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Abstract

Background: Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical
cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a
dramatic increase in the discovery of bacterial SRNAs. However, it is generally believed that the currently identified
sRNAs constitute a limited subset of the bacterial SRNA repertoire. In several cases, sSRNAs belonging to a specific class
are already known and the challenge is to identify additional SRNAs belonging to the same class. In such cases,
machine-learning approaches can be used to predict novel sRNAs in a given class.

Methods: In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based

features to train machine-learning models for the discovery of bacterial SRNAs. We show that features derived from

recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with
high accuracy.

Results: We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sSRNAs that
bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sSRNAs regulated by the master
regulator of virulence, ToxT, in Vibrio cholerae.

Conclusion: The involvement of sSRNAs in bacterial adaptation to changing environments is an increasingly recurring
theme in current research in microbiology. It is likely that future research, combining experimental and computational
approaches, will discover many more examples of sSRNAs as components of critical regulatory pathways in bacteria.

We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This
approach can be applied to specific classes of SRNAs for which several members have been identified and the

challenge is to identify additional SRNAs.
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Background

Bacterial survival in fluctuating environments requires an
ability to make rapid adjustments to cellular gene expres-
sion. A key component of such adjustments to cellular
phenotypes is post-transcriptional regulation. The stabil-
ity of transcribed mRNAs and their protein production
rates can be modulated by binding to non-coding regula-
tory RNA molecules called small RNAs (sRNAs) [1]. Many
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critical cellular processes, e.g. bacterial quorum-sensing,
involve regulation by sSRNAs as a central component [2].
Several reviews have highlighted the regulatory roles of
bacterial sSRNAs [3-5] and a major challenge for future
work is the discovery of novel sSRNAs and the elucidation
of their regulatory functions.

Developments in high-throughput approaches such as
RNA sequencing have led to unprecedented insights into
bacterial transcriptomes. New classes of non-coding regu-
lators have been discovered and several candidate SRNAs
have been identified [6—10]. However, for a majority of
the candidate transcripts, it remains to be elucidated
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whether these serve as functional sSRNAs. Even for tran-
scripts that have been analyzed further and established
as bona fide sSRNAs, the cellular regulatory functions are
largely unknown. Furthermore, bacterial transcriptomes
can vary significantly under different conditions suggest-
ing that many condition-specific SRNAs have not yet
been identified. Finally, it is likely that the sSRNA reper-
toire remains largely unexplored for bacterial species for
which high-throughput transcriptomic studies have not
been carried out so far. There is thus a need for computa-
tional approaches that complement current experimental
methods for the discovery and analysis of bacterial SRNAs.

Several computational methods and bioinformatics
tools have been developed to enable genome-wide pre-
dictions for sRNAs [11-15]. Some approaches are based
on comparative sequences and the conservation of SRNAs
across genomes. However many sRNAs are species-
specific and not conserved across different closely-
related genomes. In addition to sequence-based methods,
approaches focusing on RNA structure have also been
developed [14-17]. However, recent high-throughput
studies have identified multiple sSRNA candidates, which
are not predicted by existing computational tools [18, 19],
indicating the need for novel computational approaches.

One approach for discovery of sRNAs along with
insights into their regulatory functions is to focus on
specific classes of sSRNAs that are part of well-studied
pathways or regulons. For example, the RNA-binding pro-
tein RsmA (CsrA) is a global regulator of gene expression
in diverse bacterial species (henceforth denoted as RsmA
for notational simplicity) [20-22]. The activity of RsmA
is known to be regulated by the expression of sSRNAs
[23-27], however there are several bacterial species with
RsmA orthologs for which the corresponding RsmA-
regulating SRNAs are not known. Another example comes
from the regulon of the virulence master regulatory pro-
tein ToxT in Vibrio cholerae. ToxT is a regulatory protein
that belongs to the AraC/XylS family of transcription fac-
tors [28]. While previous work had identified a regulatory
small RNAs activated by ToxT [29], a recent transcrip-
tomic approach has identified multiple new sRNAs that
are regulated by ToxT [18]. The development of computa-
tional approaches that lead to predictions for new sSRNA
members of these regulons is thus an important step in
the development of general approaches for the discovery
of specific classes of bacterial small RNAs.

In this work, we develop a novel approach that com-
bines sequence and structure-based features in combina-
tion with machine-learning approaches to predict specific
classes of sSRNAs in bacterial genomes. Our approach
is based on 1) deriving a set of sequential and struc-
tural features that can distinguish a given specific class
of RNAs from other RNAs and 2) increasing robustness
of predictions and modeling variation in training data
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using an ensemble approach. In combination with tools
to characterize binding sites for transcription factors, the
bioinformatics approach developed can be used to predict
candidate sRNAs that are part of well-studied pathways.
Knowledge of the pathways involved provides insight into
the potential regulatory roles of the predicted sRNAs.

To illustrate our approach, we focus on the RsmA path-
way in multiple bacterial genomes as well as the ToxT
pathway in Vibrio cholerae and make predictions for novel
sRNAs in these pathways. For the RsmA pathway, we
use the extensive set of known RsmA-regulating sSRNAs
for training our machine-learning algorithm, which is
then used to discover new RsmA-regulating sRNAs on
a genome-wide scale. For the ToxT pathway, the set of
currently known ToxT-regulated sRNAs is limited. In
this case, in addition to using the set of know sRNAs
in Vibrio cholerae as the training set, we also character-
ize ToxT binding site sequences upstream of potential
sRNAs to increase the confidence in the predictions. We
have developed a web-interface for predicting sSRNAs in
the RsmA pathway available at http://markov.math.umb.
edu/inveniresrna/ to make the predictions and the tools
available to different groups. The proposed approach can
be generalized and applied to diverse bacterial regulons
and can potentially accelerate the discovery of regula-
tory small RNAs in such pathways. In addition to the
webserver, and in order to facilitate extensions of our
models to other classes of sSRNAs, we provide an R pack-
age InvenireSRNA, available for download at http://
github.com/carltonyfakhry/InvenireSRNA.

Methods

Overview of approach

RNA classes typically consist of RNAs with similar struc-
ture and function. Such RNA classes can often be catego-
rized based on the sequence composition and structural
characteristics of the RNA molecules. Indeed, cluster-
ing according to sequence-structure similarity has now
become a generally accepted scheme for non-coding RNA
annotation [30]. For instance, in bacterial sRNAs, spe-
cific sequential-structural motifs (such as the presence
of a Rho-independent terminator at the 3’ end) have a
higher probability of appearing in specific structural con-
formations in the ensemble of low free energy structures.
Such sequence-structure based signatures can be used to
train machine learning algorithms that can be applied on a
genome-wide scale to identify putative RNAs in the given
class. In the next section we describe a novel method for
feature generation for any given class of RNAs.

Feature generation

Let ro, 71, -+ , 1, represent the sequence of a given RNA
transcript of length n where r;, € {A,C,G,U} for
i = 1,---,n. Based on the sequential and structural
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conformations of the RNA, we constructed a set of fea-
tures as follows.

In a fixed given secondary structure in the ensem-
ble of all possible structures, nucleotides are either
paired or unpaired. Hence, we may view the structure of
r0,¥1,- -,y as a binary sequence S = {s;}/_,, with 1
indicating that the nucleotide is paired and 0 indicating
that the nucleotide is unpaired. Consider any 3 adjacent
nucleotides (triplets) in the RNA sequence. There are 8
possible structural conformation for the triplet, namely
000,001, --,111. On the other hand there are a total
of 64 possible nucleotide triples (AAA,AAC,--- , UUU).
Combining all possible triples-structural possibilities, we
obtain 512 possible sequence-structure combinations,
(AAA, 000), (AAA, 001), ---, (UUU, 111). We refer to
these as sequential-structural composition (SSC) triplets.

Next, we construct a feature vector called Boltzmann
Triplet Feature, BTF, by computing the probabilities of
SSC triplets in the ensemble of low energy conforma-
tions. For a given RNA transcript, McCaskill’s algorithm
[31] computes the Boltzmann partition function Z =
> s exp(—E(S)/RT), where the summation is over all sec-
ondary structures S of the RNA sequence, E(S) is the
Turner free energy of S, R is the universal gas constant and
T is absolute temperature. For a given secondary struc-
ture Sp, the probability of the structure is given by P(Sp) =
exp(—E(So)/RT)/Z. Hence, the probability of a given SSC
triplet is given by ) ¢cccg P(S), where the summation
is taken over the structures that contain the given SSC
triplet. The BTF vector is composed of the corresponding
probabilities for all the SSC triplets.

In order to estimate the probability of a given SSC
triplet, we generate a stochastic sample of structures from
the ensemble of low energy secondary structures consis-
tent with the Boltzmann distribution. In our implemen-
tation, we used RNAsubopt program from the Vienna
package to generate 1000 stochastic samples from the
ensemble. We then track the number of times that
the given SSC triplet (e.g, o = (CCU, 011)) appears in
the generated samples. That is, for each generated struc-
ture, we track the frequency of each SSC and compute
the empirical probability of the SSC triplet over the ran-
domly generated samples using a binomial model. Similar
features have been used in classifying non-coding RNAs
such as microRNAs [14, 15, 32]. If a given SSC triplet does
not appear in samples, the corresponding probability is set
to 0. Figure 1 shows a schematic representation of feature
generation using our approach.

In addition to the BTFs described above, we con-
sider some other features for classification of sRNAs.
Specifically, we compute the probability of formation of
a stem-loop at the 3’ end of the sequence by examining
the occurrences of stem-loop in the stochastic samples.
We also included a categoriacal feature indicating the
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Fig. 1 Schematic representation of BTF feature generation. For the
given RNA sequence, a stochastic sample of low energy secondary
structures is generated. Paired nucleotides are indicated by 1 and
unpaired nucleotides are indicated by 0. For a given SSC triplet such
as w = (CCU, 011), the sequence and the sampled structures are
scanned by sliding a window of length 3 over the sequence as well as
samples and the frequency of  is recorded

presence or the absence of a Rho-independent terminator
as defined in [33]. The definition of Rho-independent ter-
minator includes the presence of a stem loop and a poly U
tail at the 3’ end of the sequence plus a few more additional
requirements [33].

Construction of feature sets

To assess the ability of BTFs in classifying RNA classes,
we generated the features for two specific classes of bac-
terial SRNAs, namely 1) RsmA regulating sRNAs in bac-
terial species with RsmA homolog and 2) sRNA targets
of the master regulator ToxT in Vibrio cholerae. As will
be described later, the features were used to train binary
classifiers for predicting new sRNAs in each class.

Feature sets for RsmA regulating sRNAs

We obtained the “seed sequences” of RsmA-regulating
sRNAs in bacterial species with known RsmA homologs
as classified by Rfam [16]. There are a total of 105 seed
sequences, including sSRNAs that have been experimen-
tally validated as regulators of RsmA. The features were
generated for these sequences and used as positive exam-
ples for training. As is the case in many biological classi-
fication problems, one often has access to a set of positive
examples; however, there is no well defined negative set.
One commonly used approach for construction of a neg-
ative set, is to use a dinucleotide frequency preserving
shuffle of the positive set [16, 17]. In our approach, we also
constructed a negative set by shuffling the seed sequences
while keeping the dinucleotide frequencies fixed using the
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Altschuldt-Erickson algorithm [34]. However, in addition
to enforcing dinucleotide similarity between the negative
and positive sequences, we examined the distribution of
minimum free energies (MFE) of the positive sequences in
order to produce a negative set that is structurally within
a similar range. Positive sequence were shuffled multiple
times and shuffled sequence with MFEs within the same
range as positives were selected as the negative set.

For the test set, we obtained the sequences of pre-
dicted sRNA regulators of RsmA in all bacterial species
with known RsmA homologs from Rfam. Note that the
vast majority of the sequences in the test set are com-
putationally predicted sSRNA regulators of RsmA with no
experimental support. However, we expect a large num-
ber of these sequences to be predicted as SRNA regulators
of RsmA with our algorithm as well. There are a total of
1342 such sequences. We calculated the features for these
sequences and the results were used in classification of the
test set.

Feature sets for ToxT regulated sRNAs in Vibrio cholerae

As discussed before, to generate the training set we used
all the previously annotated sRNAs of Vibrio cholerae.
Since the size of the positive set is too small (total of 21
sequences) [19] for meaningful classification, we sought
to expand this set by adding additional examples (total of
73 sequences) reported in a recent transcriptomic study
performed in Vibrio cholerae [19].

From the additionally added sequences, we held out a
total number of 4 sequences in order to construct a test
set (resulting in a training set of size 90). In addition
to these sequences, we considered 7 more sequences for
the test set, obtained from another recent transcriptomic
study in Vibrio cholerae [18]. The 11 test sequences were
selected using the following filtering procedure. First, we
scanned the genome of Vibrio cholerae for presence of a
Rho-independent terminator downstream of the regions
annotated as potential SRNAs in the studies. The software
Arnold was used to carry out the search for terminators
[35]. The sequences with no predicted Rho-independent
terminators were filtered out from the test set. Next, we
developed Position Weight Matrices (PWMs) for tran-
scription factors in Vibrio cholerae using the RegPrecise
database [36]. The PWMs were then used to scan the
upstream regions of the remaining sSRNAs for TF binding
sites and the SRNAs with no binding site were further fil-
tered out from the set. Using this approach, we identified
the 11 potential sSRNAs which show the presence of a Rho-
independent terminator and an upstream binding site for
a known transcription factor in Vibrio cholerae. This con-
stituted the test set for SRNAs in Vibrio cholerae. This
procedure was applied in order to increase the confidence
that the test set SRNAs are bona fide sSRNAs. The negative
set was constructed in a similar manner as in RsmA.
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Prediction sets for sSRNAs in the RsmA and ToxT pathways

In order to predict new sRNA regulators of RsmA, we
first obtained intergenic non-coding sequences using the
Web server RSA Tools [37]. We then scanned the non-
coding intergenic regions of selected bacterial genomes
and identified regions containing 1) two or more ANGGA
sequences (identified as RsmA binding motifs) followed
by a poly U tail within 60 bp of the last ANGGA motif
and 2) a Rho-independent terminator as predicted by
the Arnold terminator prediction software [35]. The poly
U tail constitutes the 3’ end of the putative sequences.
For the 5" end we used a variable window with different
lengths, with the range motivated by examining the length
distribution (specifically the distance of the first ANGGA
motif from the known 5" end) of positive sSRNA sequences.

We constructed a putative set for potential new ToxT
sRNA targets as follows. Previous studies focusing on
DNA binding and regulation of target genes by ToxT
have shown that ToxT can bind as a monomer to a
13-bp sequence designated as a toxbox sequence [38].
However all known ToxT target genes, with the excep-
tion of aldA [39], have been shown to have 2 upstream
toxbox sequences in close proximity, suggesting that inter-
action between ToxT monomers is important for ToxT-
dependent activation. Systematic mutagenesis studies for
the binding sites have uncovered several key require-
ments for the toxbox sequences to ensure ToxT-based
regulation [38].

The sequence requirements for toxbox sequences eluci-
dated by previous binding and mutagenesis studies were
combined to generate search criteria for upstream regions
of genes regulated by ToxT. We considered all possible ori-
entations of the two toxbox sequences (e.g. direct/inverted
repeat) and also allowed the spacer region between the
genes to be between 2-12 nucleotides. Using available
information regarding known binding sites, we gener-
ated a Position Weight Matrix (PWM) representation for
both toxbox1 and toxbox2 binding sequences. Specifically,
toxbox sequences upstream of validated targets were cate-
gorized as toxbox1 or toxbox2 (based on specific sequence
constraints identified in previous work). The frequency of
occurrence of each nucleotide at a given position in the
binding site was used to define the corresponding PSWM
for each of the toxbox sites. The corresponding PSWMs
were then used to identify putative toxbox sequences
upstream of sRNA genes in the Vibrio cholerae genome.
Next we scanned the noncoding intergenic regions of the
genome for presence of two ToxT binding sites using the
derived PWMs. We required that the ToxT binding sites
should have a separation of 3 < n < 13. Moreover, we
further examined the region for presence of a poly U tail
starting from 12 bp downstream of the binding sites. For
the 5" end of the putative SRNA various window sizes were
used.
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Classification

We employed a combined ensemble-bootstrap approach
to in order to enhance classification robustness to multiple
sources of variability and to increase the reproducibil-
ity of the models. As discussed in Methods, negative
sequences were generated by random shuffles of pos-
itive sequences, while preserving the dinucleotide fre-
quencies and the range of minimum free energies of
secondary structures. Such negative sets are inherently
variable. This variability must be taken into considera-
tion to improve the reproducibility of the predictions.
As such, we took an ensemble approach for training
a series of binary classifiers, each trained on positive
sequences and a different randomly generated negative
set. In our implementation, we generated 100 negative
data sets. For classifier, we used L;-regularized logistic
regression [40].

L, regularization automatically selects the most predic-
tive features among all possible features. Automatic selec-
tion of predictive features depends on a tuning parameter
A, which in turn is optimally selected by cross valida-
tion. Due to randomness in cross validation folds, there
will be slight variations in the selected predictive fea-
tures. Additionally, variation in positive sequences will
also impact the choice of the predictors by L; regulariza-
tion. For instance, if more positive sequences are added
or removed from the model, some variation is expected
in the selected model. To further increase the robust-
ness of the classification to these sources of variation, we
performed a bootstrap analysis during model training as
follows.

For each training data, we first performed a bootstrap
analysis by generating a total of 1000 bootstrap samples
from the data. In each sample, an equal number of neg-
ative and positive examples were randomly selected from
the data to fit the model. A classifier was trained sepa-
rately using each sample and the total number of times
that each feature was selected as significant was recorded.
The features that were not always set to zero during the
bootstrap process by the L; penalty were then used as
robust features. An L;-regularized logistic regression was
subsequently fitted on the final set of robust features. This
process was repeated for each of the training datasets
(total of 100, one per each negative set). This results in an
ensemble of 100 trained classifiers.

The performance of the trained models were assessed
by cross validation as well as performing predictions on
independent test sets. Features were generated for each
test sequence and the set of 100 trained models were used
to make a prediction on each new sequence. The final
class label was decided by averaging over all model predic-
tions. For cross validation, 10 negative sets were used due
to speed limitations. In our implementation, we utilized a
10-fold cross validation.
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Predictions on putative sequences were performed in
a similar manner as in independent test sequences using
the 100 trained classifiers. The model performance results
and the new biological findings are presented in Results.

Webserver

We provide an R Shiny based web-server that performs
predictions on putative RsmA regulating SRNAs:
“http://markov.math.umb.edu/inveniresrna/" .

R package

The source code and an R package InvenireSRNA is
provided at:
“http://github.com/carltonyfakhry/InvenireSRNA”.

The package provides various functionalities, including
extensions for training new classes of RNAs.

Results

Model Validation

We performed several tests to assess the accuracy of the
models in predicting sSRNAs. As mentioned in the previ-
ous section, 100 training sets were generated by varying
the negative sequences. For each training set, L; regular-
ized logistic regression classifiers were trained on 1000
bootstrap samples from the training set. Robust features
were identified by tracking the frequency of the number of
times that each feature was picked by the classifier across
the bootstrap samples and training sets. Figure 2 shows
the selected top features.

Figure 2a indicates that the presence of a GGA motifin a
single-stranded region is a strong predictor of RsmA reg-
ulating sSRNAs, in agreement with experiments [41, 42].
Moreover, previous experimental work has shown that
RsmA can bind to an AGAGA motif on mRNA leader
sequences [43]. In agreement with this, our analysis indi-
cates that having a AGA motif as well as having GAG
motif in single-stranded regions serves as useful predic-
tors for RsmA-binding sRNAs. Other important features
include the presence of a poly U tail at the 3’ end,
which is an indicative characteristics of RsmA regulating
sRNAs. In case of sSRNA targets of ToxT, existence of Rho-
independent terminator (stem_prob) and a poly U tail at
the 3’ end are among the strongest predictors (Fig. 2b).

To assess the predictive power of the robust features
in classifying sRNAs, we performed a 10-fold cross val-
idation on 10 separate datasets. Table 1 shows the cross
validation results. As can be seen, the models perform
very well in terms of correctly classifying the sRNAs in
their respective classes.

Finally we tested the ability of the trained models in pre-
dicting sSRNAs using independent test sets. In the case of
RsmA regulating sRNAs, 1325 out 1342 (~ 98.7%) were
predicted as sSRNAs by our method. Note that the test
set in this case contains computationally predicted SRNA
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regulators by RsmA with no experimental support. In the
case of sSRNA targets of ToxT, 7 out of the 11 high con-
fidence (probability > 0.85) sequences were predicted as
sRNAs by our method.

Predictions of novel RsmA-regulating sRNAs

The application of our approach to RsmA-regulating
sRNAs leads to several novel predictions which supple-
ment results obtained from our previous approach focus-
ing on sequence alone [12]. This includes predictions for
such sRNAs in Gram negative species such as Geobacter
sulferreducens for which no RsmA-regulating SRNAs have
been experimentally discovered to date. In species such
as Shigella flexneri and Acinetobacter ADPI1 for which
RsmA-regulating sRNAs have been discovered [44] or
predicted [12] in previous work, our approach leads
to predictions of additional RsmA-regulating sRNAs.
Furthermore, it is noteworthy that so far, no RsmA-
regulating sSRNAs have been experimentally validated in
Gram-positive bacteria. Our approach leads to predic-
tions for such sRNAs in Gram-positive species such as
Oceanobacillus iheyensis.

Having obtained predictions for RsmA-regulating
sRNAs in a given species, we also carried out homology
searches for the sRNA sequences within that species
using nucleotide BLAST. This was done to identify
additional putative sSRNAs which were not included in
the original prediction set since they did not satisfy the
criteria imposed (such as presence of a Rho-independent

Table 1 Cross validation results for sSRNA classifier

Class Sensitivity Specificity Accuracy Precision AUC
RsmA 0.99 1 1 1 1
ToxT 0.91 0.93 092 0.93 0.99

First row: RsmA regulating sRNAs; Second row: sSRNA targets of ToxT

terminator as determined by Arnold). Additional SRNA
candidates thus identified were then analyzed using the
classifier developed. Table 2 provides a list of species we
analyzed along with the corresponding top predictions
for RsmA-regulating SRNAs.

It is noteworthy that all the species for which RsmA-
regulating sSRNAs have been experimentally validated
have orthologs of the GacA/S two-component system,
which is involved in the activation of the SRNAs. How-
ever, there are several species which have orthologs of the
RsmA but do not possess any orthologs of the Gac sys-
tem. For these species, our approach leads to predictions
for RsmA-regulating sSRNAs (provided in Table 2) indi-
cating that sSRNAs that regulate RsmA can be activated
by other transcription factors. This observation suggests
that even in bacterial species for which RsmA-regulating
sRNAs have been discovered, there are likely to be addi-
tional sRNAs that are activated by systems distinct from
the GacA/S system. The application of our approach to
the Pseudomonads predicts that this is indeed the case, as
discussed below.

In Pseudomonas syringae, our approach predicts mul-
tiple novel RsmA-regulating sRNAs. It is interesting to
note that these sSRNAs show significant conservation at
the sequence level (See Fig. 3). We analyzed the predicted
sRNA sequences using RNAz software [45], which com-
bines comparative sequence and structure prediction. The
results (Fig. 3) show high Structural Conservation Index
(SCI : 0.69) indicating strong conservation at the level
of secondary structure, and high RNA class probability
(0.9), suggesting that the predicted sRNA is indeed func-
tional. Furthermore, an analysis of the upstream regions
of these predicted sSRNAs reveals a conserved upstream
site which is similar to the consensus 054 (RpoN) binding
site, suggesting that these SRNAs are activated by RpoN.
Since RpoN is known to be a master regulator of virulence
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Table 2 Predictions of RsmA regulating sRNAs in selected bacterial species

Organism Flanking genes Orientation Predicted 5" end Predicted 3" end Probability
Acinetobacter ADP1 ACIADO018/ACIAD0019 — < <« 25035 24917 0.99
ACIAD2750/ACIAD2751 — = <« 2690560 2690698 0.99
Geobacter sulfurreducens KN400_0047/KN400_0048 — = <« 55576 55646 0.93
KN400_1076/phoR «— = <« 1156573 1156660 0.99
KN400_2615 Antisense 2843134 2843215 091
Oceanobacillus iheyensis 0OB3267/0B3268 “— =« 3404835 3404912 0.95
Pseudomonas putida KT2400 PP_1864/PP_1865 - = — 2085406 2085577 0.96
PP_1865/PP_1866 - < 2087405 2087227 0.96
PP_1865/PP_1866 - = <« 2087652 2087827 0.85
asd/PP_1990 - = - 2256149 2256329 0.97
PP_2113/PP2114 - = — 2412827 2413009 0.84
PP_2114/PP_2115 — <« — 2414845 2414666 091
PP_2218/PP_2219 - <« = 2530804 2530622 093
PP_3547/PP_3548 — = <« 4022257 4022439 0.95
PP_3547/PP_3548 — 4022850 4022673 0.95
Pseudomonas syringae pv. tomato DC3000 PSPTO_1719/PSPTO_1720 — = <« 1889433 1889570 0.83
uvrB/PSPTO_2165 - = <« 2380918 2381056 0.85
PSPTO_2585/amt-2 - = — 2856216 2856355 0.97
PSPTO_3273/PSPTO_3274 — < <« 3699381 3699244 0.95
PSPTO_3490/PSPTO_3491 — 3941102 3940967 0.77
PSPTO_3490/PSPTO_3491 — = 3941740 3941605 0.93
PSPTO_3491 Antisense 3942111 3941974 0.93
fadB/PSPTO_3518 — — 3970534 3970396 0.97
gcd/PSPTO_4197 — < <« 4728863 4728726 0.94
PSPTO_5182/PSPTO_5183 - <« 5898180 5898085 0.96
Shigella flexneri S2642/52643 - = — 2532358 2532472 093
Vibrio fischeri ES114 hemB/gpp — <« 61386 61312 0.83
pgi/cheX — < < 315197 315113 0.91
rpsO/pnp - <« 525909 525838 0.96
ydal/copG — <« 852728 852653 0.99
VF_1096/VF_1097 — < <« 1212030 1211908 0.99

Arrows indicate the orientations of the predicted sRNA (center) and the two flanking genes

in Pseudomonad syringae [46], these predictions suggest
additional connections between virulence regulation and
the RsmA pathways.

Recent work has shown that bacterial sSRNAs can also be
derived from the 3’ UTR regions of coding genes [47, 48].
Interestingly, we obtain strong predictions for similar 3’
UTR derived sRNAs in the marine bacterium Vibrio fis-
cheri. The sequences for these sRNAs include repeats
and the predicted secondary structure shows the pres-
ence of multiple loop or single-stranded regions contain-
ing the GGA motif, suggesting that these sRNAs bind

to RsmA. The genomic locations and upstream cod-
ing genes for all the predicted sRNAs is provided in
Table 2. It would be of interest to test these predictions
experimentally, since, if validated, these would consti-
tute the first examples of 3’ derived sRNAs that regulate
RsmA.

Predictions of novel ToxT-regulated sRNAs

The preceding section considered a class of sRNAs
for which we have multiple experimentally validated
examples across several species. However, in many cases,
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PSPTO_1719_down
PSPTO_2165_down GG--CGCTGATCCGGGGGTAGCATGGCA-GGACGCCAGGCTAGCCGCACCGGACCATGGATGG
PSPTO_2585_down GTGGCGCTGACCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCCGCACCGGGCCATGGATGG
PSPTO_3273_down GG--CGCTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCTGCACCGGGCCAAGGATGG

1 CG----CTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCCGCACCGGGCCA. TGG
PSPTO 3490”2 up CG----CTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCCGCACCGGGCCAAGGATGG
PSPTO_3491”as GA--CGCTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCCGCACCGGGCCAAGGATGG
PSPTO_. up GG--CGCTGATCCGGGGGGAACTCGGCATGGATGCCGAGTTAGCTGCACCGGGCCAAGGATGG
PSPTO_4197_down GG--CGCTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCTGCACCGGGCCAAGGATGG

GA--CGCTGATCCGGGGGATGCGAGGCA-GGACGCCGAGCAAGCCGCACCGGGCCAAGGATGG

cons B s s At T T T e

PSPTO_1719_down CGGAGCCGG-GATTTTGGTTACTTT
PSPTO_2165_down CGGAGCCAGGGGCTTTGGTCACTTT
PSPTO_2585_down CGGAGCCGG-GATTTTGGTTACTTT
PSPTO_3273_down CGGAGCGGG-GATTTTGCTGACTTT
PSPTO_3490_1 up CGGAGCCGG-GATTTTGCATACTTT
PSPTO_3490_2_up CGGAGCCAG-GATTTTGCATACTTT
PSPTO_3491_as CGGAGCCAG-GATTTTGCATACTTT
PSPTO_3518_up CGGAGCCAG-GATTTTGCATACTTT
PSPTO_4197_down CGGAGCCGG-GATTTTGGTTACTTT

KkkkRk K Kk kkkk kkokkk

cons

Fig. 3 Structural conservation of RsmA-regulating sRNAs in Pseudomonas syringae as predicted by RNAz program. As can be seen, the predicted
sRNA is highly conserved at the structural level, indicating that the predicted sRNA is functional. Note the presence of the GGA motif in the unpaired

region of the predicted secondary structure

PSPTO_1719_down CCCGTTGCGGCGGCCCCCGGATCAGTGACAGGGCGAAGGAACCCGACGACGTCGGGCCGGARA
PSPTO_2165_down TCCGTTGCGGCGACCCCCGGATCAGTGACAGGGCGAAGGAACCCGACGAAGTCGGGCCGGAAA
PSPTO_2585_down CCCGTTGCGGCGGCCCCCGGATCAGTGTCAGGACGAAGGAACCCGACGAAGTCGGGCCGGARAA
PSPTO_3273_down CCCGTTGCAGCGACCCCCGGATCAGTGTCAGGGCGAAGGAACCCGACGAAGTCGGGCCGGARA
PSPTO_3490"1_up CCCGTTGCGGCGGCCCCCGGATCAGTGACAGGGCGAAGGAACCCGACGAAGTCGGGCCGGAAA
PSPTO_3490_2 up CCCGTTGCGGCGGCCCCCGGATCAGTGACAGGGCGAAGGAACCCGACGAAGTCGGGCCGGAAA
PSPTO_3491"as CCCGTTGCGGCGGCCCCCGGATCAGTGACAGGGCGAAGGAACCCGACGAAGTCGGGCCGGAAA
PS. PTO:3 518" up CCCGTTGCAGCGACCCCCGGATCAGTGTCAGGGCGAAGGAACCCGACGAAGTCGGGCCGGAAA
PSPTO_4197_down CCCGTTGCAGCGACCCCCGGATCAGTGTCAGGGCGAAGGAACCCGACGAAGTCGGGCCGGARA

cons B R e L R R T

it is of interest to consider small RNAs that are specific to
a particular bacterial species. For example, the master reg-
ulator of virulence ToxT is primarily found in the different
strains of the bacterial species Vibrio cholerae. It has been
established that sRNAs are an integral component of the
virulence pathways regulated by ToxT and it is of interest
to expand the currently known set of SRNAs that are part
of the ToxT pathway in Vibrio cholerae. As in the case of
RsmA-regulating sRNAs, the classification approach leads
to multiple predictions of ToxT-regulated sSRNAs in Vibrio
cholerae. Table 3 presents the prediction results for novel
sRNAs.

Figure 4 shows the sequence (with upstream ToxT
binding site) and predicted secondary structure of the
top-scoring prediction from our analysis. Our approach
thus suggests that there may be several hitherto undiscov-
ered sRNAs involved in the virulence of Vibrio cholerae.
More generally, the approach developed can readily be
replicated to consider sRNAs in other global regulatory
pathways in Vibrio cholerae as well as other bacterial
species.

Table 3 Predictions of ToxT regulated sRNAs in Vibrio cholerae

Discussion

A novel aspect of our approach stems from the generation
and analysis of features that combine both sequence and
structure-based information. Furthermore, we take multi-
ple sources of variability into consideration to enhance the
reproducibility of our predictions. For small RNAs regu-
lating RNA-binding proteins, the results from the analy-
sis provide insights for characterizing the corresponding
protein binding sites. For example, the analysis for RsmA-
regulating SRNAs indicates that having strong stem-loop
regions and having the sequence motif GGA in single-
stranded regions are important features of the RsmA
binding site, as indeed has been demonstrated experimen-
tally. Moreover, our analysis further indicates that having
a GAG or AGA motif in single-stranded regions is an
important component of the RsmA binding site on the
sRNAs. Previous work has shown that RsmA can bind
to an AGAGA motif on mRNA leader sequences [43],
thus it would be of interest to experimentally validate if a
GAG or AGA motif in single-stranded regions is impor-
tant for RsmA binding as predicted by our work. More

Organism Flanking genes Orientation Predicted 5" end Predicted 3’ end Probability
Vibrio cholerae VC_0312/VC_0313 - <« 323707 323584 0.97
Vibrio cholerae VC0967 antisense 1031946 1032143 097
Vibrio cholerae VC_1192/VC_1193 - = <« 1266285 1266383 0.94
Vibrio cholerae VC_0249 antisense 255195 255110 0.94
Vibrio cholerae VC_0994/VC_0995 — — = 1061082 1060968 0.98
Vibrio cholerae VC_1072/VC_1073 - = — 1139343 1139442 0.94

Arrows indicate the orientations of the predicted sRNA (center) and the two flanking genes
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a

gettctcgtdCATGTTITATACCkcaatgagttTATTTTTTGTAAGE

tgttaaccagatttagcttaaccgcataaactgctttg

>

gggatcaacaaaaaagcccctgactggggctttttt

tgctagcactgtcacaggcttttcgtgttagaactaagactggtcaaaatttta
tcaatcgcctttgctattttttgcaatttgagcaattgagegtaaaccgtctgcet
tctttattttgaagctaaaaataaaacatgccgatattaccaaaggtgaggca

a_
9

|
T
a
I8

Fig. 4 a Predicted sRNA and upstream sequence from VC0970 antisense region (flanking gene (in Table 3) is VC0967). The boxes indicate putative
ToxT binding sites. The arrow indicates the start position of SRNA. b Predicted secondary structure of the sRNA using MFOLD

broadly, the analysis suggests that the approach used can
lead to de novo discovery of motifs combining sequence
and structure based information regarding binding sites
for RNA-binding proteins.

Our previous approach for determining RsmA-binding
small RNAs [12] focused primarily on sequence-based
features such as the number of RsmA binding motifs
and the presence of upstream binding sites for the tran-
scriptional regulator GacA (which is an activator for the
small RNAs in some bacterial species). This approach
was able to make several new predictions for RsmA-
regulating small RNAs, e.g. in species such as Legionella
pneumophila which were validated by subsequent experi-
ments. However this sequence-based approach is limited
in species which do not have orthologs of the regulator
GacA and in the discovery of small RNAs which have only
a limited number of RsmA binding sites. In such cases,
computational approaches need to take into account both
sequence and structure-based features to identify poten-
tial RsmA-binding small RNAs and this requirement
has been addressed in the novel approach developed in
this work. Our current approach recovers all previously
predicted small RNAs and also makes novel predictions
for such small RNAs in several bacterial species including
species which do not have orthologs of the transcriptional
regulator GacA. Furthermore, we tested our approach by
using as inputs the computational predictions for RsmA-
regulating small RNAs available at RFAM [16]. The results
indicate that &~ 98.7% of the sSRNAs annotated as RsmA-
binding at RFAM are also predicted as RsmA-regulating
sRNAs in our work. However, our approach also makes
predictions for additional Rsma-reguilating SRNAs, some

of which have been highlighted in Table 2. Finally, we note
that our machine-learning approach using features which
combine both sequence and structure-based information
is quite general and can be used to predict novel mem-
bers of any class of bacterial small RNAs. In particular, the
code that has been developed also provides the user with
the option of providing as inputs positive examples for any
class of bacterial small RNAs. The code then calculates the
features using the approach outlined and can be used to
make predictions for any input candidate sSRNA belong-
ing to this class. Detailed instructions for applying our
approach for general classes of bacterial sSRNAs are pro-
vided and the package is available for download at: http://
github.com/carltonyfakhry/InvenireSRNA.

The machine learning approach presented in this work
makes several predictions which will be analyzed in detail,
both experimentally and computationally, in future work.
There are novel predictions for RsmA-regulating sSRNAs
in species where no sRNAs in this class have been discov-
ered to date. There are also new predictions for SRNAs in
species which already are known to have RsmA-regulating
sRNAs. These predictions suggest that different envi-
ronmental conditions or external stresses could activate
different sets of sRNAs to control RsmA levels indicat-
ing that the set of RsmA-regulating sRNAs in bacteria
is significantly larger than currently known. It would be
of interest to validate these predictions experimentally
in future work. The prediction of novel ToxT-regulated
sRNAs in Vibrio cholerae would also be of interest to val-
idate experimentally, given that the approach developed
can readily be replicated to uncover sSRNA components
of pathways involving other master regulator proteins. It
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is hoped that the availability of these predictions through
the Web tool and the R package that have been devel-
oped in this work will facilitate efforts in multiple labs to
unravel regulation by specific classes of SRNAs in diverse
species.

The involvement of sRNAs in bacterial adaptation to
changing environments is an increasingly recurring theme
in current research in microbiology. It is likely that
future research, combining experimental and computa-
tional approaches, will discover many more examples of
sRNAs as components of critical regulatory pathways
in bacteria. In this work, we have developed a novel
approach for prediction of bacterial SRNAs as compo-
nents of specific regulatory pathways. While the present
version makes several interesting predictions for current
research, the approach developed can be generalized and
applied more broadly. With the inclusion of additional fea-
tures, the extension of this approach has the potential to
open several new avenues of research. It would also be
of interest to extend the current approach to focus on
determining specific requirements for prediction of Hfq-
binding sRNAs, a long-standing problem in the field. It
is anticipated that further developments along these lines
will lead to the discovery of novel sSRNAs and an increased
understanding of their role in cellular regulation.

Conclusion

In summary, we have developed a machine-learning
approach for prediction of small RNA regulators in impor-
tant bacterial pathways. This approach can be applied to
specific classes of sSRNAs for which several members have
been identified and the challenge is to identify additional
sRNAs. We provide a web-interface for predicting sSRNAs
in the RsmA pathway available at http://markov.math.
umb.edu/inveniresrna/. The application of our method
leads to novel predictions for RsmA-regulating sRNAs
in bacteria. The approach can also be applied to predict
novel sRNAs regulated by specific transcription factors in
a given bacterial species, as demonstrated in the case of
the master regulator ToxT in Vibrio cholerae. The pro-
vided R package InvenireSRNA contains several func-
tions that facilitate extension of our model to new classes
of sSRNAs.
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