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Abstract

Background: Polyadenylation is a critical stage of RNA processing during the formation of mature mRNA, and is
present in most of the known eukaryote protein-coding transcripts and many long non-coding RNAs. The correct
identification of poly(A) signals (PAS) not only helps to elucidate the 3′-end genomic boundaries of a transcribed
DNA region and gene regulatory mechanisms but also gives insight into the multiple transcript isoforms resulting
from alternative PAS. Although progress has been made in the in-silico prediction of genomic signals, the
recognition of PAS in DNA genomic sequences remains a challenge.

Results: In this study, we analyzed human genomic DNA sequences for the 12 most common PAS variants. Our
analysis has identified a set of features that helps in the recognition of true PAS, which may be involved in the
regulation of the polyadenylation process. The proposed features, in combination with a recognition model, resulted
in a novel method and tool, Omni-PolyA. Omni-PolyA combines several machine learning techniques such as different
classifiers in a tree-like decision structure and genetic algorithms for deriving a robust classification model. We
performed a comparison between results obtained by state-of-the-art methods, deep neural networks, and Omni-
PolyA. Results show that Omni-PolyA significantly reduced the average classification error rate by 35.37% in the
prediction of the 12 considered PAS variants relative to the state-of-the-art results.

Conclusions: The results of our study demonstrate that Omni-PolyA is currently the most accurate model for the
prediction of PAS in human and can serve as a useful complement to other PAS recognition methods. Omni-PolyA
is publicly available as an online tool accessible at www.cbrc.kaust.edu.sa/omnipolya/.
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Background
Polyadenylation is an essential stage of RNA processing
during the formation of mature mRNA and occurs in
most of the known eukaryotic mRNA sequences [1] as
well as in many long non-coding RNAs [2]. The polyade-
nylation process occurs during RNA processing and
involves two stages: 1) cleavage of the primary transcript
and 2) the polymerization of an adenosine tail at the
downstream of the cleaved mRNA in the case of protein-
coding transcripts [3]. The necessary proteins needed for
an efficient and accurate cleavage/polyadenylation event
include, among others, the cleavage and polyadenylation

specific factor, cleavage stimulation factor, cleavage
factors I and II, and poly(A) polymerase [4–6] (Fig. 1a).
Cleavage and polyadenylation specific factor recognizes
and binds to PAS upstream of the cleavage site [7].
Although isolated cleavage and polyadenylation specific
factor binds to PAS, the strength of such binding consid-
erably increases when acting along with cleavage stimula-
tion factor [6]. Endonucleic cleavage at the 3′-end is
performed by cleavage factors I and II [5]. Refer to reviews
[6, 7] for a detailed description of these factors and their
interactions.
Although PAS are necessary for the 3′-end polyadenyla-

tion, other sequence elements have shown to be necessary
for a fully functional cleavage/polyadenylation event, espe-
cially the downstream sequence elements, characterized
by a GU-rich sequence located up to 20 nucleotides (nt)
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downstream of the cleavage site [7]. The distance between
the PAS and the GU-rich sequence primarily enhances
and determines the 3′-end formation [8, 9]. Moreover,
upstream sequence elements found upstream of the PAS,
are U enriched and often affect the efficiency of the 3′-
end formation [8, 10–13]. Finally, the short sequence in
the 3′-end of the actual cleavage site may as well have an
impact on the efficiency of the process [7, 14] (Fig. 1b).
Contrary to the conserved PAS hexamers, downstream
sequence elements and upstream sequence elements are
highly variable in sequence composition and have not yet
been adequately characterized [4]. This sequence variability
of the regions flanking PAS causes a major problem in
computational prediction of such signals in genomic DNA
sequences. Moreover, there is evidence showing that over
half of all protein-coding transcripts have alternative PAS
[15], resulting in transcripts with variable 3′-end untrans-
lated regions and multiple transcript isoforms [16–19].
Therefore, the correct identification of PAS not only
helps in elucidating the 3′-end boundaries of a gene
and regulatory mechanisms but also gives an insight
into the multiple isoforms resulting from alternative
PAS. Furthermore, an accurate predictive model of PAS
would help in the identification of PAS for transcripts
containing premature termination codons, which are
degraded by cellular mechanisms [20].
During the past few decades, several models for the

in-silico prediction of PAS in genomic DNA and mRNA
sequences have been proposed. These models make use
of the sequence surrounding the PAS to differentiate
true PAS from pseudo-PAS, i.e., hexamers (AATAA,
ATTAAA, etc.) that are identical to true PAS hexamers

but have no link to the 3′-end polyadenylation. Yada et
al. [21] performed a statistical analysis of human
genomic sequences surrounding the true PAS covering
the region from −80 to +48 where the AATAA hexamer
corresponds to positions 0 to 5. From their analysis, the
authors observed that C and T/C nucleotides are often
found upstream and downstream from the PAS, re-
spectively, and concluded that CAATAAA(T/C) might
be regarded as a consensus sequence for PAS. Later,
Kondrakhin et al. [22] developed a generalized consensus
matrix from a set of 63 vertebrate pre-mRNAs. Elements
of the matrix represented the absolute frequencies of
nucleotide triplets at each site and were applied to each
nucleotide sequence to discriminate PAS from pseudo-
PAS. However, when tested on sequences from the adeno-
virus Ad2 genome, their method produced a high level of
false positive predictions. For instance, when their param-
eters were set to recognize 8 out of 9 true PAS, the model
predicted over 1000 pseudo-PAS as true PAS in the Ad2
genome that is of 35,937 nt in length [23]. Subsequently,
Salamov and Solovyev [4] developed a model based on a
linear discriminant function, from 8 variables defined
from a window of 300 nt surrounding the PAS
(−100,+200). These variables include, among others,
scores from position weight matrices, hexanucleotide
composition upstream and downstream, and positional
triplet composition. Although the authors achieved better
results compared to Yada et al. [21] and Kondrakhin et al.
[22], the number of false positives remained relatively high
(specificity of ~50%). Tabaska and Zhang [24] developed
the polyadq tool consisting of two quadratic discriminant
functions (one for each AATAAA and ATTAAA variants)

Fig. 1 Cleavage/polyadenylation event and general sequence consensus. a Diagram representing the proteins involved during the cleavage/
polyadenylation event. b Schematic representation of the region surrounding the PAS [7]
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derived from three variables. Their results on two new
datasets outperformed the existing methods, especially in
the reduction of false positives. In 2003, Legendre and
Gautheret [25] developed the ERPIN method based on a
probabilistic hidden Markov model. ERPIN used position
weight matrices computed for each di-nucleotide in a win-
dow of 600 nt surrounding the PAS (−300, +300), and
achieved a prediction specificity of 85% for a sensitivity of
56%, resulting in a specificity improvement of 9.7% rela-
tive to the polyadq method. Bajic et al. [26] developed the
Dragon PolyA tool based on artificial neural networks and
self-organized maps for predicting the two most common
PAS variants in human (AATAAA and ATTAAA). Their
tool improved both sensitivity and specificity by ~5% and
5% on AATAAA variant, respectively, and 11.3% and 7.9%
on ATTAAA variant, respectively, relative to those
obtained by polyadq. In addition, support vector machine
(SVM) approaches have been proposed. Liu et al. [3]
derived an SVM model from k-gram and artificially trans-
lated amino acid patterns from DNA sequences. Their
method includes an entropy-based feature selection
process to select the most discriminative features. Their
results improved specificity for the three out of four con-
sidered datasets compared to ERPIN and polyadq. In
2006, Cheng et al. [27] proposed a polya_svm tool based
on an SVM model. Polya_svm is derived from the 15 cis-
regulatory elements previously found by Hu et al. [28],
and achieved an improvement of sensitivity by 33.8% rela-
tive to polyadq while preserving the same specificity. In a
subsequent study, Xu et al. [29] used SVM-based models
for the prediction of PAS in the chromosomal data, i.e.,
human chromosome 21, and achieved an accuracy of 83%,
sensitivity of 90%, specificity of 76%, and a precision of
80%. Akhtar et al. [30] developed the POLYAR tool based
on a linear discriminant analysis model. The tool analyzes
600 nt sequences surrounding the PAS and extracts se-
quence characteristics using position weight matrices,
pentamers composition downstream and upstream of
PAS, and the distance between cis-elements, among
others. Moreover, authors divided PAS signals into three
categories: 1) PAS-strong, containing the two most com-
mon variants AATAAA or ATTAAA, 2) PAS-weak, con-
taining any of the other ten remaining variants and, 3)
PAS-less, referring to PAS not having any of the 12 most
common variants. For PAS-strong, POLYAR made an
improvement of sensitivity by a relative 23% compared to
polya_svm, at the expense of reducing specificity by
5.6% relative to polyadq. Both POLYAR and polya_svm
obtained similar but considerably lower specificity/sen-
sitivity for PAS-weak and PAS-less sequences, demon-
strating the need to characterize signals surrounding
other PAS variants. In this direction, Kalkatawi et al.
[31, 32] developed the Dragon PolyA Spotter tool
(DPS) for PAS prediction in human genomic sequences

for each of the 12 most common PAS variants separ-
ately. Their method used artificial neural networks and
random forest models derived from a set of thermo-
dynamic, compositional and statistical features. DPS
method considerably outperformed other results obtained
by polyadq, POLYAR and poly_svm tools on the most
common PAS variant (AATAAA hexamer). Later, Xie et
al. [33] used a hidden Markov model (HMM) to extract
latent spectral features from DNA sequences, which were
subsequently used as input for a linear SVM model (we
refer to this model as HMM_SVM hereafter). The authors
considered the same genomic DNA sequences for the 12
PAS variants as used in Kalkatawi et al. [31] and reduced
the weighted average error rate by 25% relative to the
results generated by the DPS tool. Although considerable
progress has been made in the PAS prediction, the predic-
tions still produce an unacceptable level of false positives.
Moreover, new biological features surrounding PAS may
be defined for the development of more efficient PAS rec-
ognition models and may provide a better understanding
of the polyadenylation machinery. Furthermore, the appli-
cation of other machine learning methods may result in
more accurate and more robust prediction models.
In this study, we proposed and analyzed a new set of

features surrounding the PAS in human genomic DNA
sequences and in combination with a prediction model
we developed a novel prediction method and tool,
Omni-PolyA that predicts PAS in human genomic DNA
sequences. Omni-PolyA combines different classification
models in a tree-like structure. We implemented a
general-purpose optimization technique, namely a paral-
lel genetic algorithm [34] to optimize the Omni-PolyA
model structure and its parameters for deriving more
accurate results. We compared the performance of
Omni-PolyA against results obtained by the methods
proposed in Kalkatawi et al. [31] (as implemented in the
DPS tool) and Xie et al. [33] (as implemented in the
HMM_SVM tool), thereby demonstrating the utility of
the proposed feature set and the Omni-PolyA model.
Our comparison analysis shows that Omni-PolyA
reduces the weighted average error rate by 35.37% relative
to the state-of-the-art results [31, 33] for the 12 consid-
ered PAS variants.

Results
The key contributions of our study are the analysis of
the genomic sequences for deriving a new set of features
capturing elements important for the identification of
PAS and the development of a novel method and tool,
Omni-PolyA, designed for the prediction of PAS.

Feature mining from genomic DNA sequences
Tian et al. [15] suggested that polyadenylation events
may be determined from the combination of the PAS,
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DNA elements surrounding PAS, and the binding
factors. Clearly, an accurate tool for PAS prediction from
genomic DNA sequences would be of great help for real
applications, i.e., for finding computationally alternative
PAS or as a component of gene finding tools. Therefore,
several studies have focused on the identification of cis-
elements and significant sequence patterns surrounding
the PAS [3, 6, 9, 19, 24–28, 31–33]. Notably, Kalkatawi
et al. [31] and Xie et al. [33] proposed the most discrim-
inant features and models to date for the prediction of
PAS from human genomic sequences. However, select-
ing the optimal combination of features from a big set
and the type of classification model to efficiently utilize
them is not trivial. Consequently, we analyzed the
genomic DNA sequences flanking the PAS (200 nt long
sequences compiled by Kalkatawi et al. [31], see
Methods) to obtain new biologically significant features.
For better understanding the differences and variations
between PAS, we followed the PAS categorization pro-
posed by Akhtar et al. [30]. As such, PAS are divided
into two categories: 1) PAS-strong sequences contain-
ing AATAAA or ATTAAA variants, and 2) PAS-weak
sequences with any of the ten other considered PAS
variants. Fig. 2a and b show the different sequence
composition between PAS-strong and PAS-weak signal
surroundings, respectively. In general, PAS-weak vari-
ants show a notably higher enrichment of adenine
downstream of PAS, while the upstream region pre-
sents greater variability of nucleotide composition com-
pared to PAS-strong. Interestingly, the enrichment of
nucleotides A/T downstream of pseudo-PAS (Fig. 2c) may
suggest similarities to the functional PAS. Consistent with
previous studies [15, 19] this may indicate that there may
be functional PAS within coding DNA sequences. How-
ever, this hypothesis would have to be tested in a
laboratory. It is important to note that Fig. 2 shows the av-
eraged DNA distribution for all sequences. Consequently,
not all sequences necessarily contain the same characteris-
tics as observed in the figure. Nonetheless, these observa-
tions reveal the main differences between PAS-weak and
PAS-strong sequences, which can be used to generate a
new set of discriminant features. Based on this analysis,

we propose a feature set represented by 218 numeric
values (referred to as Omni-PolyA feature set). The
Omni-PolyA feature set includes mono-nucleotide and di-
nucleotides frequencies in particular regions of the
genomic DNA sequences, i.e., downstream, upstream, and
in-frame codons with respect to the PAS hexamer, among
others. Novel and more specific features determined,
make use of the entropy and positional information gain
of the nucleotide content to determine the most relevant
sequence positions. Moreover, we calculate a sequence
score derived from 2-mer weight matrices, which capture
the di-nucleotide characteristics for the entire sequence
surrounding the PAS. Additional file 1: Table S1 shows
the list of the 218 compiled features in Omni-polyA
feature set.

Omni-PolyA method
In contrast to typical univariate decision trees (where
decision splits are usually made from a single feature
threshold), omnivariate decision trees allow the tree to use
a more complex classification model at each non-terminal
node [35]. Each non-terminal node in the omnivariate
decision tree may use a different classification model
depending on the data reaching the node. Therefore, this
procedure offers the advantages of multiple classification
models to learn from different subsets of data. While the
method is generic, in our implementation we considered
the following classification models for non-terminal
nodes: 1) C4.5 univariate decision tree, 2) artificial neural
network, 3) random forest and 4) multinomial logistic
regression model (Fig. 3a). However, the key chal-
lenges rely on determining the depth of the tree and
the classification models used at each non-terminal
node [36–38]. For this, we implemented a genetic
algorithm for optimizing the following processes: 1)
tree pruning, where non-terminal nodes with little or
no contribution to the classification performance are
deleted, and 2) classification model selection and
parameters tuning for each non-terminal node. Figure 3b
shows an illustration of the resulting tree after the genetic
algorithm optimization.

Fig. 2 DNA sequence composition. Nucleotide distribution from positions −100 to 100 with respect to a poly(a) hexamer. a The nucleotide
distribution for the genomic DNA sequences in the PAS-strong category. b The nucleotide distribution for the genomic DNA in the PAS-weak
category. c The nucleotide distribution for sequences containing pseudo-PAS. PAS hexamers were removed from the sequence analysis
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Comparison of performances in PAS prediction
Results reported in this section were obtained from a
5-fold cross-validation in agreement with benchmark
results published for DPS and HMM_SVM state-of-the-
art tools for poly(A) signal prediction (see Methods).
Table 1 shows the prediction error rates achieved by
deep neural networks (DNN), Omni-PolyA and, DPS
[31, 32]. It is important to note that DPS, DNN, and
Omni-PolyA models were derived by using the same 274
features proposed by Kalkatawi et al. [31] and we refer
to this set as DPS feature set. Results in Table 1 show
that the DPS feature set may be used to derive more
accurate classification models than those reported by
Kalkatawi et al. [31, 32]. For example, DNNs consist of a
multi-layered architecture that transforms the data

representation at one level to a higher and more abstract
level [39]. Such an approach has shown to outperform
different models applied to solve some challenging tasks in
the fields of bioinformatics and cheminformatics [39–41].
Although DNNs typically require a considerably large
training set in order to tune a network properly, DNN
reduced the weighted average error rate even for the less
common PAS variants and reduced the weighted average
of the error rate by 11.32% compared to DPS that used the
same feature set. These results demonstrate that different
models may be better suited for each of the PAS variants.
Furthermore, the Omni-PolyA model derived by using the
DPS feature set, reduced the weighted average of the error
rate by 26.85% and 33.60%, compared to DPS and
HMM_SVM, respectively (Additional file 2: Table S2

Fig. 3 Omnivariate decision tree. a Illustration of the omnivariate decision tree structure where each non-terminal node may be an artificial
neural network, random forest, multinomial logistic regression or a C4.5 model. b An example of the simplified tree resulting from the genetic
algorithm optimization

Table 1 Error rate comparison between DPS, DNN and Omni-PolyA derived by using different feature sets from benchmark
poly(A) dataset

Variant Size Error rate (%)

DPS model DNN model Omni-PolyA model

DPS feature set DPS feature set DPS feature set Omni-PolyA
feature set

Omni-PolyA feature set
PAS-weak data pooled

AATAAA 5190 23.72 16.80 14.02 14.20 14.20

ATTAAA 2400 16.63 15.50 14.00 12.50 12.50

AAGAAA 1250 14.00 16.88 11.84 10.80 11.36

AAAAAG 1230 8.05 8.29 4.87 5.85 5.45

AATACA 880 20.00 17.72 13.52 14.09 13.52

TATAAA 780 18.08 21.28 20.38 14.74 13.85

ACTAAA 690 23.33 23.04 19.56 16.23 14.49

AGTAAA 670 19.55 22.98 16.71 14.77 13.13

GATAAA 460 21.74 16.73 13.69 10.65 8.48

AATATA 410 18.05 20.00 16.82 15.85 13.41

CATAAA 410 20.00 26.34 24.14 14.39 14.39

AATAGA 370 18.38 15.40 12.93 12.97 11.62

Average 19.25 17.07 14.08 12.99 12.50

‘Size’ corresponds to the number of samples for each PAS motif variant. The ‘error rate’ is the percentage of misclassified motifs; it is equal to 1-accuracy. DPS results
correspond to those obtained by applying the method described in Kalkatawi et al. [31]. ‘Average’ denotes the weighted average of a column. The error rate of the
best performing model for each PAS variant is highlighted in bold. Columns 5–7 show the results obtained by Omni-PolyA derived from different feature sets. Seventh
column results are obtained by pooling the PAS-weak variants sequences to expand the training data (see Methods)
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shows the results obtained by DPS, DNN and Omni-
PolyA using the DPS feature and HMM_SVM). We did
not consider the latent spectral features proposed by Xie
et al. [33] used to derive HMM_SVM due to the high
number of features (~10,000) that would result in an
unacceptable compute time for non-linear models used as
decision nodes in our Omni-PolyA setup based on genetic
algorithms. Therefore, we analyzed the genomic sequences
and proposed the Omni-PolyA feature set (see the Feature
mining from genomic DNA sequences subsection). To
assess the discrimination capabilities of the Omni-PolyA
feature set, we used these features to derive an Omni-
PolyA model for each PAS variant. Results in Table 1 show
that the classification error rate, reduced for 8 of the 12
variants with an average improvement of 7.74%, relative to
Omni-PolyA derived by using the existing DPS feature set
(fifth and sixth columns, Table 1). Overall, this represents
a relative error rate improvement of 32.51% and 38.74%
over DPS and HMM_SVM state-of-the-art tools, respect-
ively (Additional file 3: Table S3 shows the false positive
and false negative rates). Nevertheless, Omni-PolyA
achieved an inferior performance on some of the variants
from the PAS-weak category compared to HMM_SVM.
This may be due to the limited amount of training data for
variants with only few hundred sequences. In general,
overfitting the training and validation data, outliers, and
noise, are among the most relevant problems when deriv-
ing classification models from small datasets. For example,
in the less frequent PAS variants, the Omni-PolyA
algorithm would train a model using a very limited
number of sequences, which may derive an unstable and
inaccurate classifier. This data limitation is known to con-
siderably affect the performance of the classification
models [42, 43]. The creation of synthetic samples, data
processing (i.e., noise removal, feature selection, etc.), and
data pooling (from similar sub-problems) are among the
possible solutions to address the small data problems in
deriving more stable classifiers. Notably, the straightfor-
ward possibility for deriving robust models for the less fre-
quent PAS variants is to pool the data from different PAS
variants with similar nucleotide distributions. Additional
file 4: Figure S1 shows the nucleotide distribution for the
true PAS sequences for the PAS-weak variants in which
we observe a consistent nucleotide enrichment pattern in
some sequence regions (i.e., enrichment of T nucleotide in
the downstream region 25–50 and the overall A and T
enrichment in the 200 nt flanking the PAS). Therefore, we
expanded the training data by pooling the PAS-weak
variants. For instance, to derive a model for AATAGA
variant, the data from the nine remaining PAS-weak vari-
ants and the respective training portion from AATAGA
variant are used for model tuning (see Methods). Table 1
(seventh column) shows that by pooling the PAS-weak
variants, the error rate reduced for eight out of the 10

PAS-weak variants. Considering the best performing
Omni-PolyA model for each variant, the classification
error rate reduced by 35.37% and 41.34% relative to
DPS and HMM_SVM, respectively (Table 2). Notably,
the largest error reduction was obtained for the two
most common PAS variants (PAS-strong), representing
an improvement of 36.95% and 49.50% relative to results
achieved by the DPS and HMM_SVM tools.
The results discussed in Table 1 and Table 2 are

obtained by using the data collected by Kalkatawi et al.
[31], which has been used as a benchmark in subsequent
studies. However, to account for the current annotation
for GRCh37, we used the GENCODE Poly(A) feature
annotation (release 19) [44] to extract the true PAS
sequences (see Methods). Consistent with the previously
discussed results, Table 3 shows that Omni-PolyA
considerably outperformed the state-of-the-art methods,
reducing the error rate by 6.86% and 20.63% relative to
the results achieved by DPS and HMM_SVM tools,
respectively. Notably, the largest reduction in the error
rate was observed in the PAS-weak variants, in which
data were pooled to increase the volume of the training
data. For PAS-weak, Omni-PolyA reduced the weighted
average of the error rate by 11.50% and 32.64% relative
to DPS and HMM_SVM tools, respectively. We want to
highlight that when the error rates of a predictive system
are less than 20%, it appears to be significantly harder to
reduce the error further.

Table 2 Error rate comparison between best performing Omni-
PolyA model and state-of-the-art results in benchmark poly(A)
dataset from [31]

Variants Size Error rate (%)

DPS HMM_SVM Omni-PolyA

AATAAA 5190 23.72 28.13 14.02

ATTAAA 2400 16.63 23.96 12.5

AAGAAA 1250 14.00 10.96 10.8

AAAAAG 1230 8.05 8.62 4.87

AATACA 880 20.00 19.89 13.52

TATAAA 780 18.08 16.79 13.85

ACTAAA 690 23.33 26.38 14.49

AGTAAA 670 19.55 23.13 13.13

GATAAA 460 21.74 12.83 8.48

AATATA 410 18.05 14.15 13.41

CATAAA 410 20.00 14.15 14.39

AATAGA 370 18.38 8.11 11.62

Average 19.25 21.21 12.43

DPS and HMM_SVM results correspond to those obtained by the methods
described in Kalkatawi et al. [31] and Xie et al. [33], respectively. One observes
that the relative decrease of the weighted average error rate of Omni-PolyA
compared to DPS and HMM_SVM is 35.37% and 41.34%, respectively. The
error rate of the best performing model for each PAS variant is italicized
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Discussion
Survey of PAS-associated genomic features
To capture the sequence variations (Fig. 2a-c) and essen-
tial elements involved in the polyadenylation event, we
proposed Omni-PolyA feature set containing 218
numeric features (see Additional file 1: Table S1). This
set includes features such as positional information gain,
scored derived from 2-mer weight matrices, numerical
DNA structural profiles, among others. Here, we present
a brief survey of the most discriminative features and
their biological interpretation.

Positional information gain
It is clear that PAS-weak/strong and pseudo-PAS
sequences, on average, differ in sequence composition,
most notably in the region (−20, 40) surrounding PAS
(Fig. 2a-c). However, we asked if other regions and inde-
pendent positions may also be relevant for the polyade-
nylation event. Therefore, to accurately detect the most
discriminative positions in a systematic manner, we
calculated the information gain independently for each
position of the DNA sequence surrounding PAS (see
Methods). Consequently, positional information gain
detects the positions within the sequence with the highest
contribution for differentiating PAS from pseudo-PAS. In
agreement with the PAS consensus shown in Fig. 1, pos-
itional information gain identified regions in the proximity
of PAS for most of the variants (Fig. 4), where proteins
involved in the mRNA cleavage/polyadenylation are
expected to bind. Interestingly, the AATACA variant
revealed the importance of the upstream region, showing
that the downstream segment does not contain significant

differences with respect to the pseudo-PAS sequences.
Finally, the least common variants, e.g., AATAGA, CAT
AAA, and AGTAAA, show that the relevant discrimin-
atory positions are spread over the 200 nt sequence and
show no apparent significant segment. However, a non-
linear classification model may be able to use the relevant
positions for classification of PAS for each of the variants.
As such, we considered the positional information gain to
1) calculate an overall sequence score, and 2) compute the
nucleotide frequency for the top ranked positions based
on the information gain (see Methods).

Numerical structural profile and PAS
DNA sequences may be converted into a numerical
representation to characterize different physical and
chemical interactions, i.e., double helix organization,
predisposition to interact with other proteins, etc. [45].
These structural profiles have been used in the literature
for characterizing genomic signals, i.e., promoter regions
[46, 47] and PAS [31, 32]. In total, we used 16 different
DNA numeric conversions (conversion tables were
obtained from [46]) to define the 200 nt sequences
flanking PAS. Notably, A-philicity [48] and protein DNA
twist [45] profiles (Fig. 5a-b) show a clear distinguishing
pattern for both PAS-strong and PAS-weak compared to
pseudo-PAS. A-philicity profile represents the propensity
of the DNA to form an A-DNA double helix. Recently,
DiMaio et al. [49] suggested that protein binding causes
the DNA to adopt an A-form. Similarly, a protein DNA
twist profile indicates that both PAS-strong/weak
sequences are likely to be deformed by proteins only
when within the proximity of PAS (peak around PAS in
Fig. 5). Although these structural profiles show a similar
pattern, they are, in fact, capturing different information
of the sequences and, both profiles accurately detect the
region where cleavage and polyadenylation specific
factor, cleavage stimulation factor, cleavage factors and
poly(A) polymerase proteins are expected to bind. Inter-
estingly, these profiles suggest that the upstream segment
in PAS-weak variants is more irregular as opposed to
PAS-strong variants. Other numerical conversions were
also considered to describe the sequence surrounding
PAS. Namely, propeller twist [50], bendability [51], duplex
stability free energy [52], DNA bending stiffness [53], sta-
bility energy of Z-DNA [54], DNA denaturation [55, 56],
nucleosome position preference [57], and base stacking
energy [58]. However, B-DNA twist [59], and duplex
stability disrupt energy [60] were the least contributing
numerical conversions (Additional file 5: Figure S2 and
Additional file 6: Figure S3 show the 16 considered struc-
tural profiles for PAS-strong and PAS-weak, respectively).
The next key factor is to determine how to use the

information from different structural profiles for capturing
relevant information. One option is to consider each

Table 3 Error rate comparison between Omni-PolyA and state-
of-the-art methods in GENCODE poly(A) data

Variant Size Error rate (%)

DPS HMM_SVM Omni-PolyA

AATAAA 24,310 25.49 27.91 23.96

ATTAAA 7098 25.59 33.48 24.20

TATAAA 1640 26.52 36.83 25.86

AGTAAA 1306 26.67 34.77 23.07

CATAAA 682 30.88 38.38 26.91

AATATA 634 24.41 36.98 22.06

GATAAA 528 28.11 37.31 23.26

AATACA 368 32.97 33.89 24.72

AAAAAG 342 31.18 41.76 29.41

ACTAAA 314 28.89 39.03 24.51

AAGAAA 250 31.60 36.00 26.80

AATAGA 100 34.00 40.00 23.00

Average 25.93 30.43 24.15

One observes that the relative decrease of the weighted average error rate of
Omni-PolyA compared to DPS and HMM_SVM is 6.86% and 20.63%, respectively
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numerical position in the sequence as independent in-
put for a classification model (representing 199 features
for a di-nucleotide structural profile around the 200 nt
sequence). As such, we asked if A-philicity numerical
representation alone could be used to identify PAS cor-
rectly. However, Omni-PolyA achieved ~24.5% error

rate for the prediction of PAS-strong variants (com-
pared to 14% when the DPS feature set is used, see
Table 1). Although A-philicity numerical representation
can moderately discriminate PAS from pseudo-PAS, a
combination of several numerical profiles may grant
better discrimination capabilities. However, considering

Fig. 4 Positional information gain. Blue bars represent the 50 most discriminative positions for each variant

Fig. 5 Sequence structural profiles. a A-philicity and protein DNA twist numerical representation of the genomic sequences around the PAS-strong
variants (sequences of 200 nt in length). Numerical representations show the actual average values over all sequences for each position. b Similarly to
(a), this shows A-philicity and protein DNA twist numerical representations of the genomic sequences for the PAS-weak variants. c The short segments
used to calculate a granular structural profile
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the 199 numeric values for each numerical representa-
tion would result in a considerably large feature set
(~3100 from the 16 numerical representations). The
high number of features would lead to complex models
trained to use many irrelevant features (assuming that
not all positions contribute to the correct classification
of PAS). For this, Kalkatawi et al. [31, 32] combined all
di/tri-nucleotide representations from each structural
profile into a single score, resulting in one feature per
structural profile. Arguably, representing all numeric
representations in a sequence by a single score may
incur a loss of information. For instance, the discrimin-
ant information in the region surrounding the PAS
(−20, 40) may be diluted by information from less rele-
vant regions. Therefore, we divided the sequence into
sub-sequences of 25 nt and calculated the average of
each of these (Fig. 5c), resulting in 8 features for each
numerical representation. This procedure not only
reduces the number of features but also captures different
downstream/upstream elements while minimizing the
noise of the independent positions.

Conclusions
In summary, this study shows a comparison of various
tools and models applied to the prediction of the 12
most common PAS variants in human genomic DNA
sequences. Moreover, by analyzing the differences
between PAS-strong, PAS-weak, and pseudo-PAS
sequences, we have identified a set of relevant features
that may be involved in the regulation of the polyade-
nylation machinery. In agreement with the consensus
of the mammalian PAS (Fig. 1), positional information
gain identified relevant regions in the proximity of most
of the PAS variants (in the seven most common PAS
variants). Conversely, positional information gain
showed no clear segments in the rest of the less com-
mon variants, possibly indicating the weaker presence
of cis-regulatory elements in such variants. Interest-
ingly, the AATACA variant revealed the importance of
the upstream region. These observations suggest that
the polyadenylation mechanisms behind each of the
PAS variants may be considerably different. With these
points in mind, we proposed a new set of features along
with Omni-PolyA, a novel model for PAS prediction
implemented as an online tool. To derive a robust
model for each of the PAS variants, Omni-PolyA con-
sists of a set of different classification models organized
in a tree-like structure. To evaluate the performance of
our model, we derived an Omni-PolyA model by using
the DPS feature set proposed in [31], showing that
Omni-PolyA consistently outperformed reported results
by DPS (by 26.85%, Table 1). Next, we showed the per-
formance of the model using the novel Omni-PolyA
feature set, which reduced the average error rate by

35.37 and 41.34% compared to DPS and HMM_SVM
state-of-the-art tools, respectively. Notably, the predic-
tion of PAS-strong variants showed the most significant
improvement, reducing the error rate by 36.95% and
49.50% compared to DPS and HMM_SVM, respect-
ively. Finally, we used the GENCODE annotation
(release 19) to obtain the recent curated human poly(A)
data for GRCh37. Results in Table 3 show that Omni-
PolyA consistently reduced the weighted average error
rate by 6.86% and 20.63% compared to DPS and
HMM_SVM, with the largest error reduction for the
PAS-weak variants (11.50% and 32.64% relative to DPS
and HMM_SVM tools, respectively).

Methods
Datasets
We considered two different datasets to assess the per-
formance of the Omni-PolyA method. A PAS sequence
is considered to be a genomic DNA sequence of 206 nt
in length (100 nt downstream and 100 nt upstream
flanking a PAS hexamer). The first dataset, proposed by
Kalkatawi et al. [31, 32], is considered as a benchmark to
compare against the state-of-the-art methods. This data-
set contains 14,470 PAS-like sequences (7370 sequences
with true PAS motif and 7370 pseudo-PAS sequences).
The pseudo-PAS sequences contain canonical PAS
hexamers (from the 12 PAS variants we considered) but
with no links to the polyadenylation process. For each
PAS variant, the number of sequences with true PAS
hexamer and pseudo-PAS hexamer is selected to be the
same. The true PAS sequences were obtained by mapping
human mRNA sequences to the human genome (hg19).
The pseudo-PAS sequences were randomly selected
from human chromosome 21 after excluding the true
PAS sequences.
The second dataset considered is based on the experi-

mentally validated GENCODE annotation and is extracted
from the human genome (hg19). We used the GENCODE
PolyA feature annotation Release 19 (GRCh37.p13) [44],
which contains polyA features manually annotated by the
HAVANA group (http://www.sanger.ac.uk/science/groups/
vertebrate-annotation). We used the information in the
annotation file (GTF) to extract true PAS from the
genome. In total, 18,786 sequences with true PAS were
extracted for the 12 most frequent PAS variants in
human. For each PAS variant, the same number of
pseudo-PAS sequences was generated from human
chromosome 21 after excluding all the true PAS sequences
contained in that chromosome.

Data normalization and cross-validation splits
We used the 5-fold cross-validation technique to validate
the performance of all considered models. In the k-fold
cross-validation, the original data is partitioned into k
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(approximately) equal-sized subsets. For each of the cross-
validation folds, one of the subsets is used for testing the
model while the remaining k-1 subsets are used to derive
the classification model. Moreover, we reserved 15% of
the training set for each fold as a validation set to optimize
Omni-PolyA, DNN, DPS and, HMM_SVM model param-
eters. Therefore, the test set is exclusively used to assess
the model performance in the final testing phase. Finally,
feature values for all PAS variants were normalized to have
values within the range of (−1, 1) according to

normi ¼ xi− maxi þminið Þ=2
maxi−minið Þ=2

where max and min refer to the maximum and mini-
mum values for i-th feature and x is the feature value
that will be normalized. To avoid biased predictions, it is
important to note that max and min values are obtained
exclusively from the training data and are used as part of
the model for the normalization of validation and test
data (Fig. 6).

Model training and data configuration
DPS model
We used DPS feature set to derive a random forest
model as specified by Kalkatawi et al. [31]. Model pa-
rameters (i.e., the number of trees and number of ran-
domly selected features) were determined based on the
validation set (see Additional file 7: Table S4 for model
parameters for each PAS variant).

HMM_SVM model
We derived HMM_SVM models by using the code
provided by Xie et al. [33]. We optimized the model
parameters (number of observations to combine into
mega-state and the number of singular vectors to keep)
by using a grid search method as specified by authors
(see Additional file 7: Table S4 for model parameters
for each PAS variant).

DNN model
We used MATLAB and Neural Network Toolbox release
2016a to derive DNN models with two autoencoder layers
and one softmax layer. The number of units in the

autoencoder layers was experimentally found by optimizing
the error rate based on the validation set (see Additional
file 7: Table S4 for model parameters for each PAS variant).
DNN results in Table 1 and Table 3 show the performance
of the models derived by using the DPS feature set (274
numeric features) [31].

Omni-PolyA model
Omni-PolyA uses four different classification models,
namely, artificial neural network, random forest, C4.5
decision tree, and MLR models from WEKA v3.6.12 [61]
and it is available as a MATLAB toolbox and as an on-
line tool accessible at www.cbrc.kaust.edu.sa/omnipolya/.
Moreover, columns sixth and seventh from Table 1 show
the results obtained by the Omni-PolyA model derived
by using the Omni-PolyA feature set (218 numeric
features, listed in S1 Table). Finally, we pooled all PAS
variants from the PAS-weak category to expand the
training data. Therefore, the Omni-PolyA model was
trained by using data from 10 PAS-weak variants and
tested on the separate test set for a given variant (Fig. 7).
Additional file 8: Table S5 shows the Omni-PolyA model
parameters (determined from the validation set) for each
PAS variant.

Measures for assessing the model performance
As a representative measure of model performance,
we used the classification error rate defined as

errorrate ¼ 1‐
TP þ TN

TP þ TN þ FN þ FP
;

where TP, TN, FP and FN stand for the number of true
positive predictions, true negative predictions, false positive
predictions, and false negative predictions, respectively.

Model-derived features
Here we show a brief description of features that are
derived from a model using a portion of the training data.
These features were inspired by those used by Magana-
Mora et al. [62, 63] in models aimed to recognize transla-
tion initiation sites in plants genomic DNA.

Fig. 6 Data normalization procedure. Schematic representation of data normalization for fold 1 in a 5-fold cross-validation
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PAS-score and pseudo PAS-score from 2-mer weight matrices
Using frequencies of the 16 di-nucleotide combinations
(AA, AT, AC, AG, etc.), we derived two 2-mer weight
matrices from the training data to represent the charac-
teristics of both PAS and pseudo-PAS sequences separ-
ately. Both 2-mer weight matrices are then used to
calculate a score (see below) indicating the likelihood of
the sequence to be a functional PAS and a pseudo-PAS.
Consequently, a PAS score and pseudo-PAS score is
computed for each DNA sequence in the dataset and are
calculated as follows: let S(aj) be a DNA sequence of
length L, and P(pij) be a 2-mer weight matrix of L-1 col-
umns and 16 rows (for each di-nucleotide combination).
The PAS score and pseudo-PAS score are given by

PASjpseudoPAS½ �score ¼
X16

i¼1

XL−1

j¼1
log2

pij � ajajþ1

Pbi

� �

and

pij � ajajþ1 ¼
pij; ajajþ1 ¼ ri
1; ajajþ1≠ri

;

�

where Pbi refers to the background probability from a
uniform distribution.

Positional information gain score
We calculated the information gain independently for
each position of the genomic sequence surrounding
PAS. For this, we first computed the entropy of each
position as follows: for a given position P in a training
sequence we calculate the entropy for a nucleotide X as:

E P;Xð Þ ¼ −
c1

c1 þ c2
log2

c1
c1 þ c2

−
c2

c2 þ c1
log

c2
c2 þ c1

;

where c1 represents the number of occurrences of
nucleotide X (A, C, T or G) at position P in PAS se-
quences and c2 represents the number occurrences of the
same nucleotide at position P in pseudo-PAS sequences.
We also introduce another entropy measure at position P

that adjusts for the proportion of PAS and pseudo-PAS
samples in the training set in the following way

E Pð Þ ¼ −
c1

c1 þ c2
log2

c1
c1 þ c2

−
c2

c2 þ c1
log

c2
c2 þ c1

;

where c1 and c2 indicate the number of PAS and pseudo
PAS sequences in the training set, respectively. Finally,
we calculated the information gain for a position P as
defined in Russel and Norvig [64]:

Gain Pð Þ ¼ E Pð Þ−E A; Pð Þ−E C;Pð Þ−E G;Pð Þ−E T ;Pð Þ;

where A, C, G, and T refer to the four nucleotides.
Finally, the sum of information gain for each position in
the entire sequence (information gain score) is then used
as one single feature. Therefore, samples with high and
low information gain scores suggest PAS or pseudo-PAS
sequences, respectively.

Nucleotide frequency of the most discriminative positions
We used the positional information gain (described
above) for selecting the 40 most discriminant positions
(20 from the upstream and 20 for the downstream
regions relative to the PAS). We then counted the
frequency of A, C, G, and T nucleotides in the 20
selected positions in the downstream and upstream,
separately. Consequently, this results in eight numeric
features denoting the frequency of A, C, G, and T in the
most discriminant downstream and upstream positions.

Additional files

Additional file 1: Table S1. Omni-PolyA feature set. List of the 218
numerical features. (PDF 104 kb)

Additional file 2: Table S2. Comparison of performances achieved
by DPS, HMM_SVM, DNN, and Omni-PolyA. (PDF 110 kb)

Additional file 3: Table S3. False positive and false negative rates
comparison between DPS, DNN, and Omni-polyA derived by using
different feature sets. (PDF 105 kb)

Fig. 7 Schematic representation of Omni-PolyA model derived from pooled PAS-weak variants. The illustration shows the first fold of a 5-fold
cross-validation technique for variant AAGAAA
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Additional file 4: Figure S1. Nucleotide distribution for PAS variants in
the PAS-weak category. These plots show the frequency of nucleotides
for true PAS sequences in the 10 variants from the PAS-weak category.
(PDF 1696 kb)

Additional file 5: Figure S2. DNA structural profiles of the PAS-strong
variants. These plots represent the 16 considered structural profiles. Each
structural profile is the average over all sequences from the PAS-strong
variants (AATAAA and ATTAAA). These plots show the actual average
values (y axis) over all sequences for each position (x axis). (PDF 2541 kb)

Additional file 6: Figure S3. DNA structural profiles of the PAS-weak
variants. Each structural profile is the average over all sequences from the
PAS-weak variants (10 PAS variants). These plots show the actual average
values (y axis) over all sequences for each position (x axis). (PDF 2412 kb)

Additional file 7: Table S4. DPS, HMM_SVM and DNN model parameters.
Parameters were determined from the validation set. (PDF 87 kb)

Additional file 8: Table S5. Omni-PolyA model parameters. Genetic
algorithm parameters and feature set configuration determined from the
validation set. (PDF 89 kb)
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