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Abstract

Background: Using whole genome sequence data might improve genomic prediction accuracy, when compared
with high-density SNP arrays, and could lead to identification of casual mutations affecting complex traits. For some
traits, the most accurate genomic predictions are achieved with non-linear Bayesian methods. However, as the
number of variants and the size of the reference population increase, the computational time required to
implement these Bayesian methods (typically with Monte Carlo Markov Chain sampling) becomes unfeasibly long.

Results: Here, we applied a new method, HyB_BR (for Hybrid BayesR), which implements a mixture model of
normal distributions and hybridizes an Expectation-Maximization (EM) algorithm followed by Markov Chain Monte
Carlo (MCMC) sampling, to genomic prediction in a large dairy cattle population with imputed whole genome
sequence data. The imputed whole genome sequence data included 994,019 variant genotypes of 16,214 Holstein
and Jersey bulls and cows. Traits included fat yield, milk volume, protein kg, fat% and protein% in milk, as well as
fertility and heat tolerance. HyB_BR achieved genomic prediction accuracies as high as the full MCMC
implementation of BayesR, both for predicting a validation set of Holstein and Jersey bulls (multi-breed prediction)
and a validation set of Australian Red bulls (across-breed prediction). HyB_BR had a ten fold reduction in compute
time, compared with the MCMC implementation of BayesR (48 hours versus 594 hours). We also demonstrate that
in many cases HyB_BR identified sequence variants with a high posterior probability of affecting the milk
production or fertility traits that were similar to those identified in BayesR. For heat tolerance, both HyB_BR and
BayesR found variants in or close to promising candidate genes associated with this trait and not detected by
previous studies.

Conclusions: The results demonstrate that HyB_BR is a feasible method for simultaneous genomic prediction and
QTL mapping with whole genome sequence in large reference populations.
Background
Whole genome sequence data is available for an increasing
number of species. In some cases enough individuals have
been sequenced to serve as a reference panel for impu-
tation of individuals that have been genotyped with SNP
arrays to whole genome sequence variant genotypes. A
good example of such a reference set is the 1000 bull
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genomes project which includes 234 bulls with whole-
genome sequencing data and 28.3 million genotyped
sequence variants [1]. Compared with dense SNP arrays,
the advantage of using whole genome sequence data might
potentially include more accurate genomic predictions
within and across breeds [2–5], better persistence of accur-
acy of genomic predictions across generations, and more
precise QTL mapping [5], all as a result of including the
causal mutation genotypes in the data set.
As the resulting data sets will be extremely large (thou-

sands of individuals with millions of imputed genotypes),
the algorithms used to derive genomic predictions must
be computationally efficient. Ideally, they should also
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implement a non-linear model at the level of the SNP
effects, including the possibility of excluding some SNPs
from the model, as such models have been demonstrated
to give higher accuracies of genomic predictions for some
traits with high-density genotype data [5, 6]. Although
computationally efficient, GBLUP and BLUP do not satisfy
the second criteria (they implement a linear model and all
SNPs are always in the genomic prediction model). BayesR
[7] is a flexible non-linear model, which assumes that SNP
effects follow a mixture of four normal distributions (with
zero variance, very small variance, small variance, and
moderate variance). Compared with GBLUP, BayesR re-
sults in superior accuracy of genomic prediction for some
traits [6, 8–12]. However, as Bayesian models are typically
implemented with MCMC (Markov Chain Monte Carlo)
sampling, application of BayesR with sequence data is cur-
rently not feasible.
Another advantage of non-linear models such as BayesR,

is the application of QTL mapping [5, 6, 8, 13, 14]. Loh
et al. [14] pointed out that Bayesian mixed-models with
speed-up schemes (termed fastBayesB [15]) could improve
the power of detecting genes associated with human dis-
eases. There are several modified versions of Bayesian
model implemented for the identification of causal muta-
tions. Speed and Balding [13] developed an efficient
approach termed multiBLUP (a mixture model of SNP
effects, similar to nonlinear models), which was applied on
the Welcome Trust Case Control Consortium (WTCCC)
human disease data. Later, Kemper et al. [6] implemented
a nonlinear model (BayesR) for mapping QTL to 250 kb
windows in dairy cattle. Then, Moser et al. [8] applied a
modified version of BayesR (updating the additive genetic
variance in the MCMC chain instead of fixing it, as in the
original BayesR) to WTCCC human disease data. Further-
more, MacLeod et al. [5] proposed the algorithm referred
to as BayesRC, which is a modified version of BayesR in-
corporating biological prior information. All these studies
have demonstrated that nonlinear models, which might
exclude SNPs from the models with the assumptions of
Bayesian mixture priors for SNP effects, could actually help
to improve the precision of QTL mapping or association
studies in human or dairy cattle.
To take advantage of the accuracy superiority of

MCMC nonlinear models but improve their time-
efficiency, a hybrid scheme (termed HyB_BR) was pro-
posed by Wang et al. [16]. This scheme has three steps:
1) Implement the mixture model of BayesR, which had
been demonstrated to be quite flexible for genomic pre-
diction; 2) run an expectation-maximisation algorithm
that estimates the parameters in the mixture model; 3)
Using the solutions from the EM as starting points, run
a limited number of MCMC iterations to improve the
parameter estimates. The results of the Hybrid algorithm
on 600 K SNP data in dairy cattle data and 300 K SNP
data in human disease data from Welcome Trust Case
Control Consortium (WTCCC) have demonstrated that
the Hybrid algorithm performed as well as BayesR while
requiring half of the running time demanded by MCMC
iterations [16].
With the aim of investigating whether HyB_BR gave

comparable accuracies to BayesR with MCMC for
genomic prediction and precision of QTL mapping with
whole genome sequence data, we implemented HyB_BR
on a large subset of imputed whole-genome sequence
data with 994,019 variants in 16,214 cattle. The genotype
data came from the imputed sequence variants in or
close to gene coding regions and some SNP from the
600 K Bovine HD SNP genotypes. The HyB_BR
algorithm was evaluated on this data set with three
criteria: 1) computational performance (speed) com-
pared to a full MCMC implementation, 2) prediction
accuracy for a range of complex traits with different
genetic architecture. The traits included fat yield, milk
yield, protein yield, fat percent, protein percent,
fertility and heat tolerance and 3) the precision of
HyB_BR for QTL mapping of milk production traits,
fertility and heat tolerance.
Methods
High density and sequence genotypes
Two types of genomic data, 600 K Bovine HD SNP
array, and imputed sequence data were used in this
study. As described by Kemper et al. (2015) [6], 10,311
Holstein, 4738 Jersey and 249 Australian Red bulls and
cows were genotyped with the Bovine SNP50 Array
(Illumina, San Diego, CA). In addition, 1620 Holstein
bulls and cows, 125 Jersey bulls, and 114 Australian Red
bulls were genotyped with the 777 K bovine HD SNP
panel. After quality control steps described by Erbe et al.
(2012) [7], all genotypes were imputed to 632,003 SNP
using Beagle 3.0 [17].
For the Sequence data set (termed SEQ), the se-

quences of 136 Holstein and 27 Jersey bulls from the
1000 Bulls Genome Project [1] were used as a reference
set for imputation. All the animals described above with
real or imputed 600 K SNP genotypes were imputed to
whole genome sequence data using Beagle 3.0 software
[18]. In total there were 2.785 million sequence variants
imputed, including both SNPs and indels in either cod-
ing regions or putative regulatory regions flanking genes
[5]. After quality control including minor allele fre-
quency filtering and LD pruning by PLINK [19], there
were 994,019 variants remaining including 370,259
markers from the 600 K SNP panel, and 623,760
sequence variants in gene coding regions or 5000 bp up-
and down-stream of the gene start stop positions as
detailed by MacLeod et al. (2016) [5].
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Phenotypes
Protein, fat and milk yields and, fat and protein percent
are key traits in dairy cattle breeding. Phenotypes that
were pre-corrected for fixed effects (herd-year-season,
and lactation number) were used in this study, these are
known as trait deviations (TDs) and daughter trait devia-
tions (DTDs) for cows and bulls respectively. TDs and
DTDs are provided by DataGene (and its predecessor,
the Australian Dairy Herd Improvement Scheme), which
is the organisation responsible for providing genetic
evaluations to the Australian dairy industry. (e.g. Data-
Gene; http://datagene.com.au/index.php). A summary of
the phenotypes is shown in Table 1. For milk production
traits, there were 16,214 bulls and cows from Holstein
and Jersey breeds as the reference set. Then, for the
validation sets, Holstein and Jersey bulls were used to
assess the accuracy of within-breed prediction. These
bulls were the youngest cohorts (born after 2005) in the
data set. As mentioned in [6], all the bulls of the
validation set have more than 20 effective daughters. In
addition, Australian Red bulls (a third breed; not in-
cluded in the reference set) were included for the valid-
ation set to evaluate the performance of across-breed
prediction. We implemented the calculation of Garrick
et al. (2009) [20] to appropriately weight the phenotypes
of bulls and cows as follows:

wi bullsð Þ ¼ 1−h2
� �

ch2 þ 4−h2
� �

=d
; and wi cowsð Þ

¼ ð1−h2Þ
ch2 þ 1þ r−1ð Þt½ �=r−h2 ;

where, h2 is the heritability of the trait; t is the repeat-
ability of the traits; d is the number of the daughter of
each bulls; r is the number of records; c is the propor-
tion of additive genetic variance not accounted for by
the SNP [20]. To compare the prediction accuracy of
GBLUP, BayesR and HyB_BR for multi-breeds and
across-breed, the weight calculation is included in all
three models.
In addition to milk production traits, fertility is

another important complex trait. The DTD and TD that
Table 1 The number of animals in the reference sets and validation

Traits Reference sets

Holstein

Bulls Co

Milk production traits (FatY/MilkY/ProtY/Fat%/Protein%) 3049 847

Fertility 2806 783

Heat Tolerance traits (FatY_HT/MilkY_HT /ProtY_HT) 2028 203

Milk production traits include fat yield (FatY), milk yield (MilkY), protein yield (Protei
the decline of fat yield (FatY_HT), milk yield (MilkY_HT) and protein yield (ProtY_HT)
DataGene calculate and that was available to this study
was calving interval (CI) which is the number of days be-
tween consecutive calving, For fertility, the number of
bulls and cows in the reference set, i.e. with genotypes and
fertility phenotypes was around 15,190. The validation set
includes Holstein bulls (youngest cohort born after 2004)
and Jersey bulls (youngest cohort born after 2005).
As weather becomes warmer and less predictable,

there is growing interest in developing genomic breeding
values for heat tolerance [21]. In Australian dairy genet-
ics studies, heat tolerance is defined as the rate of the
decline in production traits (e.g. fat, milk and protein
yield) with increasing heat stress [21]. The rate of de-
cline for each trait was estimated for each cow in the
data set with a linear random regression of yield on daily
temperature-humidity index (THI), when THI was above
a threshold of 60 units [21–23]. The total number of an-
imals with phenotypes for heat tolerance was 5657 and
included Holstein and Jersey cows and bulls. The valid-
ation set for heat tolerance was a set of Holstein bulls
and a set of Jersey bulls, Table 1. In contrast to the milk
production and fertility phenotypes, heat tolerance is
still under development and is not yet officially released
as a breeding value in Australia.

The input parameters for HyB_BR were estimated
from the data with ASReml4 [24] and included additive
genetic variance, error variance, and additive polygenic
variance (Table 2). Using the variances, the heritability is
calculated based on the “narrow-sense” definition [25] as
the ratio of additive genetic variance and the sum of
additive genetic variance, error variance and additive

polygenetic variance ( h2 ¼ σ2
g= σ2

g þ σ2
a þ σ2

e

� �
). The

heritability for milk production traits is consistent with
the published results of Kemper et al. (2015) [6]. Com-
pared with milk production traits, heritabilities for heat
tolerance traits and fertility were lower. Across all the
traits, the prediction accuracy is evaluated using the cor-
relations between genomic estimated breeding value
(GEBV) and DTD in the validation sets. The regression
of DTD on GEBV in the validation sets was used to in-
vestigate if any of the methods resulted in biased
predictions.
sets

Validation sets

Jersey Holstein
Bulls

Jersey
Bulls

Australian
Red Bullsws Bulls Cows

8 770 3917 262 105 114

8 716 3830 396 81 114

7 476 1116 252 101 -

nY), fat percent (Fat%) and protein percent (Protein%); Heat tolerance traits are
under heat stress

http://datagene.com.au/index.php


Table 2 The genetic architecture of milk production traits and Fertility estimated by ASReml

Additive genetic variance (σ2g) Additive polygenic variance (σ2a) Error variance (σ2e ) Heritability (h2)

FatY 118.594 48.689 234.326 0.421

MilkY 114.827e + 03 38.532e + 03 135.598e + 03 0.528

ProtY 72.488 36.072 140.417 0.443

Fat% 0.056 0.008 0.018 0.781

Protein% 0.012 0.003 0.003 0.818

Fertility 42.990 0.003e-01 340.287e-01 0.013

FatY_HTa 0.041 0.581e-07 0.571 0.072

MilkY_HTa 0.004 0.353e-06 0.035 0.091

ProtY_HTa 0.035 0.564e-07 0.561 0.059
aLabels the traits of Fat yield, milk yield, and protein yield under heat stress
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Genomic prediction methods
GBLUP
GBLUP assumes all marker effects follow a normal
distribution with the same additive genetic variance. The
overall model of GBLUP is:

y ¼ Xβþ SuþWv þ e ð1Þ

Where,
y = vector of n phenotypes.
β = vector of b fixed effects, following uninformative

priors.
u = vector of q random genetic effects (q = number of

animals) captured by the SNP, with N 0;Gσ2g
� �

. G

is the q x q genomic similarity matrix between
pairs of individuals constructed as described by
[26]; σ2g is the additive genetic variance.

v = vector of q additive polygenic effects (q = number
of animals), with veN 0;Aσ2a

�
). A is the q × q

pedigree-based relationship matrix, and σ2a is the
additive polygenic variance.

e= vector of n residual errors. For cattle data, eeN
0;Eσ2e
� �

, the n × n diagonal matrix E is especially
designed to evaluate the different contributions of
the phenotype records from different sex to the
error variance, de-regressing predicted breeding
values and weighting information for genomic
regression analyses [20].

X = n × b design matrix, allocating phenotypes y to
fixed effects β. b is the number of fixed effects

W= n × q design matrix, which aims at allocating the
q × 1 vector of polygenic effects to y.

S = n × q design matrix, allocating the q × 1 vector of
genetic values to y.

BayesR
Compared with the common prior distributions of
GBLUP, BayesR [7] assumes SNP effects are drawn
from the mixture of four normal distributions. BayesR
aims at estimating each SNP effects instead of esti-
mating breeding values directly for each animal.
Therefore, the genetic value u in the model (1) is
substituted with Zg in the BayesR model. Briefly, the
data model of BayesR can be written as:

y ¼ Xβþ ZgþWv þ e ð2Þ

Where,

g = m vector of SNP effects, geN 0; Iσ2
i

� �
, σ2

i

¼ 0; 0:0001�σ2g; 0:001
�σ2g; 0:01

�σ2g
n o

. Therefore,

each SNP have four possible normal distributions:

N 0; 0�σ2g
�

), N 0; 0:0001�σ2g
�

), N 0; 0:001�σ2g
�

),

and N 0; 0:01�σ2g
�

). Related to such mixture priors,

there are two other parameters including b(i, k)
and Pr.

b(i, k) = {0, 1}, which defines whether or nor SNP i
follows normal distribution k (k = 1 , 2 , 3 , 4).
Therefore, the prior distribution of each
SNP i conditional on b(i, k) can be written
as:

p gi
��b i; kð Þ� � ¼

0; b i; kð Þ ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2i k½ �p exp −

g2i
2σ2i k½ �

0
@

1
A; b i; kð Þ ¼ 1 k ¼ 2; 3; 4ð Þ

8>><
>>:

Pr= the vector of proportion parameter, which defines
the proportion SNPs in each of four normal distri-
butions. The prior of Pr is drawn from Dirichlet
distribution Pr ~ Dirichlet(α), with α = [1, 1, 1, 1].
The conditional distribution of SNP effect on the
proportion parameter Pr is:
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p gij Pr
� � ¼ Pr1 � N 0; 0�σ2g

� �
þ Pr2

� N 0; 0:0001�σ2g
� �

þ Pr3

� N 0; 0:001�σ2g
� �

þ Pr4

� N 0; 0:01�σ2
g

� �
:

Z is the standardised (for mean and variance) n ×m
genotype matrix.
To implement the BayesR model, and arrive at posterior

estimates of parameters, Gibbs sampling has been used, as
described by Kemper et al. (2015) [6]. On the sequence data,
we use five independent replicate chains of the Gibbs sam-
pling, and for each independent chain, there are 40,000 iter-
ations, with the first 20,000 iterations discarded as burn in,
as described by Kemper et al. (2015) (for 630 K SNP data).

HyB_BR
The HyB_BR model [16] incorporates the same assump-
tion for SNP effects as BayesR, but serially hybridizes
the expectation-maximization (EM) and MCMC to
reduce large number of iterations required by MCMC.
That is, HyB_BR first implements an EM algorithm to
perform the Maximum A Posterior (MAP) estimation
until converged. Then, to improve accuracy, a limited
number of MCMC iterations are performed to improve
parameter estimates [16].
As described in Wang et al. (2016) [16], the HyB_BR

model for a SNP effect is:

y ¼ Xβþ Zigi þ uþWv þ e ð3Þ

Assumptions in the model are 1) each SNP effect gi
follows the same prior assumption as BayesR with Zi

being the standardized genotype for SNP i. 2) to correct
the prediction errors generated by all other SNPs,
HyB_BR introduces the genetic values u, whereby a
correction based on the prediction error variance (PEV)
is introduced to account for the effects of all the other
SNP with a GBLUP model as detailed by Wang et al.
[16]. Then under the model (3), the posterior distribu-
tion for all related parameter sets {gi , Pr , β , u , v, σ2e } are
derived according to the theory: p(θ| y) ∝ f(y| θ)p(θ),
where f(y| θ) is the likelihood function based on model
(3) and p(θ) is the prior density function for the param-
eter sets θ. Based on the derived marginal posterior
distribution p(θ| y), the expectation- maximization steps
are implemented to estimate each parameter while
“integrating out” the other parameters detailed by Wang
et al. (2016). The process of the EM module is presented
in pseudo code in Fig. 1.
As shown in Fig. 1, the EM module begins by initializ-

ing all the input parameters including SNP effects (g),
Proportion parameter (Pr), the variance for each SNP
(σ2
i ), the fixed matrix (X), the pedigree based relation-

ship matrix (A), the genomic relationship matrix (G), the
error matrix (E), and index matrix for polygenic effects
(W). Similar to emBayesR [27], the starting values of g
and Pr are set as g = 0.01 and Pr = {0.5, 0.487, 0.01, 0.003},

while σ2
i ¼ 0; 0:0001�σ2g; 0:001

�σ2g; 0:01
�σ2g

n o
. The addi-

tive genetic variance σ2g , error variance σ2e , and polygenic

variance σ2a are obtained from ASReml. Later, HyB_BR
fixes the value of the additive genetic variance and additive
polygenic variance (not updating them in later MCMC
and EM iterations). The n×3 matrix X is a design matrix,
allocating the phenotypes to fixed effects. In our case,
matrix X is set up with first column being the mean, the
second and third columns defining the breeds (Holstein
and Jersey) and sex (bulls and cows) of the cattle. The
pedigree relationship matrix, A, is built using the lower
symmetrical matrix Ped detailed by Henderson [28]; while
the genomic relationship matrix G is constructed using
the equation G =ZsZs′/n, Zs is the standardized Z matrix

with Zs
ij ¼ Zij−2pi

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1−pið Þp

. The diagonal error

matrix E is constructed according to the equation defined

by Garrick et al. [20] and described above for the pheno-

types used in this study.
The EM steps require the time complexity O(mn). For

the calculation of tr E−1ZiZ′
iE

−1PEVu eð Þ� �
which is

calculated prior to the EM steps, the required time is
O(m2n). This calculation accounts for 40% of the total
computational time of EM module. Since the calculation
is independent for each SNP, we parallelize the opera-
tions by chromosomes, which reduce total running time
by approximately 30%.
Once the EM has converged using the criterion

( ĝ q−ĝ q−1� �′
ĝ q−ĝ q−1� �

= ĝ q′ĝ q
� �

: < 10−10
�

with q the

iteration number, the parameter estimates from the EM
are used as starting points of parameter values in the
MCMC iterations. The steps of MCMC iterations
iteration were detailed by Kemper et al. (2015) [6]. Fur-
thermore, Wang et al. (2016) [16] suggested a speed-up
scheme to improve computational efficiency. The scheme
is as follows. After 500 MCMC iterations, the SNPs with
high probability in the distribution with zero variance will
be excluded from the model. In other words, when P(i, 1)
is greater than 0.90, the SNP effects will be set as zero.
Previous investigation showed that 4000 MCMC iterations
were required by HyB_BR for both 600 K SNP panel and
imputed sequence data to maximize accuracy of genomic
prediction across all the traits [16].
To compare the computational cost between BayesR

and HyB_BR and how this changed with an increasing
number of individuals in the reference set, we divided
the data (Table 1) into three different referent sets (Ref1,



Fig. 1 The pseudo-code of the EM module
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Ref2, and Ref3) (with the number of sequence variants
held constant). Ref1 had Holstein bulls only with 3049
bulls; Ref2 included Holstein bulls and cows with 12,527
animals; Ref3 had all the data (16,214 animals).
In all three reference sets, the speed advantage of

HyB_BR compared with BayesR was investigated. Then
the accuracy of genomic prediction from BayesR,
HyB_BR and GBLUP was compared in the full data
(including the sequence variants).
In addition, the precision of mapping QTL from the

three methods was compared.

Results
Computational time comparison between GBLUP, BayesR
and HyB_BR
For both 600 K and SEQ data sets, HyB_BR was
more than 10 times faster than BayesR, Fig. 2. As the
size of the data set increased (from Ref 1 to Ref3 or
from 600 K to SEQ data), the computational time re-
quired for HyB_BR could be reduced by a greater and
greater margin relative to BayesR. On 600 K data,
HyB_BR had a similar compute time to GBLUP. For
the SEQ data, HyB_BR was up to four fold faster
than GBLUP.
These timings were recorded on a server with Intel

E5–2680 2.7GHz processors and 384GB of 1333 MHz
RAM.

Accuracy of genomic prediction for GBLUP, BayesR, and
hybrid with sequence data
Prediction accuracy for milk production traits and fertility
For the milk production and fertility traits, the com-
bined Holstein and Jersey reference sets were used to
predict three validation sets including Holstein bulls



Fig. 2 The computational time comparison between GBLUP, BayesR and HyB_BR on 600 K and SEQ data. Three reference sets (Ref1, Ref2 and
Ref3) with the same number of variants (600 K or SEQ) are used here. Ref1 has Holstein bulls data with 3049 animals; Ref2 has Holstein bulls and
cows data with 12,527 animals; Ref3 has Holstein and Jersey bulls and cows with 16,214 individuals

Table 3 The multi-breed prediction accuracy and bias of GBLUP, BayesR, and HyB_BR on SEQ data related to Fat Yield, Milk Yield,
Protein Yield, Fat%, Protein% and Fertility

Holstein and Jersey reference to predict Holstein validation

Fat Yield Milk Yield Protein Yield Fat% Protein% Fertility

Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias

GBLUP +Polya 0.64 1.07 0.66 0.92 0.63 0.95 0.76 0.95 0.83 0.98 0.42 1.70

-Polyb 0.62 1.32 0.60 0.83 0.58 1.15 0.75 1.01 0.81 1.09 0.42 1.70

BayesR +Polya 0.65 1.27 0.69 0.91 0.68 1.04 0.81 1.01 0.83 0.99 0.42 1.32

-Polyb 0.63 1.17 0.67 0.85 0.65 0.91 0.80 1.01 0.82 0.96 0.42 1.32

HyB_BR +Polya 0.66 1.04 0.69 0.89 0.68 0.96 0.81 0.99 0.83 0.96 0.42 1.32

-Polyb 0.63 0.96 0.69 0.89 0.66 0.88 0.81 0.99 0.81 0.94 0.42 1.32

Holstein and Jersey reference to predict Jersey validation

Fat Yield Milk Yield Protein Yield Fat% Protein% Fertility

Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Bias

GBLUP +Polya 0.54 0.76 0.65 0.88 0.69 0.94 0.67 0.86 0.77 0.94 0.23 1.13

-Polyb 0.52 0.93 0.65 1.03 0.68 1.24 0.66 0.93 0.75 1.02 0.23 1.13

BayesR +Polya 0.57 0.88 0.70 0.96 0.72 1.22 0.77 0.97 0.77 0.89 0.23 1.03

-Polyb 0.52 0.73 0.68 0.87 0.67 1.02 0.76 0.95 0.77 0.87 0.23 1.02

HyB_BR +Polya 0.58 0.87 0.69 0.95 0.73 0.91 0.77 0.93 0.79 0.87 0.23 0.97

-Polyb 0.57 0.74 0.69 0.85 0.73 0.91 0.76 0.93 0.78 0.85 0.23 0.97

The bulls and cows from two breeds of Holstein and Jersey are used as the reference set to predict Holstein bulls and Jersey bulls separately. aThe prediction
accuracy when adding the polygenic term in the model; whilebis the prediction accuracy when leaving out the polygenic term from the model

Wang et al. BMC Genomics  (2017) 18:618 Page 7 of 23
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(Table 3), Jersey bulls (Table 3), and Australian Red
bulls & cows (Table 4).
When predicting the Holstein validation bull data,

BayesR and HyB_BR performed equally well. Compared
with GBLUP, BayesR and HyB_BR had a small but
consistent accuracy improvement for the milk produc-
tion traits except protein%. For fat% trait, BayesR and
HyB_BR gave a 5% improvement in accuracy compared
with GBLUP. However, for protein% and fertility there
was no difference between the methods. With the Jersey
validation set, the accuracy superiority of HyB_BR and
BayesR over GBLUP was greater; for example for fat per-
cent, BayesR and HyB_BR gave a 10% higher accuracy
than GBLUP. HyB_BR and BayesR also gave regression
coefficients (DTD on GEBV) closer to one than GBLUP
for most traits.
In addition, when incorporating the polygenic effects

into the prediction model, a small but consistent accur-
acy improvement was observed for milk production
traits, Table 3. However, for fertility, including the poly-
genic effects did not affect the prediction accuracy at all.
When predicting Australian red bulls and cows using

the combined Holstein and Jersey reference set (across
breed prediction), both HyB_BR and BayesR had a
considerable accuracy advantage (up to 12% increase)
over GBLUP for all the traits (Table 4). Compared with
BayesR, HyB_BR performed equally, or better, in terms
of accuracy for all traits except fat yield.

Accuracy of genomic prediction for heat tolerance
The accuracy of genomic prediction for the heat toler-
ance traits was similar for GBLUP, BayesR, and HyB_BR,
Table 5. There were two exceptions when predicting the
validation set of Jersey bulls: 1) for the fat yield trait
associated heat tolerance, there was a 6% accuracy
reduction for BayesR and HyB_BR in comparison with
Table 4 The across breed prediction accuracy of GBLUP, BayesR, an
Yield, Fat%, Protein% and Fertility

Across breeds prediction on Australian red bulls

Fat Yield Milk Yield Protein Yield

Acc. Bias Acc. Bias Acc. Bi

GBLUP 0.13 0.58 0.21 0.59 0.15 0.

BayesR 0.35 1.31 0.22 0.77 0.24 0.

HyB_BR 0.28 0.74 0.36 0.70 0.26 0.

Across breeds prediction on Australian red cows

Fat Yield Milk Yield Protein Yield

Acc. Bias Acc. Bias Acc. Bi

GBLUP 0.15 0.77 0.11 0.37 0.12 0.

BayesR 0.28 1.02 0.22 0.55 0.16 0.

HyB_BR 0.25 0.88 0.23 0.54 0.16 0.

The bulls and cows from two breeds of Holstein and Jersey are used as the referen
GBLUP; 2) For milk yield, a 9% increase in accuracy from
BayesR and HyB_BR over that of GBLUP was observed.
Given the small size of the validation populations, these
differences were not statistically significantly different.
HyB_BR and BayesR did give regression coefficients closer
to one compared with GBLUP for all the traits.

Compared with 600 K SNP panels, the impact of
sequence data (SEQ) on the prediction accuracy of
GBLUP, BayesR, and HyB_BR was dependent on the
trait and validation population (Fig. 3). For the predic-
tion of the validation sets of Holstein or Jersey bulls
(which were closely related to the reference set), only a
very small accuracy gain (1% ~ 2%) was observed from
using sequence data compared to using the 600 K panel.
However, when the validation set comprised of Australian
Red bulls and cows, there was greater advantage of using
the sequence data, provided BayesR or HyB_BR was used.
For example, the accuracy using BayesR and HyB_BR with
the sequence data was up to 13% higher than when the
600 K SNP panel was used. When using sequence data,
GBLUP gave only a very limited increase (or even a reduc-
tion for Fat Yield trait).

Inference of genetic architecture
To compare the genetic architecture of the traits using
whole genome sequence data, the number of SNPs in
each of four distributions (with the variance 0�σ2g ,

0:0001�σ2g , 0:001�σ2g , or 0:01�σ2g ) was investigated

(Table 6). Across all the traits, BayesR and HyB_BR gave
a similar proportion of SNP in the distribution with the
largest variance 0:01σ2g . However, there was a difference in

the proportion of SNPs in each of the four distributions,
in that is HyB_BR systematically estimated more variants
in the distributions with non-zero variances than BayesR.
d HyB_BR on SEQ data related to Fat Yield, Milk Yield, Protein

Fat% Protein% Fertility

as Acc. Bias Acc. Bias Acc. Bias

71 0.39 0.61 0.50 1.32 0.22 0.96

92 0.40 0.61 0.53 0.86 0.27 0.97

74 0.47 0.66 0.53 0.88 0.27 0.95

Fat% Protein% Fertility

as Acc. Bias Acc. Bias Acc. Bias

57 0.31 0.92 0.34 1.09 0.07 0.61

60 0.37 0.94 0.34 0.93 0.07 0.52

59 0.37 0.91 0.34 0.91 0.07 0.57

ce set to predict Australian red bulls and cows



Table 5 The multi-breed prediction accuracy and bias of
GBLUP, BayesR, and HyB_BR on SEQ data related to traits
affected by heat tolerance

Holstein and Jersey reference Prediction on Holstein bulls

Fat Milk Protein

Acc. Bias Acc. Bias Acc. Bias

GBLUP 0.35 1.47 0.24 0.84 0.32 1.24

BayesR 0.35 1.05 0.29 0.88 0.33 0.92

HyB_BR 0.35 1.05 0.28 0.86 0.33 1.01

Holstein and Jersey reference Prediction on Jersey bulls

Fat Milk Protein

Acc. Bias Acc. Bias Acc. Bias

GBLUP 0.33 1.25 0.37 1.11 0.35 0.72

BayesR 0.27 0.89 0.46 0.89 0.35 0.76

HyB_BR 0.27 0.88 0.46 0.89 0.35 0.77

The bulls and cows from two breeds of Holstein and Jersey are used as the
reference set to predict Holstein bulls and Jersey bulls separately

Wang et al. BMC Genomics  (2017) 18:618 Page 9 of 23
QTL mapping
For all the traits, estimated posterior possibilities from
BayesR and HyB_BR were plotted across the whole genome
locations of SNPs, Figs. 4, 5, 6, 7, 8, 9, 10 and 11. According
to the posterior possibilities, the thresholds (the grey hori-
zon lines in the figures; the probabilities above which there
are the same number of SNPs as in the distribution with
largest variance 0:01�σ2

g) were set to highlight the top SNPs.

Top variants with the highest posterior probability of being
in the distribution with the largest variance from BayesR
and HyB_BR were investigated.
QTL mapping for milk production traits
The top variants detected by both BayesR and HyB_BR
(Table 7) were in, or close to, many previously described
genes involved with milk production. For example, in
Table 7, some well-known mutations impacting milk
synthesis included DGAT1 [29–31], FASN [32], SCD
[33], PAEP [34], AGPAT6 [35, 36], and CNS2/3 [5].
Notably, for the trait Fat% (Fig. 7), HyB_BR was able to
find the real causal mutation in the DGAT1 gene,
located at 1802266 bp of Chromosome 14, which has
been reported by Grisart et al., 2004 [29]. In addition,
HyB_BR could detect some novel potential causal muta-
tions including in the genes GC (encoding the vitamin D
binding protein, affecting milk yield), SMEK1 (regulating
the Insulin/IGF pathway, indirectly impacting milk pro-
duction and fertility) and MYH9 (myosin, heavy chain 9,
non-muscle; impacting protein yield [5, 37, 38].
QTL mapping for fertility
For fertility, a putative candidate gene located on
Chromosome 18 including (around genes CTU1 and
CEACAM18) was detected by BayesR and HyB_BR.
These genes haveb previously been reported to be asso-
ciated with calving traits [39, 40].
QTL mapping for heat tolerance traits
As there is a significant unfavourable correlation
between milk production and heat tolerance, at least for
the traits we have used for heat tolerance (decline in
milk production with increasing heat stress) [21], muta-
tions that affect milk production are also likely to affect
heat tolerance. To avoid detecting just QTL with large
effects on milk production, QTL mapping for heat
tolerance traits was performed fitting fixed effects of the
mutations in DGAT1, ROBO1, PAEP, and MGST1 (the
mutations with largest effects on milk production, to
ensure these mutations were not picked up again in the
heat tolerance mapping) in the BayesR and HyB_BR
models. The posterior possibilities of all the variants
estimated by HyB_BR and BayesR were plotted across
the whole genome sequence in Figs. 9, 10, and 11. Com-
pared with BayesR, HyB_BR systematically detected
more SNPs with small effects (0:001�σ2g ) while identify-

ing fewer SNP with zero effects.
In total, we found fourteen novel variants (Table 8) in

our study which have previously been associated with heat
tolerance in humans or other species. YBEY [41, 42],
located at BTA1 with the position 147,710,807 bp, has
been reported to be important in the response of infection
of Escherichia coli of human or other animals under heat-
shock response. Variants in SERPINE2 and CACNA1D
(close to the variants detected in our study,
BTA2:112,901,035 and BTA22:47,737,890 respectively)
have been reported to impact the sweating rate and
respiration rate of dairy cattle [43]. DYRK3 (The dual
specificity tyrosine-phosphorylation-regulated kinase 3),
has been reported to affect respiration rate (breaths per
minute) in dairy cattle [43]. HSF1, heat shock factor
protein 1, coordinates stress-induced transcription in
Human [44]. One single nucleotide polymorphism (SNP)
in the 3′-untranslated region (g.4693G > T) of HSF1 has
been reported to be in association with thermo tolerance
in Chinese Holstein cattle [45]. STIP1, stress inducible
protein 1, has been reported to be homologous to hsc70/
hsp90 in human [46]. In mice, STIP1 could play a key role
on in the ability of germ cells to survive in stress condi-
tions including high temperatures [47]. Further investiga-
tion of the effect of these genes on heat tolerance is
required.
Discussion
In this paper, we have demonstrated that HyB_BR [16]
could be efficiently implemented for simultaneous pre-
diction of genomic estimated breeding values, inference



Fig. 3 The prediction accuracy of GBLUP, BayesR, and HyB_BR on 600 K and SEQ data related to three milk production traits including Fat Yield
(a), Milk Yield (b), Protein Yield (c), Fat Percent (d), and Protein Percent (e)
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Table 6 The proportion of variants in each of four distributions (0, 0:0001�σ2g , 0:001
�σ2g , or 0:01

�σ2g) estimated from BayesR
(termed BR) and HyB_BR (termed HB)
Fat Yield
 Milk Yield
 Protein Yield
 Fat%
 Protein%
 Fertility
BR (%)
 HB (%)
 BR (%)
 HB (%)
 BR (%)
 HB (%)
 BR (%)
 HB (%)
 BR (%)
 HB (%)
 BR (%)
 HB (%)
0
 99.484
 99.015
 99.542
 99.242
 99.494
 99.224
 99.660
 99.380
 99.577
 99.171
 99.515
 99.298
0:0001σ2g
 0.513
 0.958
 0.449
 0.717
 0.501
 0.725
 0.333
 0.612
 0.405
 0.799
 0.453
 0.676
0:001σ2g
 0.002
 0.027
 0.009
 0.039
 0.004
 0.05
 0.004
 0.006
 0.015
 0.028
 0.030
 0.025
0:01σ2g
 0.001
 0.001
 0.001
 0.002
 0.001
 0.001
 0.002
 0.002
 0.002
 0.002
 0.001
 0.002



Fig. 4 Posterior possibilities of all the variants on fat yield estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole genome. The top SNPs with highest posterior possibilities are labelled with blue circle
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Fig. 5 Posterior possibilities of all the variants for milk yield estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole genome. The top SNPs with highest posterior possibilities are labelled with blue circle
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Fig. 6 Posterior possibilities of all the variants for protein yield estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole chromosome genome. The top SNPs with highest posterior possibilities are labelled with blue circle
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Fig. 7 Posterior possibilities of all the variants for fat percent estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole genome. The top SNPs with highest posterior possibilities are labelled with blue circle
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Fig. 8 Posterior possibilities of all the variants on fertility estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole genome. The top SNPs with highest posterior possibilities are labelled with blue circle
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Fig. 9 Mapping posterior probabilities of all the variants estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole chromosome related to Fat yield affected by heat tolerance. The top SNPs with highest posterior possibilities are labelled with
blue circle
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Fig. 10 Mapping the posterior probabilities of all the variants estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole chromosome related to Milk yield affected by heat tolerance. The top SNPs with highest posterior possibilities are labelled with
blue circle
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Fig. 11 Mapping the posterior probabilities of all the variants estimated from BayesR (a) and HyB_BR (b) according to their positions (base pairs)
across the whole chromosome related to protein yield affected by heat tolerance. The top SNPs with highest posterior possibilities are labelled
with blue circle
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Table 7 Known genes (impacting milk production traits and fertility) identified by HyB_BR using the variants with the largest
variances 0:01�σ2g [49–55]

The blue bar highlights the genes that were not detected by BayesR in the proportion with the largest variances
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Table 8 Known genes interacting with heat stress

Gene BTA Position Traits Description

Fat Milk Protein

YBEY 1 147,710,807 ✓ The translation-associated heat shock genes, playing key roles in the
heat-shock response of E. coli under heat shock stress [41, 42].

Unknown 2 112,901,035 ✓ ✓ ✓ In association with the gene SERPINE2, which had been proven to impact
the sweating rate of dairy cattle [43]

SOCS2 5 23,522,032 ✓ Suppressor of cytokine signalling 2, might be responsible for heat stress
abatement during the dry period of dairy cattle [56].

HSF1 14 1,806,291 ✓ Genes involved in the bovine heat stress response [45, 57].

DYRK3 16 4,288,402 ✓ The dual specificity tyrosine-phosphorylation-regulated kinase 3, impacting
Respiration rate (breaths per minute) in dairy cattle [43]

NFAT5 18 36,897,740 ✓ Nuclear factor of activated T cells, simulating transcription of Heat shock
protein 70 [58].

SSTR1 21 48,804,372 ✓ Somatostatin receptor 1, playing a role in heat stress sensing or
communicating stress status between cells [59].

CACNA2D3 22 46,612,204 ✓ Methylation of the Calcium Channel-Related Gene, showing impaired
behavioural heat pain sensitivity in mice and human studies [60].

MED17 29 1,021,424 ✓ The mediator mutant yeast, which was temperature-sensitive [61].

ME3 29 8,968,989 ✓ Malic Enzyme 3, conferring heat-stable resistance to root-knot nematodes
in plants [62].

MACROD1 29 43,097,815 ✓ Heat shock protein 90 kDa alpha (cytosolic), class A member 1, which might
be in association with PAR (had been proved to function heat shock
response) [63, 64].

STIP1 29 43,108,351 ✓ ✓ Stress inducible protein 1, was homologous to the human heat shock
cognate protein 70 (hsc70)/heat shock protein 90 (hsp90) [47].

GSTP1 29 46,094,664 ✓ Glutathione S-transferase Pi, which was reported to play a positive role under
heat stress in controlling cellular toxicants and to alleviate the destructive
effect on cattle [65].

ATG2A 29 43,751,656 ✓ Autophagy Related 2 Homolog A, which had been referred to as the Heat
Stress-repressed target genes by Niskanen et al., 2015 [66].

All the listed genes are identified by HyB_BR using the variants with the largest variances 0:01�σ2g

Wang et al. BMC Genomics  (2017) 18:618 Page 20 of 23
of genetic architecture, and potential causal mutation
discovery using whole-genome sequence data. As men-
tioned by Wang et al. (2016), HyB_BR was developed to
overcome two challenges:

1) Long compute times are the main limitation of
traditional MCMC Bayesian models applied to
whole genome sequence data with very large data
size. Therefore, an Expectation-Maximisation
scheme was introduced to reduce number of
iterations of MCMC.

2) Fast schemes (mainly including Iterative Conditional
Expectation, and Expectation-Maximisation
algorithms) implemented for Bayesian models have
tended to reduce the accuracy compared with
MCMC.

HyB_BR implements an EM algorithm to quickly con-
verge for estimates of SNP effects and other parameters,
followed by a limited number of MCMC iterations to
optimise the posterior estimation for SNP effects. When
applied to whole genome sequence data, our results
indicated HyB_BR had similar accuracy of genomic
prediction and precision of QTL mapping to BayesR
implemented with full MCMC, but with 10 fold less
computational time required. Furthermore, compared
with the prediction accuracy on 600 K SNP panels, we
have demonstrated that using sequence data improved
the accuracy of genomic prediction for some of the
traits, and particularly in multi-breed evaluations, if a
breed was not included in the reference population.
The key improvement for computational efficiency

was that HyB_BR reduced the iteration times. BayesR
required a huge number of MCMC iterations, which
was dependent on the size of the data. For example, on
the whole genome sequence data with 16,214 animals
and almost 1 million variants, 40,000 iterations with first
20,000 as burn-in were required. For each MCMC
iteration, the basis operation times were O(mn2). In
comparison with BayesR, HyB_BR has the same number
of basic operations. But after the EM converges (with
very small number of iterations as demonstrated by
Wang et al. (2015) [27]), HyB_BR implemented MCMC
iterations with speed-up schemes, which could reduce
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the iteration number to 4000 iterations. The results from
Fig. 2 provided the evidence that HyB_BR was up to 10
times faster than BayesR in the whole genome sequence
data set.
In addition to the computational time, the prediction

accuracy of HyB_BR for multi-breed prediction and
across-breed prediction was very similar to BayesR for a
range of traits with various genetic architectures, shown
in Tables 3, 4 and 5. The accuracy advantage of HyB_BR
and BayesR over GBLUP for across-breed prediction
demonstrated the benefit of the non-linear Bayesian
models. Also, the increase in accuracy using whole
genome sequence data for across-breed prediction in
comparison with using 600 K data, confirmed the results
from [5].
For the genetic architecture identification of milk

production traits, there was one notable difference
between BayesR and HyB_BR: In comparison with
BayesR, HyB_BR does not shrink variants with small
effects (0:001�σ2g ) as strongly, the same is true for very

small effects ( 0:0001�σ2g ), (Table 6). The same is true

for the identification of causal mutations for heat
tolerance, Figs. 9, 10 and 11. One explanation is that
EM steps do not have enough power to shrink SNPs
with small effects [27], which limits the following
MCMC steps.
For the heat tolerance traits, there is relatively little

literature reporting QTL for heat tolerance in cattle.
Only one of the additive genetic variants (located at
Chromosome 29 with the position 48,329,079 base pairs;
close to FGF4) [48], later suggested to be SHANK2 by
[43] has previously been reported. In Table 7, the gene
SHANK2 was detected but not in the list of top causal
mutations. However, both BayesR and HyB_BR did pick
up mutations in or close to seven genes (e.g. YEBY,
HSF1, MED17, ME3, STIP1, SERPINE2 and CAC-
NA1D), which have been reported by previous studies to
be involved in response to heat stress events in cattle
(e.g. [45]), human, mice, or other species. In addition,
HyB_BR also detected two other unknown variants. All
these variants required the further investigation in
regards to their function interacting between milk
productions and heat tolerance.
The computational advantage of HyB_BR makes it

attractive for implementation of genomic prediction in
many applications. However, there are still two limita-
tions: 1) the speed-up scheme of HyB_BR defines the
fixed threshold for different traits and various
densities of genomic data, which could hinder its
flexibility for practical applications; 2) when the size
of the data increases dramatically to 30 million
variants on millions of animals, which is possible in the
near future, HyB_BR is still not computationally efficient
enough. Therefore, a flexible and more efficient speed-up
scheme will play an important role to further improve the
computational performance of HyB_BR.

Conclusion
A hybrid scheme of Expectation-Maximisation algorithm
and MCMC sampling was implemented on whole-
genome sequence data for simultaneous genomic predic-
tion, inference of genetic architecture inference and
causal mutation identification. The accuracy of HyB_BR
for multi-breed and across breed prediction for all traits
was very similar to the results from BayesR (imple-
mented with full MCMC) while requiring only 1/10 of
the total running time of BayesR. HyB_BR could identify
some well-known mutations (e.g. DGAT1) with the
highest posterior probability, which demonstrated the
value of the method for QTL mapping of complex traits.
The advantage of using sequence data and HyB_BR was
greatest for multi-breed and across breed predictions.
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