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Abstract

Background: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous
genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle
of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-
laying period becomes increasingly important. In the present study, we measured daily feed intake (Fl), residual
feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81-82 weeks of age to evaluate genetic
properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants.

Results: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both
pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and
ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGAT1) were detected for
FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated
with one another, located at 13.55-45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase
chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher
in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-
mir-15a could act on many target genes, such as forkhead box O1 (FOXOT) that is involved in the insulin-signaling
pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant
variants, located on GGA3 and GGA9, were identified to associate with FI and RFI.

Conclusions: This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative
for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs
for increasing the efficiency performance of old hens and to improve our understanding of the molecular

determinants for feed efficiency.
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Background

People are always paying attention to animal feed effi-
ciency because of the large effect on farm profitability.
For the poultry industry, feed efficiency represents its
competitive position against other animal protein
sources, and to food economists, efficiency places less
demand on global feed resources [1]. The advances in
optimizing diet formulations have significantly improved
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the feed efficiency for layers in the past decades. How-
ever, with increasing feed costs, further improvement by
genetics and breeding strategies is a particularly import-
ant aspect. By integrating statistical genetics, molecular
biology and sequencing technology in numerous studies,
the genetic determinants for many economic traits of
farm animals have been revealed, such as the blue egg-
shell in chicken [2], glycogen content of skeletal muscle
in pig [3], and pleiotropic polymorphisms for stature,
fatness and reproduction traits in beef [4]. Poultry genet-
icists have focused on elucidating the genetic mecha-
nisms that determine feed efficiency, such as identifying
quantitative trait loci (QTLs) and genomic variants in
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chicken [5], waterfowl [6], turkey [7], and quail [8],
among others. However, most of the screened loci that
putatively influence feed efficiency are breed-, age-, or
breeding area-specific (http://www.animalgenome.org/
cgi-bin/QTLdb/GG/index). The previous findings indicate
that feed efficiency as a variably quantitative trait requires a
more accurate and comprehensive strategy to reveal the
genetic factors for birds under several conditions.

In the egg-type chicken industry, a trend has developed
to prolong the laying cycle, which is related to animal
welfare, the ecological footprint of animal production and
the use of natural resources [9]. However, the decline of
performance for old hens represents a substantial
challenge for this development pattern. Accordingly, to
prolong persistent bird performance, feed efficiency must
be addressed. To achieve the above goals, genetic determi-
nants for feed efficiency of old hens require investigation.
In the current study, feed efficiency traits were measured
for layers 81-82 weeks of age, and then the GWAS
method with a molecular validation strategy was used to
detect the genetic variants and candidate genes that were
related to feed efficiency.

Results
Phenotypic descriptions and genetic properties
The descriptive statistics of daily feed intake (FI),
residual feed intake (RFI), feed conversion ratio (FCR),
body weight (MBW) and daily egg mass (EM) are pre-
sented in Table 1 for 808 qualified hens. Chickens con-
sumed an average of 122 g of feed and produced ~50 g
of egg mass per day in the laying period of 81-82 weeks
of age. The minimum and maximum values of RFI
were -41.65 g/d and 43.69 g/d, respectively. The coef-
ficient of variation (CV) of FCR (20.18%) was higher
than that of FI (11%). The raw data of RFI were nor-
mally distributed, and the data of FI and FCR fitted a
normal distribution after Johnson transformation.
Estimates of heritability and genetic correlations among
these traits are listed in Table 2. Pedigree-based heritabil-
ity estimates for FI (0.18 + 0.07) and RFI (0.20 + 0.07)
were lower than that for FCR (0.28 + 0.09). Compared
with pedigree-based estimates, the SNP-based heritability
estimates were lower for FI (0.15 + 0.05), RFI (0.17 + 0.05)

Table 1 Descriptive statistics of feed efficiency and related traits®

Traits® Mean SD V(%) Min Max

Fl (g/d) 12187 1341 11.00 70.70 165.06
RFI (g/d) 0 1247 - —4165 4369
FCR (g:9) 251 051 2018 158 473
EM (g/d) 4855 874 17.48 1557 7164
MBW (g) 22369 1829 816 16380 29360
“n = 808

BFI, RFI, FCR, EM and MBW represent daily feed intake, residual feed intake and
feed conversion ratio, daily egg mass and mean body weight, respectively
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Table 2 Genetic parameters for daily feed intake, residual feed
intake and feed conversion ratio®

Traits® FI RFI FCR
Fi 0.15 (0.05) 0.86 (0.06) 039 (0.20)
0.18 (0.07)
RFI 0.90 (0.05) 0.17 (0.05) 071 (0.13)
0.20 (0.07)
FCR 049 (0.22) 071 (0.15) 0.21 (0.05)
0.28 (0.09)

®Heritability is given on diagonal (italic bold is pedigree-based heritability and
bold is SNP-based), pedigree-based genetic correlations below diagonal and
SNP-based genetic correlations above diagonal. Standard errors of estimates
are in parentheses

°FI: daily feed intake, RFI: residual feed intake, FCR: feed conversion ratio

and FCR (0.21 + 0.05). Regarding the genetic correlations,
SNP-based estimates were a little different from pedigree-
based estimates. The highest correlation was found
between FI and RFI (0.90 + 0.05 and 0.86 + 0.06 for pedi-
gree- and SNP-based estimates, respectively). By contrast,
the lowest correlations for pedigree- and SNP-based
estimates were found between FI and FCR at 0.49 and
0.39 with substantial standard errors of 0.22 and 0.20,
respectively.

Genome-wide association study

The Manhattan and quantile-quantile (Q-Q) plots for
FCR, FI and RFI are shown in Fig. 1. Genome-wide
association analysis revealed 3 genome-wide signifi-
cant SNPs (Table 3) and 11 suggestively significant
SNPs (Additional file 1: Table S1) associated with
FCR (Fig. 2a). These SNPs were in high linkage disequi-
librium (Fig. 2b) and located in a region that ranged from
168.62 to 168.80 Mb on GGA1. Together, these 14 SNPs
explained 2.30% of the phenotypic variance of FCR. Gga-
miR-15a (MIRI5A) was the only gene near these 3
genome-wide significant loci. Several genes also harbored
or were near the 11 suggestively significant SNPs, includ-
ing gga-miR-16a-1 (MIRI16-1), deleted in lymphocytic
leukemia 2 (DELU2), SPRY domain containing 7
(SPRYD?), potassium channel regulator (KCNRG) and
tripartite motif containing (TRIM13). To further test the
possible secondary association signals at the locus,
conditional GWA analysis was conducted with the top
associated SNP rs13553102 as a covariate. All SNPs
were hidden below the suggestively significant line
(Additional file 2: Figure S1) after conditional GWA
analysis, which suggested that SNP 7513553102 was the
most reliable signal in this region. The SNP was located at
13.55 Kb upstream of MIR15A with a MAF of 0.41. The
substitution of variant A to G for rs13553102 led to a
significant decrease in FCR value (Fig. 2c). The genomic
inflation factor (GIF) was 0.99 for FCR and indicated that
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Fig. 1 Manhattan and Q-Q plot of genome wide association study for feed intake and efficiency traits. Each dot represents a SNP in the dataset.
The horizontal gray line and gray dashed line indicate the genome-wise significance threshold (P value = 1.29e-6) and genome-wise suggestive
significance threshold (P value = 2.58e-5), respectively. Fl, RFl and FCR denote daily feed intake, residual feed intake and feed conversion ratio,

respectively. GIF represents genomic inflation factor. a) Plot for feed conversion ratio, b) Plot for daily feed intake, c) Plot for residual feed intake

Table 3 The information for SNPs associated with feed intake and efficiency traits

Traits® SNP GGAP Position P-value® MAF? pe Candidate/ Location (kb)’
nearest gene

FCR rs13553102 1 168,708,318 2.35e-7* 041 (A/G) -0.29 MIRT5A U 1357
r1s314376310 1 168,738,343 7.93e-7* 0.51 (G/O) -0.29 MIR15A U 4357
rs13972109 1 168,739,928 1.27e-6* 0.50 (T/C) -0.28 MIR15A U 45.16

Fl rs313839239 9 4,521,384 6.21e-6 0.06 (T/C) 0.56 FARP2 Intron 1
rs313750381 9 4,358,988 247e-5 0.04 (A/G) 0.59 KIFTA Intron 22
rs314936159 9 4,371,299 247e-5 0.04 (A/G) 0.59 KIF1A U 0.59
rs313292633 9 4,397,583 247e-5 0.04 (T/C) 0.59 SNED1 Exon 11
15312606176 9 4,402,911 247e-5 0.04 (G/A) 0.59 SNED1 Intron 22

RFI 15314723494 3 75,533,793 1.94e-5 0.33 (T/0) 3.17 CNR1 U 46.60
rs313839239 9 4,521,384 1.01e-5 0.06 (T/C) 6.74 FARP2 Intron 1

2FCR, Fl and RFI represent daily feed intake, residual feed intake and feed conversion, respectively
PChicken chromosome

“* Indicates that the SNP P value reaches a genome-wise significance

9Allele frequency of the first listed marker

CEffect of allele substitution

fU indicates that the SNP is upstream of a gene 5-UTR
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Fig. 2 Association results of candidate region on chromosome 1 (GGAT1) for feed conversion ratio (FCR). a Location of the loci associated with
FCR on GGAT1. The graph plots genomic position (x axis) against its significance expressed as -log10 P value (y axis). Genomic position of
associated SNPs reaching suggestive significance (P-value = 2.58e-5) indicated by a green horizon line span 182.58 kb. The SNP rs13553102 is red
highlighted. The annotated candidate genes and SNP displayed below the graph downloaded from Ensembl database. b Linkage disequilibrium
(LD) plot for the 14 SNPs reaching suggestive significance in the candidate region on GGA1. ¢ Genotype effect plot of the SNP rs713553102.

**(P < 0.01) and *(P < 0.05) indicate significant differences among groups (n = 264, 425 and 119 for AA, GA and GG, respectively)

Genotype

the population stratification was well corrected in the
analysis.

For FI and RFI, we didn’t find any genome-wide sig-
nificant hit. However, a handful of secondary important
SNPs were identified at a suggestively significant level.
Five suggestively significant SNPs with a low minor allele
frequency (MAF < 0.1) were detected for FI on chromo-
some 9 (GGA9) spanning from 4.36 to 4.52 Mb. All
SNPs had a positive effect on FI. Linkage disequilibrium
(LD) analysis showed that the 5 SNPs were in a high
linkage phase (Additional file 3: Figure S2), suggesting
that a potential QTL affecting FI might be harbored in
this region. The candidate genes in this region included
FARP2 (FERM, RhoGEF and pleckstrin domain protein 2),
KIFIA (kinesin family member 1A) and SNEDI (sushi,
nidogen and EGF-like domains 1). Compared with the FI,
only two SNPs, rs314723494 and rs313839239, with
genome-wide suggestive significance were detected for
RFI. The two SNPs were located on GGA3 and GGAO9.
The identical SNP rs313839239 identified for FI and RFI
might support the high genetic correlation between FI and
RFI (Table 2). SNP rs313839239 had a low frequency of
minor allele T (MAF = 0.06) in the current population.
However, the substitution of variant C to T caused a sig-
nificant difference for both FI (Fig. 3a) and RFI (Fig. 3b)

values. Another SNP rs314723494 with a positive effect on
the RFI was located in the 46.6 kb upstream of cannabin-
oid receptor 1 (CNRI). Chickens with the CC genotype of
rs314723494 were more efficient with a - 1.88 g/d RFI
than TC and TT genotypes with 0.27 and 6.53 g/d RF],
respectively (Fig. 3c). Moreover, the GIF was 1.02 and
1.00 for FI and RFI, respectively, indicating that the
association analyses were scarcely affected by the
population stratification.

Expression of gga-miR-15a in liver tissue

According to the association analysis of FCR, all
genome-wide significant SNPs were near gga-miR-15a.
We considered gga-miR-15a a promising candidate that
might be associated with feed efficiency. Therefore,
based on the FCR values (Fig. 4a) only, we selected six
birds from high (HFCR), medium (MFCR) and low FCR
(LFCR) groups and then extracted the total RNA of their
liver tissue. The ¢cDNA was used to run quantitative
real-time PCR (qRT-PCR) for gga-miR-15a. We found
that the relative expression of gga-miR-15a was sig-
nificantly higher in the HFCR group than that in
MECR and LFCR groups (Fig. 4b), suggesting that the
gga-miR-15a should be a promising candidate gene
for feed efficiency.
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Fig. 3 Boxplot of SNP effect for daily feed intake and residual feed intake. a The effect of 53713839239 on daily feed intake. b The effect of
15313839239 on residual feed intake. ¢ The effect of rs314723494 on daily feed intake. Boxes with different letters are significantly (P < 0.05)

different from each other. FI and RFI denote daily feed intake and residual feed intake, respectively

Target gene prediction for gga-miR-15a

To investigate the possible mechanism for gga-miR-15a
to influence feed efficiency, further bioinformatics ana-
lysis was performed. TargetScan and miRDB software
was used for target gene prediction for gga-miR-15a,
and a total of 196 and 363 (target score > 80) genes were
predicted using these two tools, respectively (Additional
file 1: Tables S2 and S3). These target genes were pooled
to perform pathway analysis on the DAVID platform
after which target genes were significantly (P < 0.05)
enriched to 9 biological pathways (Table 4) against the

database of the Kyoto Encyclopedia of Genes and
Genomes (KEGG). After Benjamini p-value correction,
only the insulin-signaling pathway (gga-04910) was
significantly enriched, with 12 target genes involved.
Interaction analysis was then performed on these 12
genes one by one using RNA hybrids. Minor free energy
(MFE) was selected as an indicator to identify the
reliable bind between microRNA and target mRNA. A
total of 9 interactions were found between gga-miR-
15a and three target genes with an MFE less than
-20. These 3 genes were forkhead box O1 (FOXOI),
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Fig. 4 Expression of gga-mir-15a for hens with high, medium and low feed conversion ratio. a The phenotype of feed conversion ratio for hens
selected from high, medium and low feed conversion ratio group. b Expression of gga-mir-15a for the selected hens. Gene expression is
presented relative to 5 s RNA expression and normalized to a calibrator. **P < 0.01. Six birds per group were available for the analysis
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Table 4 Significant KEGG pathways for target genes of gga-mir-15a
KEGG?® pathway Count % Involved genes P value Benjamini®
Insulin signaling pathway 12 248 PDPK1, PRKAR2A, CRKL, PHKAT, SOS2, FOXO1, 1.64E-03 490E-02
RAF1, MAPKS, IRS1, INSR, PIK3R1, AKT3
mTOR signaling pathway 8 1.65 PDPK1, RPS6KA3, ULKT, CAB39, RICTOR, 1.18E-03 0.05
IRST, PIK3R1, AKT3
FoxO signaling pathway 13 269 USP7, SGK1, FOXO1, RAF1, IRS1, CCND1, PDPKT, 6.798-04  0.06
CDKN2B, SOS2, MAPKS, INSR, AKT3, PIK3R1
Oocyte meiosis 9 1.86 CCNE1, RPS6KA3, YWHAH, CPEB2, CPEBS, 0.01 0.20
BTRC, PPP2R5C, YWHAQ, ITPR2
MAPK signaling pathway 15 3.10 TAOK1, NF1, PPM1A, PTPRR, RAF1, RPS6KA3, 0.01 0.21
CRKL, MAP3K4, MAP3K2, ELK4, SOS2, MAPKS,
RAPGEF2, NFATC3, AKT3
Wnt signaling pathway 10 207 TBL1XR1, CCND1, NKD1, BTRC, LRP6, MAPKS, 0.02 0.26
SIAH1, FZD3, NFATC3, WNT7A
Insulin resistance 8 1.65 PDPKT1, RPS6KA3, FOXO1, MAPKS, IRST, INSR, PIK3R1, AKT3 0.04 040
Progesterone-mediated oocyte maturation 7 145 RPS6KA3, CPEB2, CPEB3, RAF1, MAPKS, PIK3R1, AKT3 0.04 042
?Kyoto Encyclopedia of Genes and Genomes
PBenjamini-Hochberg false discovery rate < 0.10
3-phosphoinositide dependent protein kinase 1 might be due to the long-term selection scheme per-

(PDPK1) and protein kinase cAMP-dependent type II
regulatory subunit alpha (PRKAR2A) (Additional file 4:
Figure S3), and the lowest MFE was found between
gga-miR-15a and FOXOI, which showed two binding
sites with -28 and -24.6 kcal/mol MFE (Fig. 5).

Discussion

Genetic analysis was conducted in layer chickens affili-
ated with a nucleus breeding population. Birds were
measured for feed intake and efficiency traits at an age
greater than 80 weeks. To our knowledge, this study is
the first genetic analysis for feed efficiency traits in the
late laying period of chickens. Compared with the previ-
ous GWAS in the F, resource population [5], the diver-
sity of SNPs was decreased by quality control of minor
allele frequency in the current study. This decrease

™

C
mfe: -28.0 kcal/mol mfe: -24.6 kcal/mol

Fig. 5 Molecular interactions between gga-miR-15a and 3 prime
untranslated regions (3-UTR) of FOXOT. Red letters indicate the
3"-UTR sequences of the target genes. Green letters indicate the
matured sequences of gga-miR-15a. MFE represents minimal
free energy

formed in the nucleus breeding population, which led to
many homozygous alleles occurring in the genome.
Moreover, the few and different associated hits detected
in the current study might be explained by the difference
of laying period and population structure [10].

The pedigree-based heritability estimates of FI and RFI
presented here were substantially lower than those in
the F, population, which were evaluated at the age of 40
and 60 weeks, whereas the estimate of FCR was much
higher in the current population. This suggested that
different genetic backgrounds could affect the estimates
of heritability, as the present study used population that
had been selected for egg production for many genera-
tions. The high genetic correlation between FI and RFI
but not FCR is consistent with our previous findings
[11], suggesting that the genetic foundation of RFI is
more closely related with that of FI for layer chickens.
Additionally, the SNP-based heritability estimates were
smaller than pedigree-based estimates, which were likely
caused by the “missing heritability” [12] that cannot be
explained by common SNPs on the 600 K SNP array.

A genomic region of 31 kb on chromosome 1 (GGA1)
that harbored 3 genome-wide significant SNPs was de-
tected associated with the feed conversion ratio (FCR).
Additionally, gga-mir-15a (MIR15A) was in this region
and close to the three significant SNPs. Given that FCR
is related to energy homeostasis and egg production, we
constructed cDNA from liver tissue, which is vital to
glucose, glucagon, lipid and protein metabolism in chick-
ens [13-15], to conduct a gene expression experiment,
i.e, qRT-PCR. The expression of MIRI5A was significantly
lower in the medium and low FCR birds, which suggested
that MIRISA was a promising candidate gene involved in
the regulation of FCR. MicroRNAs are small non-coding
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RNAs that have been highly conserved during evolution
and have been implicated in multiple molecular interac-
tions [16]. According to the genome of vertebrates,
MIR15A, accompanied by MIRI6—1 and DELU?2 nearby,
forms a DLEU2/miR-15a/16-1 cluster to affect chronic
lymphocytic leukemia in cancer research [17, 18]. As an
important independent regulatory molecule, microRNA-
15a is involved in the regulation of cell apoptosis and
proliferation [19], autoimmunity disease [20, 21], cardio-
vascular disease [22] and insulin synthesis [23]. Generally,
the function of a microRNA is achieved via binding to the
3 prime untranslated region (3'-UTR) of target mRNA of
a gene [24], with the result that the microRNA represses
protein production [25]. Therefore, we used the bioinfor-
matics tools to predict and analyze the target genes of
gga-miR-15a, and twelve target genes of gga-miR-15a were
significantly enriched in the insulin-signaling pathway. In
the chicken liver, the role of the insulin-signaling pathway
is similar to that in mammals, which has anabolic effects
in glucose transport and utilization, glycogen synthesis,
control of liver lipogenic enzymes, amino acid transport
and protein synthesis [26]. Sun et al. [23] previously dem-
onstrated that microRNA-15a positively regulated insulin
synthesis by targeting uncoupling protein-2 (UCP-2) in
mice. In this study, based on the molecular interaction
analysis, FOXO1I was identified as the most reliable target
gene of gga-mir-15a among 12 target genes. FOXOI, a
member of the forkhead box transcription factor class O
(FOXO) family, is a direct transcriptional regulator of
gluconeogenesis and glycolysis, reciprocally regulated by
insulin, and has profound effects on hepatic lipid metabol-
ism [27]. With the activation of FOXOI, gluconeogenic
gene activity is upregulated, promoting glucose produc-
tion in the liver and accounting largely for the hypergly-
cemia observed in diabetic individuals [28]. Based on this
combined information, we inferred that gga-mir-15a could
target FOXOI by binding to the 3'-UTR of FOXOI
mRNA and then inhibit the protein expression of FOXOI
involved in the insulin-signaling pathway, resulting in the
alteration of FCR in chickens.

In the present study, only 5 and 2 hits were identified
for FI and RFI at a suggestively significant level, respect-
ively, which indicated that the effect of genetic determi-
nants was too weak to be identified for FI and RFL
Additionally, a pure line selection scheme resulted in
effective variants homozygous in the current stocks.
However, the suggestively associated SNPs were also
promising candidates to some extent. The identified
SNPs on chromosome 9 (GGA9) for FI were first
reported in chickens according to the QTL database
(http://www.animalgenome.org/cgi-bin/QTLdb/GG/index).
SNP rs313839239 for RFI was overlapped with a QTL pre-
viously identified in commercial meat-type chickens [29].
Notably, because of the high genetic correlation between
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the two traits, we detected a consensus association
(i.e., rs313839239) affecting RFI and FI simultan-
eously, which is similar to our findings in the laying
period from 57 to 60 weeks in a previous study [5].
FARP2 (FERM, RhoGEF and pleckstrin domain-
containing protein 2), a guanine nucleotide exchange
factor in the Rho family of small GTPases, was a
shared candidate gene for both FI and RFI. FARP2 was
identified as a candidate gene in diabetes research [30],
and is correlated with energy metabolism and obesity-
associated pathologies [31]. Another promising candi-
date gene for RFI was cannabinoid receptor 1
(CNR1I), which is referred to in an energy homeostasis
and metabolic process revealed by pharmacological
studies [32].

Conclusions

In conclusion, the screened genomic region/variants for
FCR, FI and RFI can be valuable references for designing
the customized genetic and genomic selection schemes
to improve efficiency of feed utilization in the current
nucleus of breeding flocks. MIR15A should be consid-
ered a primary candidate gene to improve the under-
standing of the genetic and physiological factors
affecting the FCR in investigated populations. The inter-
actions between MIRI5A and target genes, such as
FOXOlI, suggested that the insulin-signaling pathway in
the liver might be the causative factor affecting FCR
regulation in chickens. The mechanisms by which these
relevant factors modulate metabolism and homeostasis
in the pathway should be studied further in chickens.
This new insight provided by our study will help to
understand the biological regulation of metabolism and
homeostasis in chickens.

Materials and methods

Animals and phenotypes

Female chickens from the 11th generation of a pedigreed
line of Rhode Island Red were maintained by Beijing
Huadu Yukou Poultry Breeding Co. Ltd., China with
selection on egg production and quality. Birds were
generated from the same hatch and housed in identically
individual cages with free access to feed and water. Feed
intake was individually collected during a 2-wk. (81—
82 weeks of age) trial period. In the 2-wk. feeding test
period, feed was provided in individual containers for
each hen. Feed consumption data were procured daily
by manual collection to derive the daily feed intake (FI).
Egg mass (EM) was obtained as total egg number multi-
plied by average egg weight for each hen. Daily egg
number was recorded to calculate total egg number, and
the weight of 3 consecutive eggs collected in each week
was used to calculate average egg weight. Body weight
was measured on a mid-test day for each recorded hen.
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Feed conversion ratio (FCR) was calculated as the ratio
of FI and daily EM. After removing outliers (values
greater than 3 SD from the mean) for FCR, the
remaining 808 hens were used to calculate residual feed
intake (RFI) as the residuals from a regression model of
FI on EM and metabolic BW (BW raised to the power
of 0.75) [33]. The phenotypes that did not follow a nor-
mal distribution were transformed by Johnson method
implemented in R software, and then transformed data
were used in the next genetics analysis.

Genotyping, imputation and quality control

Genomic DNA was isolated from whole blood samples
using phenol-chloroform methods. The qualified 808
hens were genotyped for 580,961 markers using Affyme-
trix 600 K chicken high-density genotyping array. In the
quality control of raw data, all individuals passed the
criteria with a missing SNP call rate < 5% using Affyme-
trix power tool (APT) provided by Affymetrix (http://
www.affymetrix.com/). Autosomal SNPs of 808 samples
were filtered by the criteria set in PLINK [34] (sample
call rate > 97%, minor allele frequencies >1% and Hardy
Weinberg equilibrium P-value <le-6). Afterward, the
remaining SNPs and 808 birds were used for the imput-
ation implemented in the Beagle Version 4 software
package based on localized haplotype clustering [35].
Finally, a total of 307,216 SNPs distributed on 28 auto-
somes and 2 linkage groups, listed in Tables 5, and 808
birds were obtained for subsequent genetic analyses after
filtering for imputation results using PLINK.
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Evaluation of genetic parameters

Prior to the genetic analysis, the effect cage tiers were
tested using analysis of variance implemented in SAS
software, and effect of cage tiers was excluded from the
next analysis due to lack of the significance. Pedigree-
based genetic parameters for FI, RFI and FCR were esti-
mated with the average information restricted maximum
likelihood (AI-REML) method implemented in DMU
software [36]. The multi-trait animal model adopted in
the current analysis was the following:

y=1lpu+Za+e

where y is the phenotypic value of each trait; 1 and Z
are the incidence matrix of fixed effects (population
means) and random effects (individual additive genetic
effect), respectively; p is the vector of fixed effects of
population means; and a and e are the random additive
effects and residual effect, respectively. Estimation of the
phenotypic variance explained by significantly associated
SNPs and all SNPs (SNP-based heritability [37] and
SNP-based genetic correlation [38]) was calculated by
restricted maximum likelihood (REML) analysis imple-
mented in GCTA software [39].

Genome-wide association analysis

Before the genome-wide association study (GWAS), the
eligible SNPs and birds were used to evaluate the popu-
lation structure by PLINK. First, all SNPs were pruned
to obtain independent SNP markers using the indep-

Table 5 Basic information for SNP markers on a physical map after quality control

Chromosome Map distance (Kb)® No. SNPs Density (kb/SNP) Chromosome Map distance (Kb) No. SNPs Density (kb/SNP)
1 195,241.9 58,459 33 16 494.8 266 1.9
2 148,556.6 35,247 42 17 10,2794 4954 2.1

3 110,445.2 33,201 33 18 11,1987 5560 20
4 90,1683 26,060 35 19 9979.3 491 20
5 59,540.0 17,745 34 20 14,2529 4843 29
6 34,904.9 11,610 30 21 6786.7 4808 14
7 36,195.7 12,537 29 22 4050.3 2234 1.8
8 28,7240 9276 3.1 23 5700.7 3508 1.6
9 234245 11,201 2.1 24 6313.8 4505 14
10 19,856.0 9704 20 25 21885 1494 1.5
1 19,381.0 7563 26 26 5288.3 3465 1.5
12 19,844.9 7772 26 27 5143.2 2922 1.8
13 17,4255 6088 29 28 47354 2845 1.7
14 15,1454 8102 19 LGE64 953.8 94 10.1
15 12,624.9 6203 20 LGE22° 739.1 39 19.0
Total 919,583.7 307,216

*The physical length of the chromosome was based on the position of the last marker in the Gullus gullus version 4

PLGE22, linkage group LGE22C19W28_E50C23
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pairwise option, with a window size of 25 SNPs, a step
of 5 SNPs, and r* threshold of 0.2. Second, pairwise
identity-by-state (IBS) distances were calculated between
all individuals using the independent SNP markers.
Finally, we calculated multidimensional scaling (MDS)
components using the mds-plot option based on the IBS
matrix, which was included as a covariate in the subse-
quent association analyses. GWAS was performed using
a mixed models approach [40] implemented in the
GEMMA software package, which fitted a linear mixed
model to account for population stratification and
sample structure with a faster computational time [41].
Association test with univariate linear mixed model
(univariate GWAS) was performed for each trait. The
statistical model was the following:

y=Wa+xp+u+e

where y is the vector of traits value for all individuals; W
is a matrix of covariates (fixed effects contain first 4
MDS components and a column of 1 s); a is a vector of
the corresponding coefficients including the intercept; x
is a vector of marker genotypes; [} is the effect size of the
marker; u is a vector of individual random effects; € is
vector of errors. The Wald test statistic P-value was used
as the criterion to screen SNPs associated with the in-
vestigated traits. Conditional GWA analyses were per-
formed using the same mixed model with the addition
of the dosage of the strongest associated SNP as a covar-
iate [42].

Statistical and bioinformatics analyses

With respect to the P-value threshold of genome-wide
significance, the simpleM method [43] was used to infer
the independent tests. A total of 38,715 independent
tests over the entire autosomal SNPs were obtained, and
then genome-wide significance and suggestive signifi-
cance were calculated as 1.29e-6 (0.05/38,715) and
2.58e-5 (1.00/38,715), respectively. The Manhattan and
Q-Q plots were constructed for each trait by the GAP
package (http://cran.r-project.org/web/packages/gap/
index.html) within the R software. Linkage disequilib-
rium (LD) analysis was performed for the chromosomal
regions with many associated SNPs clustered imple-
mented in Haploview version 4.2 [44] with the algorithm
proposed by Gabriel et al. [45].

SNP positions and information were obtained using
annotation of Gallus gallus 4.0 genome version, and
genes within 500,000 base pairs flanking the associated
SNPs were chosen for further analysis. Target genes of
microRNA were predicted using TargetScan (http://
www.targetscan.org) and miRDB (http://www.mirdb.org/
miRDB/). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was used to analyze target
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genes of microRNA implemented online with the DA-
VID platform (https://david.ncifcrf.gov/). Bioinformatics
analyses of molecular interactions between microRNA
and predicted coding genes were performed using RNA-
hybrid online [46] in which minimal free energy (MFE)
of interaction less than —20 was considered binding. The
mature miRNA sequence was downloaded from miR-
Base (http://www.mirbase.org/), and the target sequence
of coding genes was queried from Ensembl online
(http://www.ensembl.org/).

Total RNA extraction and qRT-PCR

Birds were deeply anesthetized with sodium pentobar-
bital via cardiopuncture, and decapitated. Liver tissue
samples were collected from chickens along with the
regular quarantine inspection of the experimental station
of China Agricultural University in accordance with the
Guidelines for the Care and Use of Experimental
Animals established by the Ministry of Agriculture of
China (Beijing, China). The entire study was approved
by the Animal Welfare Committee of China Agricultural
University (permit number: SYXK 2007-0023).

Total RNA was extracted from the liver tissue using a
mirVana™ miRNA Isolation Kit (Life Technologies,
Carlsbad, CA, USA), and was reversely transcribed using a
miRACLE cDNA Synthesis Kit (Genetimes Technology,
Shanghai, China) as described by the manufacturer. The
quantitative real-time PCR (qRT-PCR) was performed on
an ABI 7500 system (Applied Biosystems). Primers of gga-
miR-15a and chicken 5 s rRNA were designed and synthe-
sized by Genetimes Technology Inc. (Shanghai, China).
The mature miRNAs were polyadenylated by polyA poly-
merase and reversely transcribed into complementary
DNA (cDNA) using a reverse primer, which had a 3 prime
degenerate anchor and a universal tag sequence on the 5
prime end. The cDNA template was then amplified using
specific forward and universal reverse primers. The
specific forward primer sequences of the miRNAs used in
this study were the following: gga-miR-15a, forward 5'-
TAGCAGCACATAATGGTTTGTAAAA-3" and chicken
5 s rRNA, forward 5'-ACCGGGTGCTGTAGGCTTAA-
3’. The universal reverse primer was included in the qPCR
Kit of miRACLE qPCR miRNA Master Mix (Genetimes
Technology). The optimum thermal cycling conditions
were as follows: 95 °C for 10 min, 40 cycles of 95 °C for
10 s, 60 °C for 20 s, 72 °C for 1 min, 95 °C for 15 s, 60 °C
for 30 s, and 95 °C for 15 s. All experiments were run in
triplicate. Relative quantification of microRNA expression
was analyzed using the AACT method [47] with 5 s RNA
as the endogenous control and the average of the birds in
HFCR group as the calibrator sample. Relative quantities
calculated as 22T were used for statistical analyses.
Data were analyzed by pairwise Student’s t-tests imple-
mented in the R software.
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