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Abstract

Background: Research interests toward single cell analysis have greatly increased in basic, translational and clinical
research areas recently, as advances in whole-transcriptome amplification technique allow scientists to get accurate
sequencing result at single cell level. An important step in the single-cell transcriptome analysis is to identify distinct cell
groups that have different gene expression patterns. Currently there are limited bioinformatics approaches available for
single-cell RNA-seq analysis. Many studies rely on principal component analysis (PCA) with arbitrary parameters to identify
the genes that will be used to cluster the single cells.

Results: We have developed a novel algorithm, called SAIC (Single cell Analysis via lterative Clustering), that identifies the
optimal set of signature genes to separate single cells into distinct groups. Our method utilizes an iterative clustering
approach to perform an exhaustive search for the best parameters within the search space, which is defined by a number
of initial centers and P values. The end point is identification of a signature gene set that gives the best separation of the
cell clusters. Using a simulated data set, we showed that SAIC can successfully identify the pre-defined signature gene
sets that can correctly separated the cells into predefined clusters. We applied SAIC to two published single cell RNA-seq
datasets. For both datasets, SAIC was able to identify a subset of signature genes that can cluster the single

cells into groups that are consistent with the published results. The signature genes identified by SAIC
resulted in better clusters of cells based on DB index score, and many genes also showed tissue specific

expression.

Conclusions: In summary, we have developed an efficient algorithm to identify the optimal subset of genes
that separate single cells into distinct clusters based on their expression patterns. We have shown that it performs
better than PCA method using published single cell RNA-seq datasets.
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Background

Most molecular biology studies in the past decades have
been based on the data of gene expression levels over an
entire population of cells, assuming that characteristics
of these cells are homogenous. However, recent single
cell studies have proved this assumption to be incorrect,
as cell-to-cell variation even exists in genetically identical
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cells [1, 2]. Such heterogeneities among individual cells
may decide different cell-fate in response to environmen-
tal stress [3, 4] or biological conditions [5]. Fortunately re-
cent technology advances, especially in the field of
microfluidics, enables massively parallel isolation and
preparation of individual cells for large-scale whole tran-
scriptome studies to survey heterogeneity and discover
novel cell populations [6]. Although there are well-
established bioinformatics approaches for analyzing bulk-
cells gene expression data, there are still limited analysis
approaches for single cell data studies due to the complex
and heterogynous nature of single cell gene expression
data. Consequently there are increasing interests to
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develop bioinformatics methods to address the issues of
normalization, gene expression signature genes searching,
sub-population identification, and clustering in single cell
RNA-seq data analysis.

One of the most common goals of single cell study is
to identify sub-populations of the cells under certain
biological condition. Thus finding the most useful sub-
sets of genes, whose expression patterns would help in
clustering the single cells, becomes the key step of the
entire analysis workflow. Many current single cell data
analysis approaches focused only on the clustering algo-
rithm but were not engaged in searching for signature
genes that can benefit the clustering step. These methods
are conducted on genes filtered by RPKM [7, 8] values or
the top genes that have the largest residuals after fitting a
simple noise model [9]. Therefore the number of the
genes used for clustering can be as large as thousands. At
this scale, clustering results may be affected or even driven
by the noise embedded in gene expression data. For
downstream analysis, such as biological validation and
marker genes selection, it would be very difficult to study
a large number of genes. Therefore, it will be ideal if a
smaller subset of genes can be selected and are capable of
clustering the cells into distinct groups.

Some studies rely on traditional PCA methods [10-12]
to identify a set of representative genes, which are then
used to further separate single cells into different clusters.
For example, in Treutlein et al’s recent report on single
cell analysis of lung cells [11], 28 genes with highest load-
ings of the first four principle components were used in
unsupervised clustering. The parameter selection for PCA-
based signature genes selection approach is rather arbi-
trary, such as which principle components to use and the
number of genes with highest loadings. Macro et al. rec-
ommended using the 1000 most variable genes [10]. Seu-
rat, an R toolkit, combines linear and non-linear
dimensionality reduction algorithms for unsupervised clus-
tering of single cells [13]. Seurat also relies on PCA to se-
lect a set of highly variable genes to be used in
downstream clustering steps. Exact parameter settings for
this step vary empirically from dataset to dataset. Another
single cell analysis tool ICGS (https://code.google.com/p/
altanalyze/wiki/ICGS) uses the Iterative Clustering and
Guide-gene Selection algorithm to identify the most coher-
ent, correlated gene signatures that are able to provide a
better single cell clustering in the later step. A key param-
eter of this method, the correlation threshold, must be pro-
vided to indicate the minimum relative similarity required
to report correlated genes for downstream analyses, which
is also empirical on different datasets. In general, these ap-
proaches all require arbitrary or empirical parameters to
conduct the signature gene selection procedure.

In this study, we developed an iterative bioinformatics
approach that can identify the subset of signature genes

Page 10 of 142

whose expression patterns can reliably cluster the single
cells into distinct groups. The initial parameter setting of
our method is minimally empirical and less arbitrary
than PCA based methods.

Methods

Data sources

In this study we used three datasets including two pub-
lished single cell datasets [11, 14] and one simulated
data.

1. Lung epithelial cells dataset: Eighty single embryonic
lung epithelial cells were captured and mRNAs were
sequenced. Gene expression levels were quantified as
fragments per million mapped reads (FPKM)
generated by TopHat/Cufflinks. [15]

2. Cell mixture dataset: 301 single cells were captured
from a mixture of 11 cell populations and mRNA-
seq was performed. Quantification of gene expres-
sion levels were represented as TPM (transcripts per
million) using RSEM v1.2.4. [16]

3. We simulated a dataset containing 5000 genes and
100 samples. A subset of genes (about 5% of total
genes) had deviated expression profiles than the rest
of genes, which can separate the samples into 10
clusters. Each cluster contained 10 samples and had
various numbers of up and down-regulated genes.

Data preprocessing
To prepare the data for the signature genes selection
step, we used the following filters:

1. Removed all the genes expressed below a cutoff
(FPKM > =1 in lung dataset and TPM > =1 for cell
mixture dataset) in less than 2% of the cells to
remove undetectable genes.

2. For the remaining genes, we calculated the mean
and coefficient of variation (CV; equals standard
deviation divided by the mean) for each gene. We
fitted a loess model using (log2 transformed) CV
and mean values in R and then chose all the genes
with a distance more than 0.1 above the fitted line
for further signature genes selection [9].

Signature genes selection using iterative clustering

Our method utilizes an iterative k-means [17] clustering
approach to perform an exhaustive search for the best
signature genes within the search space, which is defined
by the combination of a number of initial centers K and
p-values P. The iteration is an optimization process
(evaluated by Davies-Bouldin index [18]) for each par-
ameter combination to select the best signature genes
given the predefined number of cluster k and significant
p value.


https://code.google.com/p/altanalyze/wiki/ICGS
https://code.google.com/p/altanalyze/wiki/ICGS
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Minimize:
DB =flk, p)
Subject to,

keK, peP

As the schematic workflow shown in Fig. 1, for each
number of initial centers (k) and p-value (p) combin-
ation, a k-means clustering using k as the initial number
of centers is performed on gene expression matrix (log2
transformed FPKM or TPM) and analysis of variance
(ANOVA) is then used to analyze the differences of gene
expression values among k groups for each gene. Genes
with ANOVA calculated p-value less than or equal to
the preset p are entered into the next round of k-means
clustering using the same k as initial number of centers.
The iteration continues until the number of genes after
the iteration remains unchanged from the previous iter-
ation. We consider that the optimal gene subset’ is stable
for this parameter combination. At the end of iteration,
a Davies-Bouldin (DB) index will be calculated for each
parameter combination based on the selected signature
genes and k-means determined clusters. DB index, with
the formula shown below, is a commonly used scoring
function to evaluate the clustering result. S; is a measure
of scatter within the cluster i; d (C;, C)) is a measure of
separation between cluster ci and ¢j. It is a function of
the ratio between the within cluster scatter and the
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between cluster separation, therefore a lower DB index
indicates a better clustering.

max [ S ES
iz d(Ci,Cj)

The best combination of cluster number and p-value
will be selected according to DB index values. Gene sets
associated with this best combination will be considered
as the optimal signature gene sets.

1 N

DB:ﬁZ

i=1

Visualization of clustering using signature genes

For visualizing the clustering results of single cell data,
we adopted R toolkit Seurat [13], which combines linear
dimension-reduction method (PCA) and nonlinear
dimension-reduction method (t-SNE). Instead of apply-
ing the combined dimension-reduction to variable genes
identified by Seurat, we used the signature genes se-
lected from our iteration process as input to Seurat.
Density clustering then was used to classify distinct
groups of cells on the t-SNE map created from these
genes. The signature genes were also subjected to un-
supervised hierarchical clustering using Cluster v3.0 [19]
and visualized using Java Treeview [20].

Implementation and hardware environment
The entire algorithm was implemented in R. The
computation server used to run the algorithm was a

Single cell RNA-Seq Data

Data pre-processing and
filtering

Run SAIC algorithm to
select signature genes

Cluster Visualization
using SAIC output
genes(2D-plot, heatmap)

Fig. 1 Systemic scheme of SAIC algorithm

Initialize K, P

Clustering using k-means

(number of initial centers is K) €
ANOVA to identify signature genes
among K groups
(p-value cut off is P) Yes

Iteration Converge:

Did significant genes
change compared to
last iteration?

No

Calculate DB index and
export signature gene list
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DELL server with 32 Intel Xeon CPU cores and
256G RAM.

Results

We applied the SAIC algorithm to one simulated dataset
and two published single cell datasets. After signature
genes selection, the results were evaluated by Davies-
Bouldins index and then visualized using both a t-SNE
2D-plot and an unsupervised hierarchical clustering
heatmap.

Simulated data set

We applied the SAIC algorithm to the simulated dataset
consisting of 100 cells with signature genes that can sep-
arate the cells into 10 clusters. The first step was to se-
lect a reasonable search space, defined by a range of K
and P values. We selected K ranging from 3 tol2, which
allowed us to evaluate the effects of sub-optimal cluster
numbers. We selected P values ranging from 0.001 to
1le-09 as our search space. We applied the SAIC algo-
rithm with these combinations, and the distribution of
DB index values is shown in Fig. 2a. The median DB
index for K = 3 is 2.13. It is interesting that the DB
index decreases when the initial center becomes closer
to the correct number of 10, but increases again when
the initial center number exceeded 10. Large variation in
the DB index can be observed when the initial center
number is small, while this variation reduces as the ini-
tial center approaches 10. The DB indexes also become
smaller as the p value became more stringent, and re-
sults in less signature genes. The results show that an
initial center of 10 gives the best overall DB index, while
the optimum parameter combination is K = 10 and
P = 1e-09 (Fig. 2a). This parameter combination resulted
in 619 signature genes. Two-dimensional t-SNE plot
shows that these signature genes can separate the 100
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cells correctly into the 10 pre-defined clusters (Fig. 2b).
We also performed analysis using PCA and the Seurat
method. For PCA method, we combined the top 50 genes
of the first 4 principal components to select 347 unique
genes. For Seurat, we picked the first 3 principal compo-
nent and significant level of 0.01, which resulted in 183
unique genes. Neither of the methods is able to identify
the 10 subgroups correctly (Additional file 1: Figure S1).

Although the algorithm worked well with simulated
data, it is important to apply it to experimentally gener-
ated single cell data sets to prove its effectiveness for
real biological data.

Lung epithelial cells data

The first biological dataset we tested had RNA-seq data
of 80 single lung epithelial cells. Genes with FPKM value
more than 1 in at least two cells (N = 10,421) were used
in the loess model fitting and filtered as described in the
method session. After the filtering steps, 4272 genes
were selected for the subsequent signature gene selec-
tion. We tested initial center K from 3 to 10 because the
optimal number of clusters is 5 based on the original
published paper, and P value ranging from 0.001 and le-
10 since lower p values would not yield any signature
genes. A DB index matrix was generated based on the
exhaustive search with all combinations of p-value and
cluster number within the search space and presented in
the boxplot graph (Fig. 3a). Similar to the results of
simulation data, the DB index is the worst for initial cen-
ter of 3. The DB index distribution is better when the
chosen initial center increases and approaches 6, but be-
come worse for 7 centers and above. Out of the 72 com-
binations, the best DB index value appears at K = 6 and
P = 1e-07. As a result of this parameter combination,
216 genes were identified as the signature gene set.
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Fig. 2 SAIC performance on the simulated dataset. a Distribution of DB index values for each initial center using SAIC algorithm on the simulated
data set. Boxplot was generated using R package “ggplot’. Each box represents a range of p values for the specific initial center parameter (K).
Each dot represents the actual DB index value of each p-value (P). The middle line within each box represents the median value. Whiskers stop at
lower and upper adjacent values. b Two-dimensional plot (t-SNE) of the 100-cell simulated data. The 619 signature genes were selected using
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As shown in Fig. 4a, cells can be clustered into 6
groups using the 216 signature genes identified by our
method. Similar to the clustering result of PCA-method
selected genes (Fig. 4b), the SAIC algorithm plot shows
that the location of BP cell cluster is between the AT1
and AT?2 clusters, consistent with the fact that BP cells

express genes found in both AT1 and AT2 cells. How-
ever, two of the originally designated BP cells are classi-
fied as AT1 cells in our analysis. From the t-SNE plot,
these two cells are indeed closer to AT1 cell clusters
(Fig. 4a) and show different expression profiles than the
other BP cells using a heatmap (Fig. 5a). Ciliated cells
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Fig. 4 Comparison of SAIC with other methods using t-SNE plots. Two dimensional t-SNE plots showing clustering of 80 lung epithelia cells into
five cell groups, using (a) 216 signature genes identified by SAIC, and (b) 111 genes identified by PCA. Clusters are colored by cell class as reported in
the paper published by Treutlein et al. The cells that are clustered differently from the published results are circled. The two BP cells are circled in
green, and the one ciliated cell is circled in blue. The t-SNE plots of clustering results of 301 mixed single cells are shown in C and C. they are based
on (c) 410 signature genes selected by SAIC and (d) 1545 variable genes selected by Seurat clustering algorithm. Color represents different cell sources
correspondent to the paper published by Pollen et al. The iPS and NPC cells are circled in red
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and Clara cells form distinct clusters by both SAIC and
PCA methods (Fig. 4a and b), except that one ciliated cell
forms a separate cluster as its expression profile is slightly
different from the other two ciliated cells (Figs. 4a and 5a).
To compare the clustering results using the signature
genes selected using our approach and the ones selected
in the original paper using the PCA method, we calculated
the DB index score. We found that our clustering result
had a better DB index (1.18) than the PCA-relied cluster-
ing result (1.25), suggesting the signature genes selected
by our approach had clustered cell groups better than the
PCA method. Hierarchical clustering of the 80 cells using
the 216 gene set also shows clearly distinct cell groups
that are consistent with the t-SNE plot (Fig. 5a).

Cell mixture data

This dataset contains RNA-seq data of 301 cells, which
is a mixture of 11 different cell types. Three cell types,
GW16, Gw2l, AND GW21.2, are very similar to each
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other, as they are cells at different developmental stages.
After initial filtering steps similar to the lung single cell
data above, 7591 genes remained for subsequent signa-
ture gene selection. The search space of p-values and
initial center numbers were selected differently from the
previous data set due to the different scale of sample size
and diversity of the cell sources. We wanted to examine
whether more groups would give better results, and also
whether our algorithm had bias towards bigger group
numbers, so we extended the number of initial centers
to 17 as there were more cells in the data set. We also
used much smaller P value cutoffs as the cells are quite
distinct based on their expression profiles.

As shown in Fig. 3a, initial center K = 8 gives the best
overall DB index, and the trend of DB index distribution
is similar to the other two data sets, as it gets better when
approaching the optimal initial center. The combination
of K = 8 and P = 1e-70 gives the best DB index value and
results in 410 signature genes. The number of signature
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Fig. 5 Gene expression heatmap based on hierarchical clustering of (a) 80 lung epithelia cells, using 216 signature genes identified by SAIC and (b)
301 mixed single cells, using 410 signature genes selected by SAIC. Side color bar was labeled based on literature reported cell group information
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genes is much smaller compared to the 1545 genes se-
lected using Seurat’s default method. Fig. 4c shows that
the 301 cells can be clustered into 8 distinct groups, repre-
senting the different cell types. The three human cortex
cells at different development stages (GW16, GW21, and
GW?21.3) are grouped into a single cluster, reflecting the
nature of their similar sources. The NPC and iPS cells are
close to each other and grouped into a single cluster,
reflecting that they share similar progenitor cell character-
istics (Fig. 4c). The groups are more separated from each
other on the t-SNE plot generated from our signature
genes and have less dispersion within groups, comparing
to the Seurat clustering approach (Fig. 4c and d). Our ap-
proach also has a better DB index score (1.73 vs. 1.82), in-
dicating our signature genes can separate different cells
groups better than the Seurat approach. The heatmap de-
rived from hierarchical clustering using the same set of
signature genes also separates the cells into groups
correspondent to the expected cell population, with iPS
and NPC cells clustered together (Fig. 5b).

To investigate whether our signature genes are bio-
logical meaningful and could provide some useful infor-
mation about cell types in each cluster, we did further
analysis on the genes uniquely identified in each cell
cluster to see whether we could identify their possible
tissue type. Using DAVID online annotation tools [21, 22],
the 135 genes specifically detected in K562/HL60/2339
cells are enriched in genes that originated from blood cells
(Table 1A). Similarly, the 29 genes specifically detected in
NPC/GW/iPS clusters and 236 genes in BJ/Kera/2338
cluster indeed originate from neural cells and skin cells
(Table 1B and C). These results confirm that our signature
genes not only are useful to cluster the cells, but also are
biologically informative.

Discussion
The rapid advances in single cell transcriptomics em-
power scientists to explore gene expression at single cell
resolution, which increases the demand for develop-
ments of single cell data analysis approaches. In this
study, we developed an iterative algorithm called SAIC
that combines k-means clustering and ANOVA analysis,
using the exhaustive search within the search space to
select the signature genes that will form optimal cluster-
ing of single cells. As a result of this method, the identi-
fied signature gene set has a much more manageable
size to investigate the underlying biological meaning.
SAIC is robust on both simulated and real datasets.
Using the simulated data set, we have demonstrated that
our algorithm could accurately detect the pre-defined
signature genes and cell clusters. For both of the real
single cell datasets, SAIC could effectively separate the
cells into very distinct groups and had better
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Table 1 DAVID functional annotations of tissue expressions by
genes specified by A) blood cell clusters; B) dermal cell clusters;
Q) neural cell clusters

Term PValue
A) blood cell clusters
B-cell 4.82E-08
Blood 2.83E-07
Whole blood 7.46E-07
Bone marrow 7.16E-05
Peripheral blood 8.28E-05
Cord blood 0.001507
B) dermal cell clusters
Pancreas 4.00E-12
Placenta 8.29E-09
Keratinocyte 1.25E-08
Liver 1.36E-08
Fibroblast 6.40E-06
Epidermis 141E-04
Q) neural cell clusters
Fetal brain cortex 531E-07
Cajal-Retzius cell 8.08E-06
Fetal brain 0.0050
Eye 0.015
Epithelium 0.029
Muscle 0.029

performance than the Seurat/PCA clustering approach
based on DB index evaluation.

The performance of the algorithm is also good. With
the large dataset of 301 single cells, the running time
was only a few hours with modest powered computation
server. For the smaller Lung data set with 80 cells, ana-
lysis was finished in just under 30 min. Most import-
antly, SAIC is less arbitrary than the PCA based method
with regard to parameter setting. When using the PCA
based method, a user has to arbitrarily decide which
principle components to include, and how many genes
with the highest loading in each PC will be considered.
Changing those parameters can result in very different
gene lists and clustering patterns. For example, the au-
thors of the lung epithelial dataset combined the top 30
genes in each of the first 4 PCs. This selection was prob-
ably based on examination of clustering results from
various parameter combinations and human interven-
tion to decide the optimal parameters. In our method,
there are also two parameters, initial center K and P
value for the ANOVA test. While the results are depend-
ing on the initial selection of these two parameters,
when a reasonable search space is selected, the algorithm
will be able to identify the best combination based on DB
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index score. For initial center number K, prior biological
knowledge can provide a reasonable range in most cases.
The DB index distribution can also be used as guidance
for the parameter selections, as one should observe the
lowering trend when the optimal number of center is be-
ing approached (Fig. 2). If this trend is not observed in the
selected range, one needs to change the number of initial
centers K to identify a better search space. P-value range
is usually affected by the extent of differences among the
cell groups. For instance, in the cell mixture data, the
lower bound P value was 1e-70 because of the large differ-
ences among different cell types. This lower bound P
value was identified by lowering the P value stepwise until
no genes could be identified beyond that level of signifi-
cance. Therefore, a reasonable search space can be defined
quickly with minimum initial trials.

The SAIC algorithm also has limitations. For instance, it
may not detect very rare cell populations that contain less
than 3 cells, as they may not reach the desired significance
level during an ANOVA test and hence could be missed
in the iteration process. We used log2 RPKM values for
the two biological data sets tested in this study. It has been
reported that quantifying the transcript compatibility
counts (TCC) is better than RPKM/FPKM [23]. It has
been shown that cell cycle-related genes may account for
false positive groups in single cell RNA-seq data [2]. We
did not try to remove these genes in the current imple-
mentation, but one can remove these genes using the al-
gorithm proposed by Buettner et al. [2], then applying the
SAIC algorithm. In addition, SAIC still relies on the initial
selection of two parameters to identify the best combin-
ation, although the optimal search space can be identified
easily with some initial trials.

Conclusions

In this study, we have presented a novel algorithm for
single-cell RNA-seq analysis that identifies the optimal
set of signature genes to separate single cells into dis-
tinct groups. We have shown that its performance is su-
perior to PCA based method using both simulated data
and published single cell RNA-seq data.

Additional file

Additional file 1: Figure S1. Two dimensional t-SNE plots showing
clustering results of 100 cells in the simulation dataset using PCA (A) and
Seurat (B) method. For PCA method, we combined the top 50 genes of
the first 4 principal components to select 347 unique genes. For Seurat,
we picked the first 3 principal component and significant level of 0.01,
which resulted in 183 unique genes. These data were used to generate t-
SNE plots using Seurat package (PDF 262 kb)
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