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Abstract

Background: In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and
14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most
common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective
diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease.
Accordingly, in this study we systematically investigated KIRC’s prognostic biomarkers for survival using the reverse
phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA).

Results: With comprehensive data available in TCGA, we systematically screened protein expression based survival
biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time.
This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a
better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which
are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we
found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN,
ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data.

Conclusions: Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients’ survival
in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers
might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment
strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression
level. These biomarkers shared a significant overlap, indicating that they were technically replicable.
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expression, Prognostic biomarker

* Correspondence: zhongming.zhao@uth.tmc.edu; zding@mdanderson.org;
peilin.jia@uth.tmc.edu
1Center for Precision Health, School of Biomedical Informatics, The University
of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820,
Houston, TX 77030, USA
2Department of Systems Biology, University of Texas MD Anderson Cancer
Center, Houston, TX 77030, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2017, 18(Suppl 6):678
DOI 10.1186/s12864-017-4026-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4026-6&domain=pdf
mailto:zhongming.zhao@uth.tmc.edu
mailto:zding@mdanderson.org
mailto:peilin.jia@uth.tmc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Cancer remains a leading cause of death in the United
States [1]. The identification of effective prognostic bio-
markers for patient outcomes can greatly improve early
cancer detection and treatment strategy selection. Ac-
cordingly, locating survival biomarkers has been a major
goal during recent decades. Thanks to revolutionary ad-
vances in high-throughput biotechnology, especially mi-
croarrays and next-generation sequencing, the volume of
biomedical data available to researchers has increased
exponentially. Many large cancer research programs
have been launched or already completed, aiming at
deciphering the complex molecular pattern in cancer.
These programs include The Cancer Genome Atlas
(TCGA), The Cancer Proteome Atlas (TCPA) [2], and
The International Cancer Genome Consortium (ICGC).
Launched in 2005, TCGA was dedicated to characterize
samples of more than 30 types of cancer, generating
enormous amounts of comprehensive genetic, epigen-
etic, transcriptomic, and proteomic data that enable re-
searchers to systematically investigate biomarkers across
all the major types of cancer.
There are many types of potential biomarkers for can-

cer. DNA alterations are a major type of biomarker candi-
dates, including single nucleotide variants (SNVs), small
insertions and deletions (indels), copy number variations
(CNVs), and structural variants (SVs). Most successful ex-
amples of DNA mutations as biomarkers were found in
well-studied cancer genes, such as EGFR [3], KRAS [4],
and BRAF [5]. Gene expression patterns were commonly
used to predict patient outcomes when microarrays were
widely used to measure mRNA expression [6], and this
trend has continued now that sequencing, including gen-
ome sequencing and transcriptome sequencing, has be-
come the methodology of choice. Many studies have been
conducted to discover mRNA biomarkers in numerous
cancer types [7–11], yet few results have been replicated
in independent cohorts. Protein expression has also been
examined for its biomarker potential, although proteomic
technology is well behind that of DNA or RNA assays at
the genomic scale. Reverse-phase protein arrays (RPPAs)
provide an efficient way to simultaneously quantify the ex-
pression level of many proteins [12], although they have
not yet been used to survey all human proteins.
In 2016, it is estimated that there will be 62,700 new

cases of kidney cancer in the United States — an increase
of approximately 8% compared to 2010 — and that 14,240
patients will die from the disease [1, 13]. Because the inci-
dence of kidney renal clear cell carcinoma (KIRC), the
most common type of kidney cancer, is expected to con-
tinue increasing in the US [14], there is an urgent need to
find effective prognostic biomarkers for KIRC. TCGA
[15], as well as several other large-scale cancer genome
studies [16–18], have systematically investigated KIRC’s

molecular profiles in hundreds of samples, but to date,
studies of somatic mutations in KIRC have found only a
few potentially useful prognostic markers. These include
the tumor-suppressor genes VHL, which is involved in the
degradation of hypoxia inducible factor and is associated
with both the sporadic and familial forms of KIRC [15];
PBRM1, a gene involved in chromatin remodeling [19,
20]; BAP1; and PTEN. Notably, in KIRC it is the tumor-
suppressor genes that are most prone to mutation,
whereas in other cancer types mutation is most common
in oncogenes.
In this study, we conducted a systematic screening for

somatic-mutation, mRNA-expression, and protein-
expression prognostic biomarkers. We started with a
pan-cancer screening, which helped us to discover only
moderate numbers of significant biomarkers in most
cancer types. Remarkably, our pan-cancer results
highlighted an unusually large number of protein bio-
markers in KIRC compared to other types of cancer.
Therefore, we focused on the further analyses of these
protein biomarkers in KIRC. Specifically, we explored
their correlation with changes in mRNA expression,
their co-expression patterns, their crosstalk with other
domains of data, and their unique power to predict pa-
tient outcome in KIRC samples from specific stages of
cancer. In summary, the present study provides a com-
prehensive overview of the protein biomarkers in KIRC.

Results
Analysis workflow
As is depicted in Fig. 1a, in this study, we first performed
pan-cancer screening for survival biomarkers in 11 cancer
types: bladder carcinoma (BLCA), breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), glioblastoma
multiforme (GBM), head-neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), ovarian cancer (OV), rectum adenocarcinoma
(READ), and uterine corpus endometrial carcinoma (UCEC).
We decided to combine the COAD and READ samples,
collectively referred as COADREAD, in our analyses as the
two cancer types are closely related [21]. Thereafter, we
referred to our samples as being from ten cancer types.
In seeking prognostic biomarkers, we considered som-

atic mutations, mRNA expression, and protein expres-
sion. For each cancer type, we collected samples that
had clinical information and corresponding genetic mu-
tation data, gene expression data and protein expression
data from TCGA or the cBio Cancer Genomics Portal
[22]. Figure 1b shows the data available for the different
types of cancer. Unless otherwise stated, for each type of
survival analysis, we utilized sample subsets with two-
dimensional data. For example, samples with somatic
mutation and clinical data were used for somatic
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mutation biomarker analysis, samples with mRNA ex-
pression and clinical data (the MC group) were used for
mRNA biomarker analysis; and samples with protein
expression and clinical data (the PC group) were used
for protein biomarker analysis. To enable comparisons
between mRNA and protein expression, we also defined
a subset of samples (the PMC group) that had protein
expression data, mRNA expression data, and clinical
data. The number of samples for each cancer type used
in our analysis ranged from 72 to 839. Survival analysis

was conducted for each gene, and the chi-square test
(for category parameters, such as mutation data) or Cox
proportional hazards regression model (for continuous
parameters, such as mRNA and protein expression data)
was employed to identify significant biomarkers. For all
three types of biomarkers, we characterized a false
discovery rate (FDR) < 0.05 as significant, where FDR
was estimated using Benjamini and Hochberg’s method
[23] of making multiple corrections of the p values in
statistical tests (e.g., the chi-square test).
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Screening for survival biomarkers using somatic mutation
data
For somatic mutations, we only considered non-silent
SNVs and indels (i.e., changing amino acids) and mapped
these variants to genes using ANNOVAR [24]. We
screened mutation biomarkers for ten cancer types. The re-
sults for each cancer are summarized in Table 1. At
FDR < 0.05, the number of significant mutation biomarkers
ranged from 0 and 31. Three cancer types (BLCA, COAD-
READ, and LUAD) had no prognostic biomarkers from the
somatic mutations. Six cancer types had <10 mutation-
based survival biomarkers: BRCA, GBM, HNSC, LUSC,
OV and KIRC. We identified six prognostic biomarkers in
BRCA (ZNF536, padjust = 9.6 × 10−4; BRWD1, padjust = 0.02;
CENPE, padjust = 0.03; MED12, padjust = 0.03; DLGAP4, pad-
just = 0.03 and FAM179A, padjust = 0.04 where padjust indi-
cates multiple-testing-corrected p values calculated using
the Benjamini and Hochberg method). For GBM, we also
detected six prognostic biomarkers, including ZFHX3 (pad-
just = 8.2 × 10−5), CTTNBP2 (padjust = 2.2 × 10−4), ZNF99
(padjust = 0.02), CARD11 (padjust = 0.03), IGFN1 (pad-
just = 0.03) and WDR63 (padjust = 0.04). We identified four
prognostic biomarkers in HNSC (DNAH17, padjust = 3.9 × 10
−3; RSPH4A, padjust = 6.7 × 10−3; CILP, padjust = 0.02 and
NBEA, padjust = 0.02). LUSC had six significant biomarkers,
includingUGT8 (padjust = 1.5 × 10−9),DDC (padjust = 3.9 × 10
−4), SOGA2 (padjust = 1.6 × 10−3), SEPT14 (padjust = 1.6 × 10
−3), HERC6 (padjust = 0.01) and ZNF81 (padjust = 0.02). OV
had one survival biomarkers: PLB1 (padjust = 0.04). In KIRC,
we found only one mutation biomarker, MTHFD1 (pad-
just = 0.01), which was mutated in five of 414 samples.
UCEC had >10 mutation biomarkers. Among all the can-
cers we examined, UCEC had the largest number of SNV
survival biomarkers with somatic mutations in 31 genes.
The strongest prognostic biomarkers in UCEC were
GPR124 (padjust = 8.1 × 10−8), KCNJ4 (padjust = 4.0 × 10−6),
TFIP11 (padjust = 1.8 × 10−5), YIF1A (padjust = 1.5 × 10−4),

SLC22A6 (padjust = 8.9 × 10−4), and FSD1L (padjust = 1.1 × 10
−3). Five of 247 UCEC samples carried GPR124 mutations.
All five patients from whom the tested samples were taken
had survival times of less than 10 months, substantially
shorter than the 34-month average survival time seen in
patients whose samples did not contain mutations in
GPR124.

Pan-Cancer screening for survival biomarkers using
protein expression data
To find other potential survival biomarkers, we next
screened protein expression data measured by the RPPA
platform. According to TCGA data, the RPPA assay inves-
tigated 187 RPPA antibodies targeting 155 proteins. The
original study of cancer functional proteomics had catego-
rized these proteins into ten pathways [2]. The number of
samples for each cancer type ranged from 126 (BLCA) to
745 (BRCA) in the PC sample group and from 72 (GBM)
to 691 (BRCA) in the PMC sample group. We performed
a Cox proportional hazards regression on the protein ex-
pression data from both sample groups (of note, the PMC
sample group is a subset of the PC sample group). We
performed the analysis on the PMC sample group for all
ten cancer types. Surprisingly, we found that KIRC had
the largest number of prognostic protein biomarkers (85
of 187, 45%, Table 1). Among the other nine cancer types,
BRCA had the second most protein biomarkers (ten).
The results above changed slightly when we conducted

the analyses on the PC group. When the PC sample group
was compared to the PMC sample group, the number of sig-
nificant biomarkers increased for KIRC (86 in 454 PC sam-
ples vs. 85 in 436 PMC samples), OV (14 in 407 PC samples
vs. 0 in 201 PMC samples), and UCEC (7 in 403 PC samples
vs. 3 in 300 PMC samples). In addition, we examined the
impact of sample size on prediction of biomarkers across
cancer types. For example, in the PC sample group, the sam-
ple sizes for both UCEC (n = 403) and OV (n = 407) were

Table 1 Results of pan-cancer screening for prognostic biomarkers

Cancer
type

Mutation analysis RPPA analysis mRNA analysis

Samples
(N)

Genes
(N)

Genes (N) (chi-square
test, FDR < 0.05)

Samples
(N)

Genes (N) Genes (N) (log-rank
test, FDR < 0.05)

Samples
(N)

Genes (N) Genes (N) (log-rank
test, FDR < 0.05)

BLCA 92 63 0 110 17 2 110 9 0

BRCA 463 67 6 691 31 10 691 20 0

COADREAD 222 62 0 185 2 0 185 6 0

GBM 284 31 6 72 32 1 72 14 1

HNSC 159 50 4 206 17 0 206 12 0

KIRC 414 32 1 436 101 85 436 89 84

LUAD 116 59 0 223 15 0 223 30 1

LUSC 174 173 6 167 15 0 167 12 0

OV 315 14 1 201 18 0 201 7 0

UCEC 247 472 31 300 26 3 300 39 5
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similar to the sample size for KIRC (n = 454), but there were
only 14 prognostic protein biomarkers for UCEC and seven
for OV, substantially less than the 86 for KIRC. This
confirmed that the large number of prognostic biomarkers
we found in KIRC was only slightly attributable to the size of
the sample. Moreover, there was substantial overlap in the
protein biomarkers found in different sample groups. As
shown in Fig. 2a, we compared the 85 KIRC protein
biomarkers obtained using the PMC sample group and the
86 biomarkers found in the PC sample group. A total of 83
biomarkers overlapped, further confirming that the sample
size had a very small impact on the biomarkers we found in
KIRC.
Overall, the screening results showed that KIRC is

different from all other cancer types in terms of the num-
ber of protein biomarkers of patient survival. The protein
biomarkers in KIRC are also different from other types of
biomarkers, such as those obtained using mutation data.
Since most driver mutations previously reported in KIRC
are in tumor-suppressor genes (i.e., are of limited clinical
use), our finding of a large number of protein biomarkers
has important implications for the development of preci-
sion medicine approaches to treat patients with KIRC.
Hereafter, we refer to the 85 RPPA biomarkers found in
the PMC sample group as the KIRC protein biomarkers
and utilized them in subsequent analyses.

Prognostic capabilities of mRNA biomarkers
Having observed that KIRC has a surprisingly large
number protein biomarkers prognostic for survival, we
next explored the mRNA expression levels of these
protein biomarkers to determine whether the protein
biomarkers’ mRNA counterparts were also useful for
prognosis. The consistency between mRNA biomarkers
and protein biomarkers would presumably rely on the
correlation between mRNA and protein expression of
each gene, which was subjected to many factors, such as
post-transcriptional regulation, mRNA and protein
degeneration, the corresponding technology in data gen-
eration, the heterogeneity of the cancer samples, and the
clinical treatment the patients from whom the samples
were obtained had received. In this work, we investi-
gated the mRNA expression of the 155 proteins mea-
sured in the RPPA platform. We found that 148 of these
proteins had mRNA-expression data available in TCGA
pan-cancer RNA-sequencing data. Thus, following an
analysis strategy similar to that we had used in analyzing
protein-expression data, we performed a Cox propor-
tional hazards regression on the mRNA expression data
for two different sample groups: a PMC group with
protein-expression, mRNA-expression, and clinical data,
and an MC group that had mRNA-expression and
clinical data.
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Screening for prognostic mRNA biomarkers using the
PMC sample group (n = 436) yielded 84 significant
mRNA biomarkers for KIRC (84/148 = 57%, Table 1).
The most significant prognostic mRNA biomarkers in-
cluded CCNE1 (padjust = 1.4 × 10−11), FOXM1 (pad-
just = 7.8 × 10−11), CHEK2 (padjust = 9.8 × 10−11), KDR
(padjust = 2.4 × 10−10), and FASN (padjust = 2.9 × 10−10).
In strong contrast, we did not find significant prognostic
mRNA biomarkers for BLCA, BRCA, COADREAD,
HNSC, LUSC, or OV. There was one mRNA biomarker
in GBM and one in LUAD, and there were five in UCEC.
We then performed the analysis using the MC sample
group. Likely due to an increase in sample size, we ob-
served a few more significant mRNA biomarkers in
some cancer types, e.g., 11 in HNSC, 18 in LUAD, and
15 in UCEC. However, the number of mRNA bio-
markers in KIRC was still substantially higher than that
in any other cancer type, consistent with our findings
using the protein expression data. Hereafter, we refer to
the 84 mRNA prognostic biomarkers found in the KIRC
PMC sample group as the KIRC mRNA biomarkers and
used them in subsequent analyses.

Overlap between protein biomarkers and mRNA
biomarkers in KIRC
We next examined the correlation between KIRC’s pro-
tein and mRNA biomarkers in KIRC. The 85 protein
biomarkers, which were antibodies, targeted 79 unique
proteins, 71 of which had mRNA measurements in
TCGA pan-cancer RNA-seq data. A total of 52 genes
overlapped between the protein and mRNA biomarkers,
corresponding to 62 antibodies and 52 mRNA genes
(Fig. 2a). The overlapping genes were significantly over-
represented with protein biomarkers (p = 8.7 × 10−5,
hypergeometric test). Hereafter, these 52 overlapped bio-
markers (Additional file 1) are referred to as the general
prognostic biomarkers of KIRC.
To explore the functions of these 52 genes, we conducted

a pathway enrichment analysis using both the canonical
Kyoto Encyclopedia of Genes and Genomes (KEGG) anno-
tations and the ten pathways originally targeted by the
RPPA platform [2] (Additional file 2). Our results showed
that the overlapping genes were involved in the KEGG’s
cancer-related signaling transduction pathways (hsa05215:
prostate cancer, p = 2.2 × 10−3; hsa05223: non-small cell
lung cancer, p = 0.024; and hsa04012: ErbB signaling path-
way, p = 0.029). In addition, a previous study curated ten
pathways that are covered by the antibodies measured in
the RPPA platform [2]. In examining these custom-defined
pathways, we found that the cell-cycle pathway was particu-
larly enriched in our overlapping biomarkers (19/
52 = 36.5%, p = 0.03). In summary, we found many prog-
nostic biomarkers for KIRC at both the mRNA- and
protein-expression levels. These biomarkers overlapped

significantly and were enriched in cancer-related pathways,
which suggested their potential clinical value.

The large number of KIRC biomarkers was not due to
co-expression
We next asked whether the biomarkers we had observed
represented distinct expression patterns or whether they
were driven by a few unique processes, while others were
only co-expression partners. We used the Pearson
Correlation Coefficient (PCC) to explore the co-expression
pattern and calculated it for the 52 overlapping genes using
protein-expression and mRNA-expression data, respect-
ively (Fig. 2b). As shown in the heatmaps of mRNA expres-
sion (the lower triangle in Fig. 2b) and protein expression
(the upper triangle in Fig. 2b), the majority of gene pairs
showed low co-expression at both the mRNA and the pro-
tein levels. For example, only 28 (2.11%) of the 1326 gene
pairs had a PCC value >0.5 for protein expression, indicat-
ing a strong lack of correlation among the 52 genes. In
addition, there was weak consistency observed between the
mRNA and protein co-expression patterns, as shown in
Fig. 2b. Had there been strong consistency, the heatmap
would have been mirrored along the diagonal line.
We also compared the 52 overlapped genes with other

genes used in the same platform for their consistency be-
tween mRNA and protein expression. This allowed us to
examine whether these biomarker genes exhibited espe-
cially high correlations at the mRNA and protein levels.
We compared the protein-mRNA expression correlations
of the 52 biomarkers with the correlations of other genes
whose encoding proteins were measured in the RPPA
platform. As shown in Fig. S1 (Additional file 3), we
observed no significant differences.
We further investigated the oncoprint plots of the

most significant biomarkers to determine whether they
were co-expressed locally in a subset of the samples. We
defined samples as “highly expressed” if the expression
of a given biomarker in these samples was in the highest
quartile of the expression range, and we defined samples
as “poorly expressed” if the expression value was in the
lowest quartile. The analysis was performed for mRNA
expression and protein expression data, respectively. As
shown in Fig. 2, we created oncoprints of the top ten
most significant protein biomarkers (Fig. 2c) and mRNA
biomarkers (Fig. 2d). These oncoprints illustrated near-
random distribution in the samples, indicating that each
biomarker defined its own set of highly and poorly
expressed samples and had weak overlap with the ex-
pression patterns of other biomarkers. These results
confirmed that the 52 genes we observed represented
unique prognostic biomarkers at both the mRNA-
expression and protein-expression level and that they
were not duplicated or redundant.
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Screening for stage-specific KIRC biomarkers
Tumor stage is one of the most important clinicopatho-
logic factors associated with patient outcome. To deter-
mine whether the biomarkers we had observed provided
prognosis power beyond stage information, we per-
formed stratified survival analyses for each stage of
KIRC. We downloaded sample stage annotations from
TCGA and grouped the KIRC samples into four stages:
stage I (n = 210 samples), stage II (n = 41), stage III
(n = 107), and stage IV (n = 78). In each of these stages,
we applied the same analysis strategy in searching for
biomarkers using both mRNA and protein expression.
We referred to the biomarkers that were significant in
particular stages as stage-specific biomarkers.

Stage-specific biomarkers using protein expression
At FDR < 0.05, we observed five protein biomarkers in
stage I, four in stage III, and 18 in stage IV. We found
no significant protein biomarkers in stage II, although
there were two antibodies (YAP_pS127 and STAT5-
alpha) with marginal significance (nominal p = 7.5×10−4

and padjust = 0.083 for YAP_pS127; nominal p = 8.9×10
−4 and padjust = 0.083 for STAT5-alpha). A detailed list of
the results is presented in (Additional file 4: Table S3).
To qualify more biomarkers for analysis, we then
employed a less-stringent criterion, selecting biomarkers
if their nominal p values obtained by the log-rank test
were less than 0.001. We noticed that this threshold was
arbitrary, so we performed the subsequent analyses with
caution. With nominal p < 0.001, we identified two pro-
tein biomarkers in the stage I samples (HSP70 and
Rad51), two in stage II (YAP_ps127 and STAT5-alpha),
four in stage III (GAB2, MIG-6, MAPK_pT202_Y204,
and PEA-15), and seven in stage IV (TIGAR, FASN, AR,
S6, ACC1, Cyclin_B1, and GATA3) (Table 2A). No sig-
nificant biomarker was shared in more than one stage,
although some were significant in one stage and barely
missed being significant in a second stage. For example,
PEA-15 (encoding gene: PEA15) was prognostic in stage
III (nominal p = 5.0×10−4) but marginally missed our
criterion in stage IV (nominal p = 0.002). Another bio-
marker, AR (encoding gene: AR), was prognostic in stage
IV (nominal p = 3.0×10−5) and had a nominal p = 0.012
in stage III.
We used two example genes to illustrate the stage-

specific protein biomarkers (Fig. 3). Hsp70 is a heat-
shock-response protein encoded by HSPA1A. Deregu-
lated expression of Hsp70 at the protein level has been
reported in KIRC [25]. In our work, we found that the
protein expression of Hsp70 significantly predicts sur-
vival status for stage I samples of KIRC (Fig. 3a), but not
for any of the other stages (Fig. 3b, c, and d), nor for all
samples (p = 0.709). A second biomarker, STAT5-alpha

(encoding gene STAT5A), was prognostic for survival in
stage II (Fig. 3f ), but not for other stages (Fig. 3e–or h).
Next, we examined the distributions of protein expres-

sion, by stage, for each of the 15 stage-specific bio-
markers we had identified. Our goal was to identify
expression patterns that might explain the stage-specific
prognostic capability of these biomarkers. Other than
HSP70, YAP_pS127, and GATA3, all of the biomarkers
displayed stage-specific expression changes (Fig. 4). For
example, the protein expression level of Rad51 was sig-
nificantly decreased in stage I compared to stage III and
stage IV, and FASN’s protein expression level was signifi-
cantly increased in stage IV compared to the other three
stages. A similar pattern was observed in the other bio-
markers; their protein expression differed in at least two
different stages.
Using the PMC sample group, we screened for mRNA

biomarkers and discovered 15 that were stage-specific and
prognostic (nominal p < 0.001, log-rank test). Compared
with the stage-specific protein biomarkers, mRNA bio-
markers were surprisingly deficient in the early stages of
KIRC (stages I, II, and III) but were abundant in stage IV
(Additional file 5). As shown in Table 3, no significant
mRNA biomarker was found in stage I or stage II, and
only one gene, KDR, was significant in stage III (nominal
p = 7.3×10−4). In contrast, in stage IV we found a total of
15 mRNA biomarkers, including KDR.
Only four genes were associated with both stage-

specific protein biomarkers and mRNA biomarkers:
RAD51 (antibody, Rad51; stage I protein biomarker;
stage IV mRNA biomarker, Fig. 5), FASN (antibody
FASN; protein and mRNA biomarkers for stage IV),
ACACA (antibody ACC1; protein and mRNA bio-
markers for stage IV), and CCNB1 (antibody Cyclin_B1;
protein and mRNA biomarkers for stage IV).

Stage-specific biomarkers compared to general
biomarkers
Next, we compared the 15 stage-specific protein bio-
markers and the 15 stage-specific mRNA biomarkers
with the 52 genes shared between the protein and
mRNA biomarkers. As a result, we found seven stage-
specific protein biomarkers among the 52 general bio-
markers: ACC1, Cyclin_B1, FASN, GATA3, GAB2,
MAPK_pT202_Y204, and Rad51. In addition, we found
nine stage-specific mRNA biomarkers among the 52
general biomarkers: ACACA, BCL2, CCNB1, CCNE1,
DVL3, ERBB3, FASN, RAD51, and RB1.
Alterations in DNA are linked to protein or mRNA

changes. Therefore, to determine whether DNA alterations
can predict patient outcomes, we searched for somatic mu-
tations occurring in genes. In KIRC, several well-studied
genes, such as VHL, BAP1, PBRM1, and STAG2, are associ-
ated with frequent somatic, nonsynonymous mutations [15].
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However, in our analysis, none of these mutations demon-
strated significant prognostic power. Previous studies have
reported similar results, although they reported that VHL
displayed modest prognostic power [26]. In our work, we
found VHL as a stage-specific mRNA biomarker in stage IV
(p = 0.001, Table 3), where samples with high mRNA ex-
pression of VHL were associated with worse outcome. How-
ever, when we examined all samples regardless of stage, we
determined that VHL could not predict patient outcomes
(p = 0.1). Among the four genes shared by stage-specific
protein biomarkers and mRNA biomarkers, only the bio-
marker ACC1 (gene: ACACA) had sufficient mutation data
for survival analysis; that is, no other biomarker had at least
five samples with mutations. However, our analysis indicated
that ACC1 has no prognosis power, even though both its
mRNA and protein expressions were significant prognostic
biomarkers for stage IV KIRC (Additional file 6).

Discussion
In this study, we systematically screened potential protein
biomarkers using TCGA data for ten different cancer types.
Strikingly, among all the cancer types we examined, KIRC
was the only one that showed many survival biomarkers in
both protein-expression and mRNA-expression data. Al-
though to date, predicting the survival of KIRC patients
using somatic mutation biomarkers has been only modestly
successful [26], our study indicated that using protein bio-
markers to predict KIRC survival is promising.

YAP_ps127 is a stage II-specific biomarker identified in
our analysis. The corresponding gene, YAP1, is a tumor-
suppressor gene that plays a role in prostate cancer [27–
30]. STAT5-alpha (gene: STAT5A) is another stage II-
specific biomarker. Its corresponding protein participates
in the signal transduction process by mediating cellular re-
sponse to ERBB4 [31]. STAT5A’s involvement in many
cancers, including prostate cancer [32], oral squamous cell
carcinoma [33, 34], breast cancer [34], and colorectal can-
cer [35], has been reported. Gab2 (gene: GAB2) is an
adaptor protein that is important for cancer-signaling
transduction processes, including ERK signaling and
PI3K-AKT signaling [36]. PEA-15 is a stage III-specific
biomarker; its corresponding gene, PEA15, is involved in
cell proliferation and apoptosis, and an ovarian cancer
study showed that this gene is a promising target for can-
cer treatment [37]. The stage IV-specific biomarker FASN
is a protein that is involved in cellular fatty acid metabol-
ism and that is reportedly involved in different cancer
types, including ovarian cancer and breast cancer [38].
The most significantly enriched KEGG pathway for

the 52 general prognostic biomarkers was prostate can-
cer. The renal clear cell carcinoma pathway (hsa05211)
was not observed on the enriched pathways list. We
manually checked the individual biomarkers that were
involved in the renal clear cell carcinoma pathway, but
only seven of 148 genes investigated in this study were
found in the renal clear cell carcinoma pathway. This
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Fig. 3 Kaplan–Meier plots of HSP70 and STAT5-ALPHA. HSPA1A (encoding gene: HSPA1A) is specifically prognostic in KIRC tumor stage I, while
STAT5-alpha (encoding gene: STAT5A) is prognostic in KIRC stage II. The Kaplan-Meier plots of HSPA1A in samples from stages I-IV (a, b, c, and d,
respectively) were compared. A similar comparison was made for STAT5-alpha (e, f, g, and h, respectively). The numbers at the bottom of plots
show the number of samples at risk at each time point
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may explain why the pathway was not included on the
list of enriched pathways.
Although our study reported a number of candidate

protein and mRNA biomarkers specific to KIRC, it had
several limitations. The first limitation is the existence of
covariates. Covariates data is important for constructing
a reliable prognostic model [39]. In our stage-specific
biomarker analysis, there were more samples from male
patients than from female patients. In addition, the age
of the female patients was greater than that of the male
patients (Fig. 1c). Due to the limited sample size, there
was insufficient data available for us to take these and
other influential factors such as living habitation and
race into consideration. Since our study was a large-
scale exploration, we attempted to use limited samples
to find potential but strong trends. However, in order to
draw more robust conclusions, future studies should in-
clude more independent samples. With an increased
sample size, the covariates mentioned above could be
carefully considered.

The second limitation of this study is that the proteins
we investigated were restricted to those assayed in an
RPPA array. Although these proteins were carefully se-
lected and usually play important roles in cancer path-
ologies, it is possible that many other proteins that were
not included in the RPPA array are also prognostic for
KIRC survival. Wang et al. ‘s [40] study, which involved
screening for mRNA prognostic biomarkers, supports
this possibility. In our study, we tested different molecu-
lar types for the prognostic power. The prognostic
mRNAs we identified are involved in acute-phase re-
sponses, death-receptor signaling, and the inhibition of
matrix metalloproteases, and the proteins we identified
include representative proteins involved in apoptosis, the
cell cycle, the repair of DNA damage, and PI3K/AKT/
mTOR signaling. Based on the fact that information
flows from transcriptome to proteome, additional prog-
nostic proteins involved in the inhibition of matrix
metalloproteases may exist. Accordingly, further large-
scale screenings of potential protein biomarkers are
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necessary so that more significant prognostic protein
biomarkers can be identified.
The third limitation of our study is that we were re-

stricted in the types of cancer we could include. We ob-
served that, among the cancer types we examined, there
are many prognostic protein biomarkers only in KIRC.
However, because of the rapid accumulation of multi-
omics data for many other cancer types (i.e., the 50 can-
cer types or subtypes that will be analyzed in the Inter-
national Cancer Genome Consortium project), we will
soon be able to seek biomarkers in other cancer types/

subtypes; thus, the statement that there are many prog-
nostic protein biomarkers only in KICR may need to be
revised. Finally, our study only included protein-
expression and gene-expression data. It is possible that
data on methylation and noncoding RNA (microRNA or
long noncoding RNA) have now become available for
KIRC. Gene regulation is a complex and dynamic
process, and with the inclusion of additional data types,
we will gain a deeper understanding of biomarker func-
tion and regulation in KIRC tumorigenesis. This know-
ledge, in turn, will lead to the development of better
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therapeutic strategies for specific subgroups of patients
with KIRC. With the rapid accumulation of multi-omics
data, a comprehensive investigation of the transcriptome
and proteome changes in KIRC may serve as the first
step to reveal the mechanisms underlying these
biomarkers.
Mutation resolution is important in biomarker screen-

ing. For the mutation biomarker screening analysis in
KIRC, we also screened the mutation biomarkers with
mutation types taken into consideration. Because the
number of samples available would decrease for a par-
ticular mutation type, we only considered 10 genes
which were most frequently mutated in KIRC. Chi-
square test was used to identify prognostic biomarkers.
For each gene in the analysis, we required ≥5 samples to
carry the mutations of each type. With nominal p value
threshold at 0.01, frameshift deletions in SETD2 was
found to be significant (p = 4.88 × 10−3).
The results we presented in this work required further

validation in independent datasets. Currently, TCGA is
the only data source that provide both mRNA-expression
data and protein-expression data for KIRC. With the rapid
accumulation of multi-omics data for cancer, we expected
that more data would be available and future studies
would warrant the validity of our work.

Conclusions
Our pan-cancer screening revealed a surprisingly large
number of protein biomarkers that were prognostic for
survival in patients with KIRC. This large number of

biomarkers was similarly observed at the mRNA bio-
marker level, but not at the DNA mutation level. Add-
itionally, this feature was observed in KIRC, but not in
other common types of cancer. Furthermore, several
stage-specific KIRC biomarker candidates were identified
and discussed. In summary, our study suggests that
protein-level biomarkers could potentially have clinical
value in determining the prognosis for KIRC patients
and in developing treatment strategies based on tumor
stage.

Methods
Data collection
Preprocessed mutation data were retrieved from the
TumorPortal [41]. Both normalized RPPA data and nor-
malized mRNA-expression data were downloaded from
the UCSC Cancer Browser [42]. For the RPPA protein
expression data, we used the dataset that was released
on August 28, 2014 (file name: TCGA-PANCAN11-
RBN.csv). The data had been preprocessed using the
replicates-based normalization method [43]. For the
mRNA expression data, we used the dataset that was re-
leased on January 28, 2015 (file name: TCGA_PANCA-
N12_exp_HiSeqV2–2015–01-28.tar.gz). The clinical data
were downloaded from the cBio Cancer Genomics
Portal [44] using the R package cgdsr. For each can-
cer type, we obtained the overall survival (in months)
of the patients from whom the corresponding samples
were taken.

Table 3 Statistics of survival time prediction of KIRC stage-specific mRNA biomarkers

Gene Protein All stages Stage I Stage II Stage III Stage IV

p* FDR beta p* FDR beta p* FDR beta p* FDR beta p* FDR beta

KDR VEGFR2 6.4 × 10−12 2.4 × 10−10 −0.39 0.09 0.42 −0.24 0.72 0.87 0.10 7.3 × 10−4 0.08 −0.35 4.3 × 10−4 7.5 × 10−3 −0.33

FASN FASN 9.6 × 10−12 2.9 × 10−10 0.82 0.07 0.40 0.57 0.08 0.59 0.88 7.0 × 10−3 0.08 0.53 9.3 × 10−6 7.5 × 10−4 0.90

FOXM1 FoxM1 1.1 × 10−12 7.8 × 10−11 0.49 0.10 0.42 0.32 0.15 0.71 0.40 0.13 0.35 0.18 1.0 × 10−5 7.5 × 10−4 0.51

CCNE1 Cyclin_E1 9.7 × 10−14 1.4 × 10−11 0.58 0.02 0.33 0.46 0.03 0.52 0.76 0.09 0.30 0.23 3.4 × 10−5 1.7 × 10−3 0.54

ERBB3 HER3_pY128;
HER3

1.4 × 10−7 1.1 × 10−6 −0.28 0.01 0.30 −0.34 0.24 0.78 −0.21 0.10 0.30 −0.18 2.0 × 10−4 6.2 × 10−3 −0.25

CCNE2 Cyclin_E2 3.2 × 10−5 1.4 × 10−4 0.47 0.88 0.98 0.04 0.09 0.59 0.69 0.85 0.92 0.04 2.5 × 10−4 6.2 × 10−3 0.70

BCL2 Bcl-2 4.9 × 10−8 4.5 × 10−7 −0.42 0.05 0.39 −0.30 0.62 0.87 0.16 0.04 0.18 −0.32 2.5 × 10−4 6.2 × 10−3 −0.48

ACACA ACC_pS79;
ACC1

2.8 × 10–5 1.3 × 10−4 0.61 0.05 0.39 0.61 0.65 0.87 0.24 0.04 0.19 0.53 4.3 × 10−4 7.5 × 10−3 0.82

DVL3 Dvl3 1.4 × 10−11 3.3 × 10−10 1.22 0.01 0.30 1.14 0.01 0.52 1.40 7.5 × 10−3 0.08 0.84 4.6 × 10−4 7.5 × 10−3 1.09

COL6A1 Collagen_VI 1.5 × 10−9 2.5 × 10−8 0.50 0.21 0.71 0.28 0.18 0.71 0.30 5.4 × 10−3 0.08 0.45 5.6 × 10−4 8.0 × 10−3 0.41

CCNB1 Cyclin_B1 6.9 × 10−8 6.0 × 10−7 0.48 0.49 0.86 0.16 0.35 0.80 0.34 0.81 0.90 0.04 6.0 × 10−4 8.0 × 10−3 0.47

RAD51 Rad51 5.6 × 10−5 2.2 × 10−4 0.38 0.96 1.00 −0.01 0.14 0.71 0.42 0.42 0.66 −0.14 7.9 × 10−4 9.4 × 10−3 0.55

RB1 Rb_pS807_
S811

2.9 × 10−6 1.8 × 10−5 −0.68 0.66 0.89 −0.19 0.05 0.52 −1.59 3.4 × 10−3 0.08 −0.60 8.7 × 10−4 9.4 × 10−3 −0.91

VHL VHL .07 0.11 0.22 0.34 0.84 0.26 0.18 0.71 0.61 0.53 0.74 −0.12 9.1 × 10−4 9.4 × 10−3 0.69

MYH11 MYH11 8.5 × 10−4 2.5 × 10−3 −0.16 0.38 0.85 −0.10 0.97 1.00 −7.4 × 10−3 0.16 0.38 −0.13 9.8 × 10−4 9.4 × 10−3 −0.22

*p-values were obtained using the log-rank test
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Screening for general prognostic biomarkers in ten types
of cancer
Analysis of mutation data
For each cancer type, we included two somatic mutation
types: insertion/deletion (indel) and SNV. Specifically,
for indel mutations, we included all the available indel
mutations except for silent indel mutations, and for
SNVs, we excluded all the synonymous or silent SNVs.
For our mutation analysis, we required ≥60 samples for
each cancer type, and all ten cancer types fulfilled this
criterion. We used the chi-square test to identify prog-
nostic biomarkers in the filtered data. For each gene in
the analysis, we required ≥5 samples carrying the muta-
tion(s). Statistical p values were adjusted by the Benja-
mini and Hochberg method [23]. The FDR threshold
was set to 0.05 to identify significant prognostic genes
for the mutation analysis.

Analysis of RPPA and mRNA expression data
For each of the ten cancer types, we first identified three
sample groups (Fig. 1a). The PC group had both RPPA
protein-expression and clinical data, the MC group had
both mRNA-expression and clinical data, and the PMC
group had protein-expression, mRNA-expression, and
clinical data. For the protein biomarker screening, we in-
cluded 187 proteins. We mapped protein IDs to gene
symbols using the RPPA protein-annotation file provided
in Li et al. [2]. One hundred and forty-eight correspond-
ing genes were used in the mRNA biomarker screening.
For each protein or gene, we applied the Cox propor-
tional hazards regression model using the coxph function
in the R package survival. Multiple testing corrections
were performed using Benjamini and Hochberg’s
method. Unless otherwise stated, we used an FDR
threshold of 0.05 to define significant biomarkers.

Screening for stage-specific prognostic biomarkers in
KIRC
KIRC stage-specific prognostic biomarkers were screened
using both protein-expression and mRNA-expression
data. The samples in the PMC sample group were used to
screen the stage-specific protein and mRNA biomarkers,
and since both kinds of biomarkers were screened using
the same sample set, the results were more comparable.
Samples were categorized by their stage annotation, which
was defined based on the American Joint Committee on
Cancer sample stage information and available in the clin-
ical data. For example, our main stage I included the
American Joint Committee on Cancer’s stage I, stage IA,
and stage IB. We initially had five main stages for KIRC.
For the follow up analyses, however, we excluded any
main stages with sample sizes ≤3. This process removed
main stage IV, so we only analyzed the data for the
remaining four main stages.

For each RPPA protein or corresponding gene, we per-
formed survival analyses using coxph in the R package sur-
vival. The p values from the Cox proportional hazards
regression log- rank test were corrected for multiple testing
using Benjamini and Hochberg’s method [23]. The signifi-
cance threshold was set to 0.05 for the FDR values, and
with this threshold, we found that there were no significant
biomarkers for stage II KIRC. A less-stringent criterion was
then used in the analysis (nominal log-rank test p value
<0.001). Significant, stage-specific prognostic markers were
used for downstream analysis.
To perform the enrichment analysis of the KIRC pro-

tein and mRNA biomarkers, we converted the protein
biomarkers into gene symbols and used genes as the
basis for the enrichment analysis. We used a hypergeo-
metric test to assess the enrichment level, as we had
done in previous studies [45–47].

Analysis of co-expression in general prognostic
biomarkers
We used the PCC to assess the coregulation of the 52
general prognostic biomarkers. We obtained the gene
symbols corresponding to the 148 RPPA proteins and
extracted their protein expression profiles. When mul-
tiple protein biomarkers were mapped to one gene, one
representative protein biomarker was randomly chosen.
Pairwise gene correlation was calculated for the protein
expression profile, and samples with missing values were
excluded from this step of PCC computation. We de-
fined the distance as one minus the absolute value of the
PCC and performed hierarchical clustering of the candi-
date biomarkers. The PCC for mRNA expression was
calculated the same way and is plotted in the lower tri-
angle of the heatmap in Fig. 2b.
Oncoprint plots were used to confirm whether the most

significant prognostic biomarkers clustered together in a
subset of samples. We plotted oncoprints for both the
protein-expression and the mRNA-expression data. For
each protein or each gene, the 25% quartile and the 75%
quartile of the gene-expression profile were calculated
using data for the entire sample set. Samples with expres-
sion values >75% quantile were labeled as highly
expressed, while samples with expression values <25%
quantile were labeled as poorly expressed. Based on this
procedure, we developed an in-house R script to generate
oncoprint plots. The script is available upon request.
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