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Abstract

Background: With the advances in high-throughput gene profiling technologies, a large volume of gene interaction
maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction,
is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of
a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known
modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide
identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking.

Results: We proposed a systematic workflow to screen for key modulators based on genome-wide gene
expression profiles. We designed four modularity parameters to measure the ability of a putative modulator
to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively
characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these
modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the
list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was
found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in
ER-related cellular processes as well as immune- and tumor-associated functions.

Conclusions: Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a
genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were
corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates
for further biological investigations.
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Background
As technologies of high-throughput profiling advance,
a large volume of post-transcriptional gene interaction
maps has been established. For instance, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a
knowledge-based curation of abundant genomic path-
ways among species [1]. Such maps provide better
understanding to the molecular signaling in cells,
however, they are typically derived under a certain
cellular condition in a single model cell line. In light
of the dynamicity and complexity of gene interactions
(reviewed in [2, 3]), a higher-order layer of interaction
networks that considers gene-gene relationships mod-
ulated by (i.e., dependent on) key modulator genes,
namely modulated gene interaction, was proposed
(reviewed in [4]). In this sense, interaction of two
genes can be strengthened specifically when a modu-
lator gene is expressed at high or low abundance.
The scenario provides flexibility and interpretability
to condition-specific and dynamic interaction
networks.
In breast cancer, estrogen receptor (ER) is the best-

studied modulator gene. It governs the coexpression
among several keratin genes in breast cancer patients
[5]. Also, topological and temporal changes were
observed in a transcription factor interaction network
of MCF7 cells upon 17β-estradiol stimulation [6]. A
comprehensive in silico investigation revealed compact
gene-gene and function-function interaction networks
modulated by ER and discovered the prognostic value of
ER-modulated interaction between TGFβ and NFκB [7].
By a co-modulation analysis, we previously showed
ten experimentally chosen genes jointly modulated
up to two-thirds of all gene pairs, with an implica-
tion in cellular processes associated with hormone
stimulus [8]. Taken together, these reports demon-
strate the existence and functional significance of
modulated gene interaction, and motivate a compre-
hensive search for key modulator genes. Based on
mutual information, a modulator inference by net-
work dynamics (MINDy) was developed to systemat-
ically identify modulators of transcription factor
(TF)-target gene interactions [9]. However, due to a
heavy computational burden caused by permutation-
based assessment of statistical significance, the method
was limited to the investigation of specific TFs and relied
on prior knowledge of TF-target relationships. Recently,
we exploited the transformability of Pearson correlation
coefficients to devise a highly efficient modulated gene/
gene set interaction (MAGIC) analysis and realized the
exploration into genome-wide interaction networks
modulated by a modulator gene [7]. However, a reverse-
engineering study for a genome-wide identification of key
modulators is still lacking.

In the present study we proposed a systematic work-
flow that incorporates the MAGIC algorithm to analyze
gene expression profiles of breast tumors. Comparing
samples with high and low expression levels of a modula-
tor, four modularity parameters were designed to measure
modulator-dependent changes in gene interaction at two
layers. One was focused on the summary of genome-wide
changes, while the other assessed the scale and informa-
tion flow in the core subset of modulated interaction pairs.
Genes with significantly high values of parameters were
defined as key modulators and validated by three inde-
pendent cohorts. Functional annotation analysis was per-
formed to study the functional involvement of these
modulators. Collectively, this report describes a novel
genome-wide search for key modulators in breast cancer
and unveils the functional landscape of modulated gene
interactions.

Methods
Microarray datasets
We downloaded and reanalyzed four public gene expres-
sion microarray datasets of breast cancer patients from
the Gene Expression Omnibus database [10] and The
Cancer Genome Atlas (TCGA). A dataset of 286 lymph-
node negative breast tumors (GSE2034) [11], profiled by
Affymetrix Human Genome U133A Arrays, was ana-
lyzed for the identification of key modulator genes. We
validated the findings in three large independent co-
horts, GSE2990 [12], GSE4922 [13], and TCGA [14, 15].
Gene-level intensity values of GSE2034, GSE2990, and
GSE4922 were calculated by reprocessing of Affymetrix
CEL files by Robust Microarray Analysis (RMA) algo-
rithm, representation of each gene by the most inform-
ative probe (measured by the coefficient of variation
(CV)), and removing non-informative genes, as previ-
ously described [7, 8]. For the TCGA dataset, we used
pre-normalized level-3 (gene-level) data.

Model overview
We devised a systematic workflow for identifying key
modulator genes on a genome-wide scale (illustrated in
Fig. 1). Four modularity parameters were designed to
measure the ability of a gene as a modulator of gene
interaction networks. Conceptually, one of the parame-
ters was designed to test whether genome-wide inter-
action networks formed in samples with high/low
expression of a putative modulator gene show an overall
change in interaction strengths. The other three parame-
ters measure the size and information flow of the core
modulated gene interaction network constructed by core
gene pairs of which interaction strengths significantly
change between the two groups of samples.
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Analysis of overall changes in genome-wide gene
interactions networks
Suppose a gene expression dataset contains expression
profiles of G genes of N samples,

E ¼ eg;n
� �

G�N ; ð1Þ

where eg , n denotes the normalized expression level of
gene g in sample n. For a gene m (1 ≤m ≤G), we se-
lected two groups of samples for analysis, m-on (M = 1)
and m-off (M = 0), defined as samples with the highest
and lowest 25% of m, respectively. In each of the two
sample groups, we built genome-wide gene correlation
matrices, i.e.,

CM i; jð Þ ¼ ρ EM i; :ð Þ;EM j; :ð Þð Þ; ð2Þ
where EM(i, :) and EM(i, :) represent the vectors of
expression values of genes i and j, respectively, for each
status of M. The matrices were Fisher transformed to
the standard normal domain

IM i; jð Þ ¼ ℱ CM i; jð Þð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=4−3

p

2
ln

1þ CM i; jð Þ
1−CM i; jð Þ

� �
:

ð3Þ
Based on the intuition that expressional changes of a

key modulator gene can perturb the overall gene

interaction, we set the average changes in interaction
strengths (Parameter 1: ACI score) as the first criterion
for key modulator genes:

ACI i; jð Þ ¼ AVG1<i<G;1≤j<i ΔI i; jð Þð Þ; ð4Þ
where ΔI = ||IM = 1| − |IM = 0||. Statistical significance of
an ACI score was assessed against a null distribution
DACI by a 10,000-time random permutation of E with
respect to samples:

PACI i; jð Þ ¼ ACI i; jð Þ > DACI
�� ��

104
: ð5Þ

Analysis of core modulated gene interactions networks
We also analyzed the core subset of gene interactions
modulated by m to measure its modularity. Specifically, a
m-modulated gene interaction network was constructed
by the MAGIC method [7]. The method adopts a conju-
gate Fisher transformation – inverse Fisher transformation
scheme to identify gene interaction pairs of which inter-
action strengths change considerably between m-on and
m-off samples. Briefly, it tests the significance of ΔI(i, j),
by a fully derived statistical model (hereafter referred to as
MAGIC P-value). To ensure that the change is meaningful
in biological context, it sets a threshold on the MAGIC
score, defined as the change between two correlation coef-
ficients projected from I(i, j) to the domain with assigned

m

Samples sorted by m

Bottom 25% Top 25%

m-modulated network

Genome-wide m-on/m-off
Interaction networks

Breast cancer samples

G
en

es

m-onm-off
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Avg. changes in 
interaction strengths
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Fig. 1 Illustration of a genome-wide identification of modulator genes. In the present study we proposed a workflow to systematically identify key
modulators from gene expression profiles. Briefly, for each putative modulator gene m, samples are sorted by its expression levels and the top/bottom
25% are defined as m-on/off samples. We designed four parameters to measure the modularity of m. The ACI score (parameter 1) measures the average
change in normalized correlation coefficients between genome-wide gene interaction networks constructed in m-on and m-off samples. Focusing on
the core subset of gene interactions, a m-modulated interaction network is built of significantly differentially correlated gene pairs called by MAGIC
between the conditions. Three parameters, namely number of nodes, number of edges, and connectivity (i.e., average node degree), are employed to
measure the scale and information flow of the core network. The procedures are performed iteratively to analyze each gene in the expression dataset
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Fig. 2 Identification of modulator genes in the discovery dataset. a-d Distributions of ACI score, number of nodes, number of edges, and connectivity
of 5308 genes in the GSE2034 dataset. The parameters approximately followed log-normal distributions. e Pairwise correlation coefficients among the
four parameters. Generally, the parameters were highly similar, with correlation coefficients falling between 0.64 and 0.95. f Venn diagram of significant
modulators assessed by the parameters. Significance level of each parameter of a putative modulator gene was tested by a 10,000-time
random permutation of the original expression dataset. By a cutoff of empirical P-value <0.0001, we identified 2121, 3305, 2987, and 1216
significant modulators by each parameter. A total of 973 genes reported by all of the parameters were defined as key modulator genes
and selected for further analysis
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sample size (e.g., average of two groups) by an inverse
Fisher transformation:

Cadj
M i; jð Þ ¼ ℱ−1 IM i; jð Þð Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
N ′−3

p ∙
e2IM i;jð Þ−1
e2IM i;jð Þ þ 1

; ð6Þ

where N′ denotes the assigned sample size and was set
equal to N/4 in this study for the two groups were
equally sized.
By the two MAGIC parameters, core m-modulated

pairs were extracted and merged into a m-modulated
gene interaction network. Here we defined three more
modularity parameters to measure the size and informa-
tion flow of the network, Parameter 2: numbers of nodes
(genes), Parameter 3: numbers of edges (gene interac-
tions), and Parameter 4: connectivity (average node
degree). Statistical significance of the three parameters
were tested by 10,000-time random permutations as
described in Eq. 5.

Functional annotation analysis and network visualization
Functional annotation analysis was performed by the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.7 [16, 17] to analyze the enrich-
ment of key modulator genes in biological functions and
processes. We focused on Gene Ontology (GO) terms of
molecular functions, biological processes, and cellular

components. We used the Functional Annotation Clus-
tering tool to group GO terms to eliminate potential
biases from highly similar terms. Gene interaction net-
works were analyzed and visualized by an open source
software Cytoscape v3.2.1 [18], with nodes and edges
representing genes and gene interactions, respectively,
and node size denoting node degree.

Results and Discussion
Genome-wide identification of key modulator genes
The present study is aimed to systematically screen for
key modulator genes from global gene expression data.
As illustrated in Fig. 1, we selected and compared the
samples with high (top 25%) and low (bottom 25%)
expression of a candidate modulator gene m. Four pa-
rameters were designed to measure the modularity of m
from two aspects, one at a genome-wide level and the
others focusing on the core subnetwork only. ACI score
(parameter 1) represents the overall change in inter-
action strengths between genome-wide gene interaction
networks formed in the two sample groups. Focusing on
the core sub-network (m-modulated gene interaction
network) constructed merely by significantly changed
edges, we further designed three parameters (namely,
number of nodes, number of edges, and connectivity) to
quantify the scale and information flow affected by the
modulation of m. For each m, significance of the four

Table 1 Top 20 modulator genes

Gene symbol Num. nodes Rank Num. edges Rank Connectivity Rank ACI score Rank

KANK1 1727 36 9909 1 11.48 4 1.15 2

SFRP1 1602 91 9772 2 12.20 3 1.10 62

TMEM158 1878 9 8132 3 8.66 11 1.14 4

SLC16A1 1891 5 7276 6 7.70 26 1.18 1

POLD4 1940 3 7198 7 7.42 31 1.14 7

WWTR1 1747 32 7180 8 8.22 18 1.13 9

CYFIP2 959 888 7278 5 15.18 1 1.04 643

PPP1CB 1844 16 6693 12 7.26 33 1.13 8

FAIM3 1342 384 7327 4 10.92 5 1.09 148

ATP5G2 1785 24 6218 20 6.97 40 1.14 3

ITM2A 1775 28 6612 14 7.45 30 1.12 24

SYNM 1557 120 6781 10 8.71 10 1.11 48

GPM6B 1664 58 6663 13 8.01 22 1.11 36

IFRD1 1809 20 6107 23 6.75 47 1.14 5

LYN 1844 15 6277 18 6.81 45 1.12 17

CRYAB 1514 159 6940 9 9.17 8 1.09 120

GABRP 1728 35 6184 22 7.16 37 1.13 13

LY75 1803 22 5988 25 6.64 51 1.13 12

SERPINB5 1638 69 6355 16 7.76 25 1.10 63

UBE2E3 1454 222 6355 17 8.74 9 1.10 85

Modulator genes are ranked according to average z-values of the four parameters
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parameters was tested by random permutation of data-
set. Mathematical details are described in the Methods
section.

Properties of modularity parameters
Preprocessing of the discovery dataset, GSE2034, yielded
expression profiles of 5308 unique and informative genes
among 286 breast tumors. We analyzed each putative
modulator by the modularity parameters. As shown in
Fig. 2a-d, the parameters approximately followed log-
normal distributions. At the genome-wide scale, the 5308
genes exhibited significantly intensified overall changes in
interaction strengths than achieved by random permuta-
tions (mean ACI scores, 1.00 vs. 0.91; t-test P-value < pre-
cision of double-precision floating-point number, hereafter
referred to as P ~ 0; Fig. 2a). Concordantly, each gene
modulated a large core interaction network, with average
numbers of nodes and edges as 789 (std., 355) and 1209
(std., 1033), respectively (Fig. 2b-c), compared to those

formed by random permutations (mean, 152 and 98;
P-values ~0). Substantial information flows underlie
the modulated interaction networks (average connect-
ivity of 5308 networks vs. randomness, 2.66 vs. 1.25,
P ~ 0; Fig. 2d). Taken together, our data suggest that
genes generally play roles as modulators to some extent,
reinforcing the significance of modulation in gene interac-
tions. We also investigated the similarity/distinctions
among the four parameters. Pairwise correlation coeffi-
cients between these parameters ranged from 0.64
(connectivity vs. ACI score) to 0.95 (number of nodes vs.
ACI score) (Fig. 2e), suggestive of the general agreements
between the parameters.

Identification and validation of key modulator genes
With the cutoff of empirical P-value at 0.0001, the four
parameters reported 2121, 3305, 2987, and 1216 signifi-
cant genes, respectively (Fig. 2f ). We intersected these
lists and identified a total of 973 key modulator genes
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Fig. 3 Validation of four modularity parameters in three independent cohorts. a-d Box plots comparing the ACI score, number of nodes, number
of edges, and connectivity between 973 key modulators and other genes in three independent datasets. Statistical significance was assessed by
the t-test. Generally, the key modulators exhibited significantly intensified modularity in the validation datasets, suggestive of the validity of the
parameters and the conservativity of modulators among cohorts
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for further analysis. We first examined ER, the best-
studied modulator in breast cancer. Indeed, its encoding
gene, ESR1, appeared to be the 258th modulator in the
list, with individual ranks at top 512nd (9.6% of 5308
genes), 180th (3.4%), 193rd (3.6%), and 292nd (5.5%)
with respect to each parameter. Only 86 genes (1.6%)
outperformed ESR1 by all parameters. At the top of the
modulator list (Table 1), we identified a tumor suppres-
sor gene in renal cell carcinoma, (KANK1) [19], a pre-
dictor of breast cancer progression and prognosis
(SFRP1) [20, 21], and a marker gene of cisplatin sensitiv-
ity and tumorigenesis of cancers (TMEM158) [22, 23].
These novel modulator genes warrant further biological
investigations.
Three independent datasets, GSE2990, GSE4922,

and TCGA, of breast cancer were analyzed to verify
the modularity of identified key modulators as well as
the validity of the parameters. Notably, the 973 key
modulators possessed significantly higher values of all
parameters than other genes in all validation datasets
(t-test P-values <3.8 × 10−10, except for connectivity
in GSE4922, P = 0.42; Fig. 3). Overall, we corroborated
the capability of the proposed workflow to identify known
and novel modulators, validity of the parameters, and
conservativity of key modulators among cohorts.

SFRP1-modulated gene interaction network
SFRP1 was found the second-ranked modulator gene,
with 1.10 ACI score, 1602 modulated nodes, 9772 edges,
and 12.2 connectivity (Table 1). This secreted frizzled
related protein is known to interact with and antagonize
the Wnt signaling pathway [24, 25] and be a favorable
prognostic factor in breast cancer [20, 21], prostate
cancer [26], and glioblastoma [27]. Furthermore, it is
dysregulated in tumor epithelium and tumor stroma
[28] and altered in 12% of breast cancer (cBioPortal data
[29, 30]). To investigated whether modulation accounts
partly for the execution of its functions in breast cancer,
we analyzed the core modulated gene interaction net-
work and visualized it by the Cytoscape software. The
1602 modulated genes formed a highly intertwined
network (connectivity, 12.2; Fig. 4), indicating the com-
plexity of gene signaling mediated by SFRP1. Interestingly,
the top 2 hub genes in the network, SESN1 (degree, 220)
and SIDT1 (degree, 157) (Fig. 4), were reported to be in-
volved in cell apoptosis and/or chemoresistance [31–33].
We also identified several hubs with uncharacterized func-
tions in breast cancer, such as TFAP2B, C10ORF116, and
ZCCHC24, that warrant further investigations.
We further studied the functions governed by SFRP1

modulation with a DAVID analysis of genes involved in
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Fig. 4 SFRP1-modulated gene interaction networks. We constructed the core interaction network modulated by a well-known prognostic gene,
SFRP1, by merging the 9772 modulated interaction pairs among 1602 genes. With a connectivity of 12.2, the network was found quite intertwined.
Gene pairs with significantly intensified correlation in SFRP1-on and -off samples are represented by red and green lines, respectively. Genes accounting
for more than 1% of edges are labeled with gene symbols. Node size is proportional to degree
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the network. Concordant to the prior knowledge of SFRP1,
a significant association was found with the Wnt signaling
pathway (Fisher’s exact test P = 0.0046). Functional Anno-
tation Clustering of GO terms identified clusters of extra-
cellular matrix (enrichment scores = 10.71, 6.56, and 5.77),
response to hormone stimulus (score = 7.13), and cell cycle
(score = 6.27) (Table 2), illuminating the involvement of
SFRP1 modulation in crucial functions in breast tumors
and routine maintenance of cells.

Interactions and functions of key modulator genes
We sought to analyze the interaction among the identified
key modulator genes. While they all dominated a consid-
erable scale of gene interactions, their expression profiles
seemed to be non-identical. Unsupervised hierarchical

clustering of expression data divided the modulator genes
into three clusters and samples into five groups (Fig. 5a),
implying the diversity of modulation patterns (a binary
vector representing status of modulators of a sample [8])
across samples. Indeed, further analysis showed that each
sample had on average 241.5 on- (with top 25% expression
among samples) and 241.5 off- (bottom 25%) modulators
among the 973 modulators (Fig. 5b). That is, roughly half
(483 out of 973) of the key modulators were functioning
as “effective” modulators in each sample; the maximum
and minimum numbers of effective modulators per sam-
ple were 745 (76.6% of 973 modulators) and 280 (28.8%),
respectively (Fig. 5b).
To investigate the landscape of biological functions

governed by modulated gene interactions, we used the

Table 2 Top 6 clusters of GO terms enriched in SFRP1-modulated gene interaction network

GO ID GO term Num. genes P-value

Cluster 1 (enrichment score: 10.71)

GO:0005578 proteinaceous extracellular matrix 75 1.68E-13

GO:0031012 extracellular matrix 78 3.84E-13

GO:0044420 extracellular matrix part 37 7.39E-11

GO:0005201 extracellular matrix structural constituent 27 2.93E-08

Cluster 2 (enrichment score: 7.13)

GO:0010033 response to organic substance 127 8.19E-12

GO:0009725 response to hormone stimulus 68 1.45E-07

GO:0048545 response to steroid hormone stimulus 42 6.50E-07

GO:0009719 response to endogenous stimulus 71 6.66E-07

GO:0043627 response to estrogen stimulus 27 4.33E-06

Cluster 3 (enrichment score: 6.56)

GO:0044421 extracellular region part 157 2.80E-12

GO:0005615 extracellular space 99 1.56E-05

GO:0005576 extracellular region 232 4.66E-04

Cluster 4 (enrichment score: 6.27)

GO:0007049 cell cycle 136 1.94E-12

GO:0022402 cell cycle process 104 6.36E-11

GO:0022403 cell cycle phase 78 7.27E-09

GO:0000279 M phase 61 6.77E-07

GO:0000278 mitotic cell cycle 66 9.25E-07

Cluster 5 (enrichment score: 5.80)

GO:0000226 microtubule cytoskeleton organization 36 2.82E-07

GO:0007017 microtubule-based process 49 2.81E-06

GO:0007010 cytoskeleton organization 72 5.08E-06

Cluster 6 (enrichment score: 5.77)

GO:0030198 extracellular matrix organization 32 5.00E-09

GO:0043062 extracellular structure organization 34 2.52E-05

GO:0030199 collagen fibril organization 12 4.00E-05

Clusters with more than five GO terms are represented by the most significant five
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Functional Annotation Clustering tool of DAVID to iden-
tify enriched clusters of GO terms associated with the 973
key modulators. Interestingly, 4 of the top 6 clusters ap-
peared to be immune/defense-related functions, including
T cell activation (top cluster, enrichment score = 5.59; 52
modulators involved), defense response (2nd cluster,
score = 5.29, 78 modulators), positive regulation of (alpha-
beta) Tcell activation/proliferation (4th cluster, score = 3.39,
63 modulators, and regulation of inflammatory response
(5th cluster, score = 3.28, 37 modulators) (Table 3). Seven
modulators were found common among these clusters:
CD24, CLEC7A, LYN, PTPRC, RIPK2, STAT5B, and
TGFBR2. Immunology and Immunotherapy are emerging
fields in the prevention and treatment of cancers. In breast
cancer, tumor-infiltrating lymphocytes (TILs) has the po-
tential to serve as a predictive and prognostic biomarker
and its variation is associated with patient subtypes
(reviewed in [34, 35]). Furthermore, two early-phase clin-
ical trials illuminated the promising responses of antibodies
that target programmed cell death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L1) in the most adverse
subtype of breast cancer, metastatic triple-negative breast
tumors [36, 37]. Our data indicate that modulated gene in-
teractions in part explain the significant effects of immune
cells in breast cancer and warrant further investigations.
Among the top GO clusters we also identified crucial

tumor-related functions, such as cell adhesion (3rd clus-
ter, score = 3.60, 66 modulators) and response to estro-
gen stimulus (6th cluster, score = 3.07, 68 modulators)
(Table 3). The former is associated with metastasis and
survival of breast cancer, while the latter is related to

routine functions of hormonal receptors that were also
seen in a previous co-modulation study [8]. Interestingly,
in the cluster of response to estrogen stimulus, in
addition to ESR1 we identified another hormone recep-
tor, androgen receptor (AR). Taken together with the
well-studied role of ER as a modulator gene in breast
cancer, our data showed that its functions, especially in
the response to estrogen, are co-performed by other
modulator genes, highlighting the essential involvement
of modulation in such functions.

Limitations and future work
We measured the modularity of each putative modulator
at two layers of interaction networks, one focusing on
global changes and the other on a core subset of
network. Four modularity parameters were designed
accordingly, of which validity was confirmed by three in-
dependent datasets. However, for the nature of gene
modulation as an indirect and complex mechanism,
there may exist other parameters that could better meas-
ure modularity when cooperatively considered with the
proposed four parameters. Furthermore, since the statis-
tical features of the four parameters have not been char-
acterized, we employed random permutations to assess
the statistical significance, which limits the computation
efficiency and statistical stringency. Out of simplicity, we
compared the interaction networks formed in m-on and
-off samples. However, modulated gene pairs of which
correlation changes gradually with the continuous-state
expression of m [38] may be omitted. Besides, in the
study we assumed modulation effects to be independent
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Fig. 5 Interaction among key modulator genes. a Heatmap of expression profiles of 973 modulator genes in the discovery dataset. Samples and
genes were hierarchically clustered with average linkage. Though the modularity parameters were generally correlated, distinctive clusters of samples
and modulators indicate the substantial differences and functions underlying the 973 identified modulators. b Histograms of the numbers of on-, off-,
and all modulators in a sample. In average, 241.5 on- (with top 25% expression among samples, red line) and off- (bottom 25%, green) modulators
were found in each sample. Collectively, 483 key modulators (49.6% of 973, blue) functioned as “effective” modulators in a sample
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events. Though, biological intuition is that several mod-
ulators may jointly modulate a common pair of genes
[8], and pairs of genes modulated by a modulator may
have competing effects against each other [39]. Future
investigation addressing the limitations may further un-
veil a comprehensive map of modulated gene interac-
tions in cancers and other diseases.

Conclusions
This study addresses the need for a genome-wide screen-
ing for key modulator genes of gene interaction. We

developed a systematic workflow that incorporates a
correlation-based modulation analysis of gene interaction
networks. About one thousand key modulators were iden-
tified, including the best-known modulator ESR1 and
other novel ones, and validated in independent cohorts.
These modulators were associated with hormone signaling
and immune/defense-related and tumor-associated func-
tions. Overall, this study is, to our knowledge, the first to
screen for and investigate modulator genes in breast can-
cer on a genome-wide scale. The proposed workflow is
widely applicable to other cancers and expected to unveil
the landscape of modulated gene interactions.

Table 3 Top 6 clusters of GO terms enriched in the 973 modulator genes

GO ID GO term Num. genes P-value

Cluster 1 (enrichment score: 5.59)

GO:0042110 T cell activation 26 5.08E-08

GO:0045321 leukocyte activation 38 5.64E-08

GO:0046649 lymphocyte activation 33 1.37E-07

GO:0001775 cell activation 41 2.14E-07

GO:0002521 leukocyte differentiation 23 5.96E-06

Cluster 2 (enrichment score: 5.29)

GO:0006952 defense response 66 1.70E-06

GO:0006954 inflammatory response 42 2.16E-06

GO:0009611 response to wounding 55 3.64E-05

Cluster 3 (enrichment score: 3.60)

GO:0007155 cell adhesion 66 1.03E-04

GO:0022610 biological adhesion 66 1.08E-04

GO:0016337 cell-cell adhesion 30 1.42E-03

Cluster 4 (enrichment score: 3.39)

GO:0046635 positive regulation of alpha-beta T cell activation 11 9.27E-07

GO:0046634 regulation of alpha-beta T cell activation 12 3.69E-06

GO:0002684 positive regulation of immune system process 33 7.56E-06

GO:0051249 regulation of lymphocyte activation 24 1.39E-05

GO:0070665 positive regulation of leukocyte proliferation 14 1.41E-05

Cluster 5 (enrichment score: 3.28)

GO:0050727 regulation of inflammatory response 15 1.04E-04

GO:0048584 positive regulation of response to stimulus 30 1.06E-04

GO:0050729 positive regulation of inflammatory response 9 2.31E-04

GO:0032101 regulation of response to external stimulus 21 8.89E-04

GO:0032103 positive regulation of response to external stimulus 12 1.03E-03

Cluster 6 (enrichment score: 3.07)

GO:0010033 response to organic substance 68 7.95E-05

GO:0043627 response to estrogen stimulus 18 1.07E-04

GO:0048545 response to steroid hormone stimulus 26 1.24E-04

GO:0009725 response to hormone stimulus 36 2.60E-03

GO:0009719 response to endogenous stimulus 36 1.18E-02

Clusters with more than five GO terms are represented by the most significant five
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