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Abstract

Background: Genomic sequence-based deduction of antibiotic minimum inhibitory concentration (MIC) has great
potential to enhance the speed and sensitivity of antimicrobial susceptibility testing. We previously developed a
penicillin-binding protein (PBP) typing system and two methods (Random Forest (RF) and Mode MIC (MM)) that
accurately predicted 3-lactam MICs for pneumococcal isolates carrying a characterized PBP sequence type
(phenotypic 3-lactam MICs known for at least one isolate of this PBP type). This study evaluates the prediction
performance for previously uncharacterized (new) PBP types and the probability of encountering new PBP types,
both of which impact the overall prediction accuracy.

Results: The MM and RF methods were used to predict MICs of 4309 previously reported pneumococcal isolates in
2 datasets and the results were compared to the known broth microdilution MICs to 6 B-lactams. Based on a
method that specifically evaluated predictions for new PBP types, the RF results were more accurate than MM
results for new PBP types and showed percent essential agreement (MICs agree within +1 dilution) >97%, percent
category agreement (interpretive results agree) >93%, major discrepancy (sensitive isolate predicted as resistant)
rate < 1.2%, and very major discrepancy (resistant isolate predicted as sensitive) rate < 1.4% for all 6 3-lactams. The
identification of new PBP types over time was well approximated by a diminishingly increasing curve (Pearson’s
r=10.99) and minimally impacted overall MIC prediction performance.

Conclusions: MIC prediction using the RF method could be an accurate alternative of phenotypic susceptibility
testing even in the presence of previously uncharacterized PBP types.
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Background

Sequence-based prediction of antimicrobial minimum
inhibitory concentration (MIC) carries great potential to
significantly improve clinical and public health micro-
biology [1, 2]. In clinical isolates of the pneumococcus,
an important human pathogen, the primary determi-
nants of B-lactam resistance are alterations in the trans-
peptidase domains (TPDs) of 3 critical penicillin-binding
proteins (PBPs): PBP1la, PBP2b, and PBP2x [3-7]. We
previously have developed a “PBP typing” system based
on sequence signatures in the TPD of the 3 PBPs to
track and predict B-lactam minimum inhibitory concen-
tration (MIC) in pneumococci [8—10]. Two prediction
models (MM and RF) were developed by using pheno-
typic MIC data as the response and the TPD amino acid
sequences as the predictors. The trained models accur-
ately deduced B-lactam MICs of a test isolate if it carried
a PBP type that was included in the training dataset
(characterized PBP types) [8-10]. For a new PBP type
that was not included (uncharacterized PBP types), the
predicted MICs were generally less accurate, yet the per-
formance has not been fully evaluated [9].

All three pbp loci used in the PBP typing scheme have
been shown to be hot spots of horizontal gene transfer in
different pneumococcal lineages [11, 12]. Soon after the
large-scale consumption of B-lactam antibiotics began,
inter-species recombination between pneumococci and
other more frequently colonizing Streptococcus mitis group
members resulted in the transfer of many resistance-
conferring pbp alleles into the pneumococcal population.
[13-15]. Following subsequent mutation and intra-species
recombination, a large number of pbp alleles associated
with a wide range of B-lactam MICs were generated. Due
to the high plasticity of pneumococcal genomes, it is un-
likely that all possible PBP types will be documented. Thus,
the overall accuracy of the sequence-based MIC prediction
algorithms depends on both the probability of encounter-
ing new PBP types in a given population and the prediction
performance for these new PBP types.

In this study we assessed the B-lactam MIC prediction
models specifically for new PBP types using a novel
method. The prediction models were further validated in
an additional dataset from the same population. We also
developed and validated a simple model to predict the
growth rate of PBP types as more isolates are sequenced
from the population. The results would address whether
the predicted MICs can be an accurate alternative to
phenotypic MICs even in the presence of previously
uncharacterized PBP types.

Methods

Isolates and characterization

Isolates from two previously published datasets were
used in this study. Datasetl consisted of 2528 invasive
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pneumococcal isolates selected from the Active Bacterial
Core surveillance (ABCs) over the years 1998-2015
(Additional file 1: Table S1) [9]. ABCs is an active,
population-based and laboratory-based surveillance sys-
tem that is part of the Centers for Disease Control and
Prevention’s (CDC) Emerging Infections Program (See
ABCs surveillance reports for population sizes, IPD
incidence, antimicrobial susceptibility data and other
information at http://www.cdc.gov/abcs/reports-findings/
surv-reports.html). Dataset2 consisted of another 1781 in-
vasive pneumococcal isolates selected from the ABCs in
surveillance year 2015 (Additional file 2: Table S2) [10].
MICs for 6 p-lactam antibiotics, including penicillin
(PEN), amoxicillin (AMO), meropenem (MER), cefotax-
ime (TAX), ceftriaxone (CFT) and cefuroxime (CFX),
were determined with the broth microdilution method as
previously described [16]. When MIC was analyzed as a
numeric variable, an MIC of “= X” was treated as value X;
an MIC of “<= X” was approximated as value X; and an
MIC of “> X” was approximated as value 2X. A compari-
son of the Datasetl and Dataset2 using t-SNE is shown in
Additional file 3: Figure S1.

Genomic DNA samples from all isolates were se-
quenced as multiplexed libraries on the Illumina HiSeq
or MiSeq platform to produce paired end reads [8, 10].
The Ilumina short reads were analyzed by the CDC
pneumococcal typing pipeline as described previously
[8, 10] to extract the transpeptidase amino acid se-
quences of PBP1a, PBP2b, and PBP2x (Additional files 4
and 5: Tables S3 and S4). Each unique TPD amino acid se-
quence was assigned an identifier and the three-number
combination from each isolate was assigned as the
“PBP type”. All characterized PBP types and associ-
ated PB-lactam MICs are publicly available at https://
www.cdc.gov/streplab/mic-tables.html.

B-lactam MIC prediction model

The previously described Mode MIC (MM) model and
Random Forest (RF) model were evaluated in this study
[9]. Briefly, based on the phenotypic MIC data and PBP
type in a training dataset (Datasetl was used as the
training dataset for MIC predictions of Dataset2, see the
“Leave-one-type-out cross validation” section below for
the selection of training and testing dataset for Data-
setl), the MM model assigned the highest MIC among
the most frequently observed MIC(s) for a PBP type in
the training dataset as the predicted MIC of a test isolate
with the same PBP type. A new PBP type that was not
seen in the training dataset was approximated by a train-
ing PBP type showing highest amino acid identity. In
contrast, the RF model were trained by using the amino
acid at each position of the 3 TPDs as predictors and
the phenotypic MIC (log2 transformed) as a continuous
response. The trained RF model then predicted the MIC
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of a test isolate based on its TPD amino acid sequence.
For a given position in the TPDs, any amino acid not
seen in the training dataset was approximated by train-
ing amino acid with the least BLOSUMS62 [17] distance.
The R package “randomForest” was used for RF model
training and prediction. The number of trees was set as
5 times of the number of total training isolates following
the recommendation of the software manual to ensure
that every input row gets predicted several times. Other
parameters were set as the default values, including
number of variables randomly sampled as candidates at
each split (mtry) = (number of predictors/3; 91 for Data-
setl). RF model tuning on mtry was performed using the
R package “caret”. Minimum variation of model perform-
ance around the chosen parameter values was observed
(Additional file 6: Table S5). A 10-fold cross-validation
of the RF model was also performed the R package
“caret” on Datasetl (Additional file 7: Table S6). The
resulting R* metrics showed a median of 0.97 (range,
0.94-0.98).

Leave-one-type-out cross validation

Datasetl was divided into training dataset and test data-
set in the “leave-one-type-out” cross-validation in a spe-
cial manner. For a given PBP type in Datasetl, all
isolates of this PBP type were selected as the testing
dataset while the remaining isolates were used as the
training dataset. Thus, the testing dataset contains only
a PBP type that was not included in the training dataset
(new PBP type). The leave-one-type-out cross-validation
specifically evaluated the prediction performance in a
situation where a new PBP type was encountered. MICs
in the test dataset were predicted using the MM and RF
models parameterized by the training dataset. Partition
of Datasetl was repeated 307 times by using each PBP
type in turn to select out the testing isolates. The pre-
dicted MICs were pooled together and compared against
the phenotypic MICs. If an RF predicted MIC did not
fall exactly on a two-fold dilution concentrations (e.g. 1,
0.5, 0.25......), the predicted MIC was log2 transformed
and rounded to the nearest log2 transformed two-fold
dilution concentration. A response randomization test
was also performed on Datasetl. The PEN MIC labels
were randomized over the input PBP sequences and the
“leave-one-type-out” cross validation was performed based
on the randomized Dataset1. After randomization, no cor-
relation between the phenotypic log2 transformed MIC
measurements and the predictions was observed (linear
regression R* = 0.032, Additional file 3: Figure S2).

Evaluation of prediction performance

The predicted MICs were treated as results of a new
method and the microdilution MICs results of a reference
method. For each isolate, the predicted MIC was
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compared to the microdilution MIC for each antibiotic ac-
cording to the FDA guidance for antimicrobial susceptibil-
ity test systems [18]. Briefly, the guidance’s definitions are:

Essential Agreement (EA): Agreement within plus or
minus one two-fold dilution of reference MIC;

Category Agreement (CA): Agreement of interpretive
results (Susceptible (S), Intermediate (I), or Resistant (R));
major discrepancy (maj): The reference category result
is S and the new method result is R; and very major
discrepancy; and (vmj): The reference category result is
R and the new method result is S.

MIC interpretive standards are shown in Table 1 and
are consistent with CLSI stadards [19]. To demonstrate
substantial equivalence between the reference and the
new methods, criteria for acceptable performance include:
1) percent essential and category agreement >89.9%; 2) a
maj rate of <3%; and 3) an upper 95% confidence limit for
the true vmj rate of <7.5% and the lower 95% confidence
limit for the true vmj <1.5%.

Model of PBP type growth

To predict the number of new PBP types that will be
found when sequencing additional isolates, we employed
a simple power law-like model similar to the one for calcu-
lating bacterial pan-genome size [20-22]. We denoted x as
the number of isolates sequenced and y as the number of
PBP types found in these x isolates. For each one additional
isolate sequenced, x increases by one and y either remains
the same or increases by one depending on whether the
additional isolate contains a new PBP type. The rate at
which y increases as x increases was approximated by Eq. 1,
where a and b are the two model parameters.

dy
et (1)

Given the initial condition (x = 1, y = 1), the solutions
to Eq. 1 are

Table 1 Interpretive Standard for 3-lactam antibiotics according
to the CLSI form M100-S23

Antibiotics Breakpoint MIC (ug/mL)
Susceptible (S)  Intermediate (I)  Resistant (R)

Penicillin (PEN) <0.06 0.12-1 22
Amoxicillin (AMO) <2 4 28
Meropenem (MER) <0.25 0.5 >1
Cefotaxime (TAX) <05 1 >2
Ceftriaxone (CFT) <1 2 >4
Cefuroxime (CFX) <05 1 >2
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a
y= mxb+l + l_b—-i-l;bi_l (2)
y=aln(x)+1; b=-1 (3)

With an infinite number of sequenced isolates, the

number of PBP types will approach <l—bi+l) if b< - 1;

otherwise it will approach infinity. To estimate the model
parameters, we generated 1000 permutations of the order
of genome addition in Datasetl. In each permutation, the
number of PBP types found on sequential addition of each
new genome was fitted to Eqgs. 2 and 3, respectively, using
the Nonlinear Least Squares (nls) function implemented
in the R software [23]. In a typical permutation, residual
standard error of fitting Eq. 2 was about 20-fold smaller
than that of fitting Eq. 3. We therefore selected Eq. 2 as
the predictive model and obtained 1000 fitted a and b
value combinations. To calculate the predicted value of
¥ (y,) for a given x (x,), the x,, value was applied to Eq. 2
together with each of the fitted a and b combination to
obtain 1000 y values, the median of which was used as y,,.
Prediction intervals (95% CI) for y, were calculated based
on the 2.5 and 97.5 percentile of these 1000 y values. Simi-
larly, the point estimate and 95% CI for % at a given x was
calculated using the 1000 a and b values.

We also analyzed the number of PBP types using the
maximum-likelihood estimator approach [24, 25] imple-
mented in the “poweRlaw” package of the R package.
The number of strains and the number of PBP types ex-
hibited an approximately linear relationship on a log-log
plot over more than two orders of magnitude in both the
horizontal and vertical axes (Additional file 3: Figure S3).
Parameter estimations from the “poweRlaw” package are
shown in Additional file 3: Figure S4. A goodness-of-fit
value of 0.13 and a bootstrapping hypothesis test p-value
of 0.12 was observed.

Statistics

Confidence interval for a proportion estimate was con-
structed using the exact binomial method (binom.test in R).
All statistical analyses were performed in R version 3.2.2
[23]; graphics were also created in R 3.2.2.

Results

“Leave-one-type-out” evaluation of 3-lactam MIC prediction
for new PBP types

We designed a “leave-one-type-out” cross validation fol-
lowing the principle of the standard “leave-one-out”
cross validation to evaluate prediction performance spe-
cifically for new PBP types (see Methods for detail). Ap-
plying the “leave-one-type-out” approach to the 2528
isolates in Datasetl, which included 59 serotypes and
403 MLSTs, we calculated the EA, CA, maj and vmj for
each of the 6 B-lactam antibiotics (Fig. 1). Results from
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the RF models showed higher than 97% EA for all 6 an-
tibiotics, while results from the MM models showed EA
lower than 90% for AMO and TAX (Fig. 1a). RF and
MM models showed similar percent CAs and only the
CA for TAX based on the MM model predictions was
lower than 90% (Fig. 1b). Both RF and MM methods
generated similar maj rates that were below 3% (Fig. 1c).
The largest difference between the two models was the
vmj rates (Fig. 1d). Results from the MM model showed
unacceptably high vmj rates for 4 of the 6 antibiotics,
with 3 of them higher than 50% (Fig. 1d). This was
largely due to incorrect MM predictions for a consider-
able number of isolates with PBP type 13-11-16, which
indicated a composite TPD amino acid sequence pattern
of PBPla-13, PBP2b-11, and PBP2x-16. The closely re-
lated PBP type 13-11-127, which was associated with
substantially lower p-lactam MICs than 13-11-16, was
used by the MM model for MICs of the PBP type 13-11-
16 isolates. In contrast, results from the RF model showed
acceptable vmj rates (lower 95% CI <1.5% and upper 95%
CI <7.5%) for all 6 antibiotics. Given that vmj is a more
serious discrepancy that should be minimized, the results
indicated that B-lactam MIC predictions based on the RF
model were more suitable for a new PBP type. In sum-
mary, the evaluation of prediction performance for new
PBP types suggested that MM model-predicted MICs sat-
isfied the three criteria of acceptable performance for
PEN, MER, and CFX, while the RF model-predicted
MICs satisfied the three criteria of acceptable per-
formance for all six B-lactam antibiotics examined.

PBP type growth approximated by a power law-like model
The number of PBP types observed as a function of the
number of isolates sequenced was approximated by a
two-parameter power law-like model for the growth rate
(Eq. 1 in Methods). For isolates in Datasetl, the order of
addition was permutated and fitted to the Eq. 2 model
using nonlinear least squares regression. The fitted
values of Eq. 2 well approximated the observed increase
of PBP types (Fig. 2a) in Datasetl with a typical residual
standard error of 241 on 2526 degrees of freedom.
Based on 1000 permutations, the likely values of the two
model parameters, a and b, were estimated (Fig. 2a).
The estimated parameter b showed a mean of -0.44
(Fig. 2a), indicating a general trend of decreasing prob-
ability of encountering new PBP types. Caution should
be taken in interpreting the parameter values as the
maximum-likelihood estimator approach showed a low
goodness-of-fit (Additional file 3: Figure S4).

Next, we validated the predicted growth of PBP types
using Dataset2 (Fig. 2b). The observed number of PBP
types on sequential addition of each isolate in Dataset2
(Fig. 2b, blue curve) were overlaid on the extrapolation
of predictions based on Datasetl (Fig. 2b, dashed curve)
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validation of Dataset1. All isolates of a PBP type were selected as the testing data and the remaining isolates were used as the training data. The
MM (red) and RF (green) models were parametrized by the training data and then used to predict the MIC of the testing isolates, which represent
a PBP type that was not included in the training data. The procedure was applied to each PBP type in turn, resulting in predicted MICs for each isolate

in Dataset1, which were compared with the phenotypic MICs. a Percent Essential Agreement (MICs agree within £1 2-fold dilution) between the
predicted and phenotypic MICs. b Percent Category Agreement (interpretive results agree) between the predicted and phenotypic MICs. ¢ Rate of
major discrepancy (phenotypically sensitive isolate predicted as resistant). The number of phenotypically sensitive isolates that was used to calculate
this rate is shown above the corresponding antibiotic. d Rate of very major discrepancy (phenotypically resistant isolate predicted as sensitive). The
number of phenotypically resistant isolates that was used to calculate this rate is shown above the corresponding antibiotic. Error bars are 95%
confidence intervals. PEN: penicillin; AMO: amoxicillin; MER: meropenem; TAX: cefotaxime; CFT: ceftriaxone; CFX: cefuroxime

and a very good agreement was observed (Fig. 2b). For a
typical permutation of Dataset2, the predicted and the
observed number of PBP types showed a Pearson correl-
ation coefficient of 0.99. Since both Datasetl and Data-
set2 represented invasive pneumococcal isolates from
the ABCs surveillance areas, it appeared Eq. 1 would be
good approximation for the growth rate of PBP types as we
sequence more isolates from this population. Equation 1
gives the probability of encountering an isolate with a
new PBP type given x isolates have been sequenced.
Based on the estimated 4 and b values, the probabil-
ity of encountering an additional isolate carrying a
new PBP was approximately 0.072 (95% CI 0.062 to
0.076) after sequencing 2528 isolates (Datasetl) and
0.054 (95% CI 0.047 to 0.062) after sequencing 4309
isolates (Datasetl and Dataset2).

Minimal impact of new PBP types on the overall
prediction accuracy

Modeling of PBP type growth suggested that the likeli-
hood of encountering an additional isolate carrying a

new PBP was small after we sequenced the 2528 isolates
in Datasetl. In addition, B-lactam MIC prediction for
new PBP types by RF model appeared to have good ac-
curacy. We therefore hypothesized that the RF model
trained by Datasetl can accurately predict p-lactam
MICs of Dataset2 isolates even in the presence of new
PBP types. To test this hypothesis, PBP sequence and
phenotypic MIC data of Datasetl were used to train the
RF model. For comparison purpose, we also trained the
MM model using the same dataset. The trained models
were used to predict MICs of Dataset2 isolates as the
test dataset, which included 44 serotypes and 299
MLSTs. The resulting predicted MICs were compared
with the phenotypic MICs (Fig. 3). The EA for 6 antibi-
otics ranged from 97.6% (PEN, MM method) to 99.8%
(CFT, both methods) and no substantial difference be-
tween the two methods were observed (Fig. 3a). Simi-
larly, the CA for 6 antibiotics ranged from 95.7% (PEN,
MM method) to 99.1% (CFT, both methods). The maj
rate calculation was based on the number of susceptible
isolates for each antibiotic, which ranged from 1351 to
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1740 (Fig. 3c). Neither RF nor MM method resulted in
more than 4 maj events for any antibiotic (Fig. 3c). For
PEN and CFX, both RF and MM predictions showed ac-
ceptable vmj rates (Fig. 3d, lower 95% CI <1.5% and
upper 95% CI <7.5%). Estimation of vmj rates for AMO,
and CFT was limited by small number (39 and 4, re-
spectively; Fig. 3d) of resistant isolates, although no maj
event was observed. In summary, the prediction per-
formance of RF and MM methods were similar based on
a representative testing dataset containing new PBP
types. The predicted B-lactam MICs appeared to be es-
sentially equivalent to the results of phenotypic testing.
For the RF model, the positive predictive value (PPV) for
B-Lactam resistance ranged from 0.80 to 0.96, and the
negative predictive value (NPV) ranged from 0.98 to 1
(Additional file 8: Table S7).

Next, we focused on the 148 isolates in Dataset2 that
carried 109 PBP types not present in Datasetl (Fig. 4,

Additional file 2: Table S2). For these new PBP types,
the RF method produced noticeably higher EA and CA
than the MM method (Fig. 4a, b), especially in the case
of PEN, AMO, and TAX. In fact, percent EA and CA as-
sociated with the RF method was above 90% for all 6 an-
tibiotics while this was not the case for the MM method.
The RF model-predicted MICs showed no maj or vmj
event for any of the 6 antibiotics (Fig. 4c, d). In contrast,
the MM model-predicted MICs showed two maj events
(both for CFX) and one vmj event for TAX (Fig. 4c, d).
The results supported the conclusion of the previous
“leave-one-type-out” cross validation that the RF model
allows more accurate -lactam MIC predictions than the
MM model for a new PBP type.

Discussions
Previous studies have demonstrated accurate sequence-
based f-lactam MIC predictions for pneumococcal isolates
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carrying a characterized PBP type (phenotypic p-lactam
MICs available for at least one isolate of this PBP
type) [8, 9]. Here we systematically evaluated the predic-
tion performance for uncharacterized PBP types (no
phenotypic B-lactam MICs available) in a population. We
compared two previously defined p-lactam MIC predic-
tion models, MM and RF, and found the RF model deliv-
ered better prediction results for new PBP types than the
MM model. A possible reason is that the MM model
depended only on the most closely related PBP type that
have been characterized to make predictions for a new
PBP type, thus did not fully use the information in the
training dataset. For example, a single amino acid change
(PBP2x I371T) in PBP type 13—-11-127 resulted in a com-
monly observed PBP type (13-11-16) that was associated
with 4-fold higher PEN and AMO MICs compared to the
original PBP type. The MM method simply used the MICs
of the former as the MICs of the latter, resulting in high
error rates. In contrast, the RF model accurately predicted
the MICs for PBP type 13-11-16 as a new PBP type, be-
cause the same PBP2x I371T substitution occurred in

other PBP types and the associated MIC changes have
been used to train the RF model. The RF model could also
be vulnerable to prediction errors if a new PBP type con-
tained amino acid substitutions not occurring in any pre-
viously characterized PBP types, although such a new PBP
type would become increasingly uncommon as we con-
tinue to expand the characterized PBP type database.
Nonetheless, the empirical nature of the sequence-based
MIC predictions stresses the importance of obtaining
phenotypic MICs for new PBP types that contain unusual
substitutions.

We also modeled the probability of encountering new
PBP types in a given population because this factor will
also impact the overall prediction accuracy. Using inva-
sive pneumococcal isolates from the ABCs surveillance
areas, we observed that the rate at which new PBP types
was discovered was well approximated by a power law-
like Eq. 2. Model fitting suggests that while the total
number of PBP types is unlikely to plateau soon, as we
sequence more isolates from ABCs surveillance areas,
the growth rate is diminishing. This observation could
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reflect that the rate at which new PBP types emerge in
this population is much slower than the rate at which
new PBP types are detected because we have examined a
large number of pneumococcal genomes from this popu-
lation in a short period (approximately 4500 genomes in
2 years). Effectively the PBP types observed represented
a subset of the finite, although large, number of PBP
types in the current, largely static population structure.
In the longer term, it is conceivable that genetic drift, se-
lection, and migration would allow more PBP types to
emerge, and the antibiotic selective pressure could lead
to a more drastic change in the PBP that is not
accounted for in the current model. Here we aimed to
conduct an empirical model fitting to estimate the in-
crease of PBP types in the near future where no dramatic
change of antibiotic selection pressures was expected.
More complicated models are possible although the
simple approximation by Eq. 2 provided a good pre-
diction for an independent test dataset (Fig. 2b). It
should also be noted that the problem of potentially
spurious power-law relationships could result in

difficulties in statistical inference [24—26] and should
be a priority of future research.

Although the MM method generated less accurate
MIC predictions than the RF method for new PBP types,
the overall prediction performance of the two methods
for an independent Dataset2 was similar. This was be-
cause only a small proportion of the Dataset2 isolates
carry a new PBP type (8.3%) and because MICs of the
any PBP type were similar to those of a closely related
PBP type in the training dataset (Datasetl). Combining
Datasetl and Dataset2 increased the number of charac-
terized PBP types from 307 to 420 and will allow more
accurate B-lactam MIC predictions for invasive pneumo-
coccal isolates from the ABCs surveillance areas going
forward. However, due to the high diversity of pneumo-
coccal genomes worldwide, it is important to further
evaluate the performance of PBP type-based MIC pre-
diction in pneumococcal isolates from populations
outside the U.S. and to document the PBP types causing
B-lactam resistance in different countries. In addition,
analysis of the constraints on evolutionary pathways
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leading to increased B-lactam MICs may provide insights
into resistance mechanisms and help design better pre-
diction models. The BLOSUM®62 substitution was used
as interpolate for unseen amino acids, which may not
capture the biological effects of a substitution on f-
lactam resistance. Incorporating the biochemical prop-
erties of amino acid, including charge, polarity, side
chain length, and the R-group size, could be of value
in improving prediction accuracy. Such limitation also
highlights the importance of obtaining phenotypic
MICs for newly found PBP types and to experimen-
tally determine the specific contribution of an amino
acid substitution to p-lactam resistance in future
research.

Conclusions

Predictions of pneumococcal B-lactam MICs using the
RF method could be an accurate alternative of pheno-
typic susceptibility testing even in the presence of previ-
ously uncharacterized PBP types. The findings may lead
to the development of sequencing-based extraction of
antibiotic resistance information from clinical specimens
without culturing, holding great promise to improve
clinical and public health microbiology.
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