
RESEARCH ARTICLE Open Access

Genome-wide analysis of basic helix-loop-
helix (bHLH) transcription factors in
Brachypodium distachyon
Xin Niu1†, Yuxiang Guan1†, Shoukun Chen1 and Haifeng Li1,2*

Abstract

Background: As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been
characterized functionally in many plants with a vital role in the regulation of diverse biological processes including
growth, development, response to various stresses, and so on. However, no systemic analysis of the bHLH TFs has
been reported in Brachypodium distachyon, an emerging model plant in Poaceae.

Results: A total of 146 bHLH TFs were identified in the Brachypodium distachyon genome and classified into 24
subfamilies. BdbHLHs in the same subfamily share similar protein motifs and gene structures. Gene duplication
events showed a close relationship to rice, maize and sorghum, and segment duplications might play a key role
in the expansion of this gene family. The amino acid sequence of the bHLH domains were quite conservative,
especially Leu-27 and Leu-54. Based on the predicted binding activities, the BdbHLHs were divided into DNA
binding and non-DNA binding types. According to the gene ontology (GO) analysis, BdbHLHs were speculated
to function in homodimer or heterodimer manner. By integrating the available high throughput data in public
database and results of quantitative RT-PCR, we found the expression profiles of BdbHLHs were different, implying
their differentiated functions.

Conclusion: One hundred fourty-six BdbHLHs were identified and their conserved domains, sequence features,
phylogenetic relationship, chromosomal distribution, GO annotations, gene structures, gene duplication and
expression profiles were investigated. Our findings lay a foundation for further evolutionary and functional
elucidation of BdbHLH genes.
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Background
Grasses (Poaceae), such as rice, maize, wheat, provide
the bulk of nutrition and sustainable energy [1, 2]. Crop
growth, development and productivity are continuously
threatened by various adverse environmental factors
including biotic and abiotic stresses for their sessile
nature. They have evolved complicated physiological
and biochemical responses by regulating the expression
of a series of genes to survive and flourish under
extreme living conditions.

Transcription factors (TFs) play key roles in the
stress-related regulation network and signal pathways.
Among them, basic helix-loop-helixes (bHLH) TFs con-
stitute a large superfamily that has been identified in all
eukaryotes including metazoans, plants, and fungi [3–5].
As the second largest class of plant TFs [6], bHLH was
characterized with one specific bHLH domain, including a
basic region and an HLH region [7]. The basic region,
located at the N-terminus of the domain, consisting of
approximately 17 amino acids, is a DNA-binding region
that enables bHLH TFs to bind to E-box (CANNTG)
[7, 8]; the HLH region includes two amphipathic α helices
separated by a variable (both in length and primary se-
quence) loop and participates in the formation of homodi-
mers or heterodimers [8, 9].
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In metazoans, the bHLH TFs were divided into six
groups (group A to F) based on their phylogenetic re-
lationships, major functions and DNA-binding ability
[8, 10–12]. Phylogenic tree of plant bHLHs was first
constructed in Arabidopsis and AtbHLHs were divided
into 12 subfamilies [13]. In rice, the phylogenic tree of
bHLH TFs were divided into 22 subfamilies [14]. With
more sequenced plant genomes, lots of bHLH proteins
were identified. For example, genomes of Nicotiana taba-
cum, Daucus carota, Salvia miltiorrhiza, and Solanum
lycopersicum contain 190, 146, 127, 159 bHLH genes re-
spectively [15–18]. Researches in Arabidopsis revealed
that bHLH TFs have versatile biological functions, such as
regulating the seed germination [19], the development of
epidermal cell [20], carpel [21] and anther [22], fruit de-
hiscence [23], responding to phytochrome [24] and phyto-
hormone signal [25], stresses [26], etc.
Brachypodium distachyon, as the first sequenced species

in Pooideae subfamily, has been proposed as a new model
organism for functional genomics studies, due to the facil-
ity of cultivation and mature transformation system, short
life cycle, small genome size and close relation to several
cereals [1, 27, 28]. In this study, we identified 146 BdbHLH
genes and conducted a genome-wide bioinformatics ana-
lysis based on the phylogenetic relationships. Meanwhile,
the cis-elements in the promoter region, gene structure,
conserved motifs, as well as chromosomal distribution,
gene duplication and evolutionary mechanisms were in-
vestigated. Furthermore, the expression profiles of the
BdbHLHs were investigated based on the published RNA-
seq, microarray data and qRT-PCR. These results provide
clues for functional elucidation of BdbHLHs.

Methods
Genome-wide identification, sequence alignment and
phylogenetic analyses of BdbHLHs
Previous studies indicated that the bHLH domain in Arabi-
dopsis contained 19 conserved amino acid residues distrib-
uted in the basic region (5), the first helix (5), the loop (1)
and the second helix (8) (Additional file 1: Table S1) [29].
Among them, nine mismatches were allowed for the identi-
fication of bHLHs [7]. To identify candidate bHLH genes in
Brachypodium distachyon, a BLAST of the bHLH domain
was conducted based on the conserved bHLH motif in
Arabidopsis and rice from the National Center of Biotech-
nology Information database (http://www.ncbi.nlm.nih.gov)
and the Gramene database (http://www.gramene.org/).
SMART [30] was applied to verify the candidate bHLH
TFs. Proteins with less conserved bHLH domains or no
bHLH domains were removed. The biochemical properties
were predicted by ExPASy [31]. The GO (gene ontology)
annotations of BdbHLHs were obtained from Gramene and
Plant Transcriptional Regulatory Map [32], then were visu-
alized by BGI WEGO website [33].

To investigate the phylogenetic relationship between
bHLH proteins, protein sequence alignment was per-
formed with default parameters and an un-rooted
phylogenetic tree was constructed by MEGA (vision
6.0) [34] based on the neighbor joining (NJ) method
with 1000 bootstrap replications and visualized by the
EvolView [35].

Analysis of chromosomal distribution, gene duplication
and synteny
The chromosomal distribution of BdbHLH genes was
obtained from the Brachypodium distachyon genome an-
notations. Tandem duplication events were characterized
as contiguous homologous genes on a single chromosome
without any intervening gene and checked manually [36].
To analyze the collinear correlations between bHLHs in
Brachypodium distachyon and rice, maize, sorghum,
synteny blocks were downloaded from the Plant Genome
Duplication Database [37]. The chromosomal distribution
of BdbHLHs and the synteny relationships of related
genes across the four species were visualized using Circos
(vision 0.69) [38].

Analyses of promoters, gene structure, conserved motifs,
and construction of the interaction network
The upstream 1500 bp genomic DNA sequences of
BdbHLH genes were downloaded and submitted to the
PlantCARE [39] to predict the putative cis-elements.
The intron-exon organizations of BdbHLHs were dis-
played by the Gene Structure Display Server [40]. Con-
served motifs of BdbHLHs were identified by MEME
server [41] with maximum number of motifs set at 15
and optimum width of motifs from 5 to 200 amino
acids. The interaction network was constructed based
on homologs of BdbHLHs in Arabidopsis using the
AraNet V2 tool [42] and visualized by Cytoscape (version
3.4.0) [43].

Analyzing the expression profiles of BdbHLHs
To analyze the expression profiles of BdbHLHs in dif-
ferent tissues and under phytohormone stresses, micro-
array data (SRP008505) [44] and high throughout RNA
sequencing data (PRJDB2997) [45] were retrieved from
EBI ArrayExpress (https://www.ebi.ac.uk/gxa/home) and
DDBJ Sequence Read Archive (http://www.ddbj.nig.ac.jp/
index-e.html) respectively, and then visualized by the MeV
(version 4.9.0) [46].
For qRT-PCR, 2-week-old seedlings of Bd21 were

used for different treatments. For salt, drought and
plant hormone treatments, seedlings were treated in MS
liquid medium containing 200 mM NaCl, 20% PEG6000
(to mimic drought stress), 100 μM MeJA, 100 μM ABA,
20 μM 6-BA and 1 mM SA for 2 h respectively and the
roots were collected. For heat and cold treatments,
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seedlings were subjected to 45 °C and 4 °C respectively
and the leaves were collected. Plants during heading stage
were used for the collection of roots, stems, leaves and in-
florescences. All materials were frozen in liquid nitrogen
and stored at −80 °C for RNA isolation. RNA extraction,
cDNA synthesis and qRT-PCR reaction were carried out
as described previously [47]. The qRT-PCR reaction was
performed in triplicate and data acquisition and analyses
were performed using the QuantStudio™ Real-Time PCR
Software (ThermoFisher Scientific). Samples were normal-
ized using UBC18 (BRADI4G00660) expression [48] and
relative expression levels were determined using the
2(−ΔΔCt) analysis method [49]. The primers used were
listed in Additional file 1: Table S2.

Results and discussion
Identification, chromosomal distribution and
physicochemical properties of BdbHLHs
With the criterion above, we searched proteins consisting
of the conserved bHLH domain in the whole genome of
Brachypodium distachyon. 146 BdbHLH proteins were
identified. The ratio of bHLH genes in Brachypodium
distachyon genome was about 0.55%, which is similar to
Arabidopsis (0.59%) [29] and is more than rice (0.44%)
[14] and poplar (0.40%) [4]. In order to verify the reliability
of our identification, a BlastN program was used to search
for all the expressed sequence tags (EST) in Brachypo-
dium distachyon (Additional file 1: Table S3). 57.5% (84/
146) of BdbHLHs were supported by the EST hits.
According to their physical positions (Additional file 1:

Table S3), the 146 BdbHLH genes were mapped on five
chromosomes (Fig. 1a): 47 (32.2%) on chromosome 1, 28
(19.2%) on chromosome 2, 39 (26.7%) on chromosome 3,
21 (14.4%) on chromosome 4, and 11 (7.5%) on chromo-
some 5. Similar to rice [14], tomato [18, 50] and the com-
mon bean [51], most BdbHLHs were found to be located
at the both ends of chromosomes 1, 2, 3, 4 and the bottom
of chromosome 5.
To further characterize the BdbHLHs, we analyzed

the physicochemical properties of the putative proteins
(Additional file 1: Table S3). The Grand average of
hydropathicity (GRAVY) of all the candidate BdbHLH
proteins was predicted to be negative value ranging from
−0.026 to −1.003, representing a hydrophilic characteris-
tic. These proteins showed diversities in the length, mo-
lecular weight, theoretical isoelectric points (PI), number
of negatively charged residues (Asp and Glu), number of
positively charged residues (Arg and Lys).

Gene duplication and collinear correlations of bHLHs
between Brachypodium distachyon and rice, maize and
sorghum genomes
Among the 146 BdbHLHs, about two thirds were dupli-
cated genes. A total of 19 (13.0%) BdbHLHs have been

identified as tandem duplicated genes and distributed on
chromosome 1, 2 and 3 (Fig. 1a, Additional file 1: Table
S4), while BRADI1G12760 contains an incomplete
bHLH domain and might lose the function during dupli-
cation [52]. Most of them were derived from the same
subfamily with original genes (except for the pair BRA-
DI3G52790 and BRADI3G53060 in chromosome 1). By
contrast, 75 (58.2%) segmentally duplicated BdbHLHs
were detected (Fig. 1a, Additional file 1: Table S5)
The substitution rates of non-synonymous versus

synonymous (Ka/Ks) is an effective criterion to judge
the selection pressure after gene duplications [53].
Thus, the Ka/Ks of duplicated BdbHLHs was calcu-
lated (Additional file 1: Tables S4 and S5). For most
tandem duplicated gene pairs, the Ka/Ks value was
less than 1, indicating a purifying selection during ex-
pansion, except for BRADI2G00730/BRADI2G00740,
BRADI3G41940/BRADI3G41950 and BRADI3G52790/
BRADI3G52790, the Ka/Ks ratio was 1.99, 1.63 and
1.15 respectively. This means accelerated evolution is
accompanied with positive selection. For the segment
duplicated gene pairs, all the Ka/Ks was less than 1
(ranging from 0.14 to 0.82) and the average is 0.46
(Additional file 1: Table S5), suggesting an intense
purifying selection pressure during evolution. Mean-
while, the divergence time of the segment duplication
event was predicted to take place around 76 Mya,
which was much earlier than the tandem duplication
(~42 Mya).
To further investigate the origin and evolutionary rela-

tionships of bHLH genes, comparative syntenic analyses
at genome-wide level between Brachypodium distachyon
and other grass species were conducted. Most BdbHLHs
have orthologous in rice, maize and sorghum (80.8%,
69.9% and 72.6%, respectively) (Fig. 1b–d, Additional
file 1: Tables S6–S8). The divergence time in rice, maize
and sorghum was about 52 Mya, 56 Mya, and 59 Mya,
respectively. The Ka/Ks ratio between Brachypodium
distachyon and rice, maize, sorghum was 0.41, 0.41 and
0.32, implying these bHLH gene pairs have gone through
strong purifying selection and there was an intimate cor-
relation between Brachypodium distachyon and rice,
maize, sorghum. In brief, gene duplication events includ-
ing tandem duplication and segment duplication seemed
likely to be essential for bHLH gene family expansion and
functional conservation and divergence in the Poaceae.

Multiple sequence alignment, prediction of protein
dimerization activity and DNA binding activity of BdbHLHs
As shown in Fig. 2 and Additional file 1: Table S1, 24
conserved amino acids were found in the bHLH
domains (conservation more than 50%). Among them,
Ile-20, Asn-21, Leu-24, Gln-28, Lys-36, Asp-38, Ile-43,
Val-51 and Leu-54 were more conservative in plants
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[4, 54]. Some conserved amino acid residues such as
Glu-13, Arg-14, Arg-16 and Leu-27 were not only de-
tected in Brachypodium distachyon, but also in Arabidop-
sis and rice, suggesting they are essential to the biological
function of bHLH proteins [3].
Previous studies indicated that the HLH domain was

essential in both dimerization and DNA binding [9].
Especially, Leu-27 in helix 1 and Leu-73 in helix 2 were

important for protein interaction [4]. In this study, 145
and 144 BdbHLHs were found to have Leu-27 and Leu-
54 (corresponding to Leu-73 in AtbHLHs) respectively
(Fig. 2). Recently, MYC2, MYC3 and MYC4 in Arabidop-
sis were reported to form homodimers through Leu, Ile
and Val in the helixes [55]. In Brachypodium distachyon,
including three homologues of AtMYC2, AtMYC3 and
AtMYC4, the helixes in many BdbHLHs have these three

Fig. 1 Genomic distribution of bHLH genes and the gene duplications in the Brachypodium distachyon (a), rice (b), maize (c), and sorghum (d) genome
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Fig. 2 Multiple Sequence Alignment of the bHLH Domains. The amino acids with identity more than 50% are labeled with colored boxes
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kinds of amino acids simultaneously, implying the prob-
ability to form protein complexes (Fig. 2). In combination
with GO annotation that all BdbHLHs showed protein
dimerization activity (GO: 0046983, Additional file 1: Ta-
bles S9, S10 and Additional file 2: Figure S1), we specu-
lated that BdbHLHs might function by forming protein
complex and tried to construct the interaction network of
BdbHLHs. Because of short of reported experiment data
and databases, the interaction network was constructed
based on the orthology analysis with AtbHLHs. According
to the AraNet V2 [42], 57 BdbHLH proteins have ortho-
logs in Arabidopsis. As a result, 660 interaction protein
pairs were predicted (Fig. 3, Additional file 1: Table S11).
It has been reported that members of bHLHs and MYB
gene families might function cooperatively via physical
interaction [6, 56–58], so the interaction network was

further analyzed and a total of 16 MYB genes based on
PlantTFDB database [59] were sought out (Fig. 3). The
interaction network might provide some clues to investi-
gate the molecular mechanism of bHLH.
The BdbHLHs were grouped based on the amino acid

sequence of the bHLH domain which determines the
DNA binding activity [29]. Glu-13 is related to CA in the
E-box DNA binding motif (CANNTG) and the substitu-
tion of it with other residues (Gln, Asp and Leu) abolishes
the DNA binding activity [60–64]. Arg-16 could stabilize
the position of Glu-13 and was essential in DNA binding
[61, 62]. Based on the existence of Glu-13 and Arg-16
which play a key role in recognition of E-box, the
BdbHLH proteins were divided into E-box binding and
non-E-box binding (Additional file 1: Table S12) [62, 65].
In addition, His/Lys-9, Glu-13, and Arg-17 are responsible

Fig. 3 The interaction network of bHLHs in Brachypodium distachyon according to the orthologs in Arabidopsis. The BdbHLHs are in yellow blocks,
the MYBs are in green blocks while other genes are in blue blocks
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for the specificity to bind to G-box (CACGTG). Espe-
cially, Arg-17 directly interacts with the middle G and
His-9 interacts with both the middle G and the first C
of G-box [62, 63, 65]. So, the E-box-binding proteins
were further divided into G-box-binding proteins and
non-G-box binding proteins according to the presence
of His/Lys-9, Glu-13 and Arg-17 residues or not. For
example, it was reported that the G-box binding pro-
tein AtMYC2 was crystallized in complex with G-box
DNA. Similar to mammalian bHLH TFs, further re-
search showed that three conserved amino acids H453,
E457 and R461 (corresponding to our His-9, Glu-13
and Arg-17, respectively, Fig. 2) were essential for the
formation of the complex [55]. Meanwhile, the MYC2-
DNA structures can further form homo-tetramer with
significantly enhanced DNA binding affinity due to the
interaction between conserved R458, Q459 and Q466
in one dimer with DNA in the other dimer [55]. In Bra-
chypodium distachyon, three bHLHs, BRADI2G08080,
BRADI3G34200 and BRADI2G47730 are highly conser-
vative with AtMYC2 and possess Arg-14, Gln-15 and
Gln-22 amino acids (corresponding to R458, Q459 and
Q466, respectively), suggesting that they could form
tetramers too. The bHLHs without predicting E-box-
binding specific recognition residues but possessing
additional basic amino acids in the basic region might
be able to bind DNA without specificity for E-boxes
were classified as non E-box DNA binders [62, 65].
According to the conservation of these residues, 102
BdbHLH proteins were predicted to be putative E-box-
binding proteins wherein 78 belong to G-box-binding
proteins, 25 as non-E-box-binding proteins for missing
Glu-13/Arg-16 residues while 19 BdbHLHs containing
less than six amino acid residues in the basic region fell
into non-DNA-binding proteins (Fig. 4). Non-DNA-
binding proteins, also known as HLH protein, might
function like MYB-bHLH-WD40 which can interact
with DNA binding proteins as negative regulators [66].

Gene structures, conserved motifs and functional
prediction of BdbHLHs based on phylogenic analyses
A Neighbor Joining phylogenetic tree was constructed
based on the bHLH domains of the BdbHLHs (Fig. 4).
According to the values obtained in the bootstrap ana-
lysis, the bHLH domain in the outer clades had better
resolution, permitting subfamilies of proteins to be
delimited. The results showed that the BdbHLH amino
acid sequences in the same subfamily were highly con-
served, implying a strong evolutionary relationship
among those members. Based on the statistical support
of each branch, we selected those with a bootstrap
value >50 to divide the BdbHLH proteins into 24 sub-
families. According to previous phylogenic classifica-
tions [4, 13], another phylogenic tree was constructed

based on the full length alignments of the 146 BdbHLHs,
167 AtbHLHs and 39 functionally annotated OsbHLHs
(Additional file 1: Table S13, Additional file 2: Figure S2).
According to the evolutionary relationship, thirteen major
subfamilies in Arabidopsis and rice were classified in con-
sistent with the BdbHLH phylogenic tree except for sub-
family VI and XIV (Additional file 2, Fig. S2) [4, 13].
Exon/intron organization, as a type of structural diver-

gence, plays an important role in the evolution of gene
families [67]. As shown in Fig. 5, 122 were found to
possess introns in their bHLH domains among the 146
BdbHLH proteins. 9 conserved intron positions and 12
different intron distribution patterns (I ~ XII) were identi-
fied in our study and pattern IV (introns position in His-9
and Val-31) with 6 members was not present in Arabidop-
sis [26]. BdbHLHs possessing diverse gene structures in
the conserved bHLH domains were regularly distributed
in the phylogenic tree (Fig. 4). For example, the majority
of pattern I and X members were found in the subfamilies
4–7 and 12–16 respectively. In contrast, the members in
the subfamilies 11 and 17, which were almost the Non-
DNA binding type proteins, had pattern IV and pattern X
respectively.
Additionally, members of the same subfamily also dis-

played similar intron distribution patterns in view of the
full-length genome sequences (Additional file 2: Fig. S3).
For instance, all the BdbHLHs in subfamily 1 had only
one exon, the whole members of subfamily 10 showed 2
exons while 7 out of 9 members in the group3 consisted
of 5 exons which were in similar length and at similar
positions.
In addition to bHLH domain, bHLH proteins in differ-

ent subfamilies have different additional motifs which
might be formed during evolution [7]. Totally, 15 con-
served motifs were found (Additional file 2: Figure S3).
Motif 1 and motif 2, located in bHLH domains, were found
in almost all BdbHLHs (except for the BRADI4G05760 and
BRADI1G12760). It is noteworthy that the BdbHLHs in the
same subfamily were more likely to share same motif and
location, which might imply similar biological functions
[68]. For instance, a KRAAM motif before bHLH domain,
which was reported to be involved in cold acclimation
response [69], was found in BRADI2G59497 and
BRADI4G17460 in subfamily18.
In Arabidopsis and rice, functions of many bHLH pro-

teins have been characterized. In the subgroup Ia, MUTE
[70], FMA [71, 72], SPCH [73–75], bHLH071 [71] associ-
ated with stomatal development and HWS [76] was re-
lated to sepal fusion and organ size. Meanwhile, MUTE,
FMA and SPCH2 in rice were also reported to play a role
in the differentiation and development of stomatal cells
[77], implying that members in the subgroup Ia might be
mainly involved in cell division and organ differentiation.
In subgroup Ib, ORG2, ORG3 [78–81], bHLH100 and
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bHLH101 in Arabidopsis [80–83] play a key role in re-
sponse to iron-deficiency. Additionally, OsIRO2 is also
an essential regulator of Fe uptake and iron utilization
in rice [84–86]. One except is, AtRGE1 primarily func-
tions in embryo growth [87–91]. In Arabidopsis, three
subgroup II members bHLH010, bHLH089 and bHLH091
were reported to interact with DYT1 proteins and redun-
dantly participate in the anther development [92]. Simi-
larly, rice subgroup II members EAT1 and TIP2 play a key
role in the anther development at early stage [93, 94]. In

subgroup IIIa, AMS [95–98] and DYT1 were identified to
be master regulators of pollen development [99, 100].
Consistently, rice UDT1 interacted with TDR to regulate
early anther development [101–105]. AtICE1, AtICE2 and
OsICE1, OsICE2 in IIIb were proved to participate in the
response to deep freezing [69, 106–110] while another
member NFL was involved in GA mediated control of
flowering time [111]. In Arabidopsis, only one member of
subgroup IIIc, At4g29930, was functionally characterized.
It might regulate hypocotyl and root elongation [112]

Fig. 4 Phylogenetic tree constructed with the BdbHLH domains based on the neighbor-joining method. The tree shows the 24 phylogenetic
groups (numbered within blue circles). The circles of different colors represent the predicted DNA-binding activity of each protein: G-box in
brown, Non-G-box in gray, Non-E-box in red and No-DNA binding in purple
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while one member of IIIc in rice showed a correlation to
JA inducible transcriptional activation during wound and
drought stresses [113]. In Arabidopsis, IIId members
(JAM1-JAM3 and bHLH014) and IIIe bHLHs (MYC2-
MYC4) were proposed to take part in JA-mediated plant
development [114–119]. In rice, OsMYL1 and OsMYL2
interact with OsMYC2 to participate in the JA signalings
[120–122]. Subgroup IIIf protein TT8 participates in
anthocyanin and PA pathways [123], similar to IIIf mem-
bers in rice that involved in anthocyanidin biosynthesis
[124–126]. Besides, three other IIIf proteins in Arabidopsis
were found to be involved in the development of epider-
mal cells (GL3, EGL3 and MYC1) [127–130]. IVb (PYE)
and IVc proteins (bHLH034, bHLH104, bHLH115 and
ILR3) were proved to modulate metal homeostasis [26,
131–133]. Similarly, rice OsIRO3 of subgroup IVb also
regulates iron homeostasis [134]. In IVd, AtbHLH092
responds to osmotic stress and regulates circadian
rhythms [135, 136]; OsDPF participates in the resist-
ance to diseases [137]. Va members (BIM1, BIM2 and
BIM3) were suggested to participate in brassinosteroid
signal and positively modulate the shade avoidance syn-
drome in seedlings [138, 139] while Vb members showed
regulatory capacity in diverse processes including vascular

development (ABS5 and TMO) [140, 141], hypocotyl and
root elongation (At2g40200) [112] and responses to abi-
otic stresses (STC8) [142]. MEE8 in subgroup VI was
speculated to regulate genes necessary to embryo and
endosperm biogenesis [143]. The reported VIIa members
(PIF1, PIF3-PIF5, PIL1 and PIL2) showed a relationship
with photo induced signal transduction [144–155]. The
rice subgroup VII proteins (OsPIL1, OsPIL11, OsPIL12,
OsPIL14, OsPIL15 and APG) were functional counter-
parts of PILs in Arabidopsis and involved in red light-
mediated signal transduction pathways [156–161]. In
addition, VIIb members in Arabidopsis are involved in
cotyledon expansion and regulated seed dormancy (SPT)
[162, 163], cell separation in fruit dehiscence (ALC) and
interact with phytochromes (UNE10, RSF1 and PIF7)
[164–167]. Two subgroup VIIIa members PAR1 and
PAR2 were reported to integrate hormone and shade
transcriptional networks and redundantly function in the
enhancement of seedling de-etiolation related to phytore-
ceptor signal [139, 154, 168–171]. In subgroup VIIIb,
HEC1-HEC3 modulated the development of the transmit-
ting tract and stigma [172], fruit opening (IND) [173] and
axillary meristem formation (ROX) [174]. Three rice VIIIb
proteins have been studied, i.e. OsbHLH120 might control

Fig. 5 Intron distribution patterns in the coding sequence of the bHLH domain of BdbHLHs. The intron distribution patterns are marked with
different colors, and position of introns is indicated by triangles. BRADI1G58230, as an example, is shown at top
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root thickness and length [175]; OsLF negatively regulated
flowering [159, 176] and LAX specified the terminal spike-
let meristem [177–179]. Members in subgroup VIIIc
(RHD6, RSL1, RSL2, RSL4 and At2g14760) were verified
to be essential to root hair development [130, 180, 181],
while OsbHLH133, one characterized subgroup VIIIc
member in rice, was proved to regulate the iron distribu-
tion between root and shoot [182]. Subgroup IX bHLHs
were proposed to be involved in photoperiodism flowering
(FBH1-FBH4) [183] and facilitate stomatal opening
through phosphorylation (AKS2) [184]. Two studied X
proteins (bHLH068 and bHLH112) could response to abi-
otic stresses [185, 186]. Subgroup XI members in Arabi-
dopsis (LRL1-LRL5) [130, 187, 188] and rice (OsRHL1)
[189] regulate root hair development, while another pro-
tein OsPTF1 is involved in phosphate starvation tolerance
[190]. Subgroup XII members displayed diverse regulation
functions: to monitor brassinosteroid signaling, to respond
to freezing tolerance (CESTA, BEE1-BEE3 and BHI1)
[191–195] and to promote flower initiation and regulate
cell elongation (CIL1, CIL2 and CIB1-CIB5) [196–198]. In
rice, only one XII member, An-1, has been functionally
characterized. It regulates awn development, grain size
and grain number [199]. Subgroup XIII proteins (UPB1,
LL1, LL2 and LHW) were mainly required for the estab-
lishment and maintenance of normal vascular differen-
tiation and development [200–203]. Subgroup XIV
members (SAC51 and SACL1–3) might be involved in the
response to thermospermine and xylem differentiation
[204–206]. Subfamily XV members (PRE1–6) tend to be
take parts in light, brassinosteroid and gibberellin signal-
ing and modulation of flowering time [207–211]. In rice,
four proteins of subgroup XV were reported to be in-
volved in brassinosteroid signal (ILI1 and BU1) [212, 213]
and regulation of grain length and weight (PGL2) [214].
The analysis of the functional characterized bHLH pro-

teins in different subgroups in Arabidopsis and rice above,
indicate the conservative function of bHLH members
from different species in the same subgroups. According
to the phylogenic tree, 79 BdbHLHs distributed in 21 sub-
families were found to have functionally characterized
homologous proteins in Arabidopsis and rice (Additional
file 1: Table S13). Based on these results, the functions of
these 79 BdbHLH TFs could be predicted to some extent.
Researches on several functionally characterized BdbHLH
proteins further support this opinion.
One example is, in Arabidopsis, two RSL class I

proteins AtRHD6 (ROOT HAIR DEFECTIVE6,
AtbHLH083) and AtRSL1 (ROOT HAIR DEFECTIVE
6-LIKE 1, AtbHLH086), were reported to regulate the
expression of the RSL2 and RSL4 and function as positive
regulators to regulate the development of root hair cells
[180, 215–217]. In our phylogenic tree, BRADI2G01000,
BRADI3G53060 and BRADI1G42440 and AtRHD6,

AtRSL1 were tightly grouped within a subfamily, indicating
high homology among them. As predicted, BdRSL1(BRA-
DI2G01000), BdRSL2 (BRADI3G53060) and BdRSL3
(BRADI1G42440) do function in the development of root
hair cells [180, 218].
The other example is, in Arabidopsis, group IIIb members

AtICE1 (AtbHLH116) and AtSCRM (AtbHLH033) function
together with group Ia member AtSPCH (AtbHLH098) to
regulate stomatal development [106]. BdICE1 (BRA-
DI4G17460) and BdSCRM2 (BRADI2G59497) were tightly
grouped with AtICE1 and AtSCRM in subfamily 18 in our
phylogenic tree. Consistently, BdICE1 and BdSCRM2 coop-
erated with BdSPCH1 (BRADI1G38650) and BdSPCH2
(BRADI3G09670) to regulate the stomatal development
despite the differences of their individual roles [219].

Expression profiles of BdbHLHs
Since the functions of genes associated with their expres-
sion patterns, the expression profiles of BdbHLH genes
were analyzed. According to the available microarray data,
the expression levels of BdbHLH genes in 9 different
tissues varied considerably (Fig. 6). Genes in the same
subfamily showed similar expression profiles at some level.
For example, majority of genes in subfamily 4, 5, 6, 7, 8, 9,
18 and 19 showed relatively high expression in all detected
tissues while the bulk of genes from subfamily 1, 2, 3, 10
and 21 showed lower or no expression. In contrast, some
subfamilies were found to be specifically expressed in cer-
tain tissues. For example, genes from subfamily 2 were
specifically expressed in anther; genes from subfamily 12
were found only in inflorescences and anther; the expres-
sion of subfamily 14 members were mainly found in plant
embryo, emerging inflorescences and early inflorescences,
implying that their functions have been differentiated.
Meanwhile, the expression level of different BdbHLHs

was up or down-regulated by different phytohormones
(Fig. 7). Genes in the same subfamily showed similar
responses to exogenous phytohormones to some extent.
For example, auxin down-regulated the expression of
genes from subfamily 3 (except for BRADI3G53060 which
was up-regulated by low concentration), 18 and 21 while
high concentration of auxin up-regulated the expression
of genes from subfamily 4; cytokine down-regulated the
expression of genes in subfamily 20 while up-regulated
the expression of genes in subfamily 21; SA down-
regulated the expression of most genes in subfamily 9, 22,
3 (except for BRADI3G53060 which was up-regulated by
low concentration) and subfamily 5 (at low concentra-
tion); ABA up-regulated the expression of subfamily 9
genes and down-regulated the expression of genes from
subfamily 21 and subfamily 17 (except for that BRA-
DI1G45260 was up-regulated by low concentration); JA
down-regulated the expression of genes from subfamily
19, 20 and 5 (except for BRADI1G47350 was up-regulated
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Fig. 6 The expression profiles of BdbHLH genes in different tissues. The color scale is shown at the top. Higher expression levels are shown in red
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Fig. 7 The expression profiles of BdbHLHs treated with high and low concentration of various phytohormones. The heatmap was generated with
log2 based values. The color scale is shown at the top. Higher expression levels are shown in red while lower expression levels are shown in
green. H stands for high concentration of phytohormone treatment while L stands for low concentration treatment
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Fig. 8 Quantitative RT-PCR analysis of 29 selected BdbHLH genes. The relative expression levels of the 29 genes in (a) different organs namely
root, stem, leaf and inflorescence; (b and c) root with different treatments including 20% PEG6000, 200 mM NaCl, 100 μM MeJA, 100 μM ABA,
20 μM 6-BA and 1 mM SA; (d) leaf with treatments of high temperature (45 C) and low temperature (4 C)
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at high concentration) while up-regulated the expression of
genes from subfamily 9 and 21; GA down-regulated the ex-
pression of genes from subfamily 3, 9, 17 and 21; brassinos-
teroid down-regulated the expression of genes from
subfamily 1 (low concentration) and subfamily 21; ethylene
up-regulated the expression of genes from subfamily 4, 6
(except for BRADI5G21950 which was down-regulated by
high concentration), 8 and 14 (low concentration) while
down-regulated the expression of genes from subfamily16.
To further investigate the possible expression pat-

terns of bHLHs in different organs and under abiotic
stresses, the expression levels of 29 BdbHLHs randomly
selected from 22 subfamilies were investigated using
quantitative RT-PCR. As shown in Fig. 8a, during heading
stage, 29 genes showed different expression patterns. For
instance, BRADI2G54030 and BRADI2G07050 were pri-
marily expressed in roots, while BRADI2G01000 showed a
preferential expression in leaves. BRADI2G61050 was
expressed high in root, stem and leaves but low in
inflorescences. Genes from same subfamily probably
display similar expression patterns. BRADI1G05037,
BRADI3G41510, BRADI4G34350 and BRADI1G69190
from subfamily 7 showed low expression in four tested tis-
sues and a relatively high expression level in leaves and in-
florescences; BRADI1G28230 and BRADI5G14260 from
subfamily 11 and BRADI1G71990 and BRADI3G09670
from subfamily 14 exhibited high expression in leaves
while BRADI1G20560 and BRADI1G25470 from subfam-
ily 19 were hardly detected in root. Taking the conserved
motifs and similar gene structure into account, we predict
genes in the same subfamily might play redundant roles to
some extent.
Additionally, the expression profiles of 29 selected

genes under different abiotic stresses were investigated
too (Fig. 8b–d) and the cis-regulatory elements were
analyzed to verify our results (Additional file 1: Table
S14). In general, the expression patterns are consistent
with the analysis of promoters. For example, BRA-
DI1G47350 and BRADI2G54030 were strongly induced
by NaCl and MeJA, respectively, consistent with the
prediction that BRADI1G47350 contains 5 ABRE cis-
elements (element respond to salt stress) and BRA-
DI2G54030 contains 3 TGACG-motifs (cis-acting regu-
latory element involved in the MeJA-responsiveness)
[220]; BRADI1G71990 containing 1 TCA-element (cis-
acting element involved in salicylic acid responsiveness)
was drastically up-regulated by SA. It might interact
with BRADI3G51960 to respond to salicylic acid ac-
cording to the interaction network. The expression of
BRADI1G09177, BRADI5G01900 and BRADI5G20397
were up-regulated by NaCl and ABA, consistent with
the presence of ABRE cis-elements in these genes.
BRADI1G45260, BRADI2G01000 and BRADI2G07050,
containing TGACG-motifs, showed higher expression

under MeJA treatment. For extreme temperature
including heat (45 °C) and cold (4 °C), the expression
of BRADI1G09177 and BRADI5G20397 were strongly
up-regulated by cold and heat treatment respectively, in
accordance with the presence of DRE (regulatory elem-
ent involved in cold- and dehydration-responsiveness)
[221], or HSE (cis-acting element involved in heat
stress responsiveness) [222].

Conclusions
To study the bHLH gene family in the Brachypodium
distachyon, an emerging model plant in grass, we iden-
tified 146 bHLH genes distributed in 5 chromosomes.
Gene duplications showed that duplication events, es-
pecially segment duplications made up a large propor-
tion in the expansion of BdbHLHs. Synteny analyses
indicated that bHLHs in Brachypodium distachyon had
close relationships with rice, maize and sorghum. GO
analysis showed that the majority of BdbHLHs were in-
volved in transcriptional regulation and displayed pro-
tein binding ability, suggesting that they might function
in homodimer or heterodimer manners. According to
phylogenetic analysis of the bHLH domains and the
alignment with full-length sequences of Arabidopsis and
rice, BdbHLH TFs were classified into 24 subfamilies.
Based on the functional characterization of homologous
genes in Arabidopsis and rice, the BdbHLHs were pre-
dicted to take part in various processes including growth
and development, stress responses and so on. The expres-
sion profiles of BdbHLH genes in different tissues and
under different phytohormones treatments were analyzed,
and some tissue-specific and phytohormone-responsive
genes were identified. Taken together, our results provide
a solid foundation for further evolutionary and functional
investigations on BdbHLHs.
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