
we cannot preclude them from a ‘trained’ exercise re-
sponse based on the current data. It is also noteworthy
that there is some limited support for the constitutive
downregulation of heatshock proteins in the trained co-
hort. However, we did observe strong indications of the
constitutive and coordinated upregulation of the mito-
chondrial respiratory complexes I and V in the trained
cohort, which may suggest that the skeletal muscle has
adapted to regular bouts of intense-exercise in this man-
ner, presumably improving the efficiency of oxidative
phosphorylation. There is also the suggestion from our
network analysis that this upregulation of mitochondrial
complexes, and indeed mitochondria, in response to exer-
cise and especially training may be controlled in part by
autophagy (and perhaps mitophagy) via GABARAPL1.
Our results also suggested a connection between GABAR-
APL1 and the stimulation of/response to GPCR, especially
via the opioid receptor, signalling, in both exercise and
training. The network analysis also suggested that the
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SPTBN1 gene may play an important role in the adaptive
response and that this response may include re-wiring of
its interactions at the post-synaptic neuromuscular junc-
tion. Somewhat unexpected was the strong overlap be-
tween the exercise and training responses and pathways
linked to several neurodegenerative diseases. However,
there seems to be a strong body of evidence for an estab-
lished role for mitochondrial dysfunction and autophagy
in neurodegenerative disease. This also supports our
hypothesis of the central involvement of these processes
in both the exercise and training response in skeletal
muscle. The involvement of authophagy and mitochon-
drial activity at the synaptic junction in both neurodegen-
erative disease and athletic adaptation seems to be a
common theme, but further validation of this largely in
silico generated hypothesis is required. In recent years
autophagy and its role in many cellular processes and
diseases [136] has garnered much interest and already
autophagy-enhancing therapeutics have been proposed
[137]. This study has provided further support for this
process in relation to exercise (especially intense exercise),
provided novel evidence of its central involvement in the
adaptation of skeletal muscle to training and identified the
autophagosomal gene GABARAPL1 as a potential regula-
tory target.
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