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Abstract

Background: One of the major challenges in the analysis of gene expression data is to identify local patterns
composed of genes showing coherent expression across subsets of experimental conditions. Such patterns may
provide an understanding of underlying biological processes related to these conditions. This understanding can
further be improved by providing concise characterizations of the genes and situations delimiting the pattern.

Results: We propose a method called semantic biclustering with the aim to detect interpretable rectangular patterns
in binary data matrices. As usual in biclustering, we seek homogeneous submatrices, however, we also require that
the included elements can be jointly described in terms of semantic annotations pertaining to both rows (genes) and
columns (samples). To find such interpretable biclusters, we explore two strategies. The first endows an existing
biclustering algorithm with the semantic ingredients. The other is based on rule and tree learning known from
machine learning.

Conclusions: The two alternatives are tested in experiments with two Drosophila melanogaster gene expression
datasets. Both strategies are shown to detect sets of compact biclusters with semantic descriptions that also remain
largely valid for unseen (testing) data. This desirable generalization aspect is more emphasized in the strategy
stemming from conventional biclustering although this is traded off by the complexity of the descriptions (number of
ontology terms employed), which, on the other hand, is lower for the alternative strategy.
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Background
The general goal of biclustering (or block-clustering, co-
clustering) [1] is to find interesting submatrices in a given
data matrix. A submatrix is defined by a subset of rows
and a subset of columns of the original matrix. In other
words, it is a compact rectangular section of a matrix
that can be obtained by permuting the rows and columns
(respectively) of the input matrix. There are multiple ways
to define the interestingness of biclusters; the simple view
adopted here is that the biclusters cover as many as pos-
sible 1’s within the containing binary matrix while leaving
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out as many as possible 0’s. Biclustering has become
remarkably popular in bioinformatics [2], especially in
gene expression data analysis tasks [3, 4]. Here, bicluster-
ing detects an expression specific to a subset of genes in a
subset of samples (situations).

Semantic clustering denotes conventional clustering
augmented by the additional requirement that the discov-
ered clusters are characterized through concepts defined
as prior domain knowledge. The characterizations are
obviously requested for the sake of easy interpretation of
the analysis results. A popular activity in bioinformatics,
where (ordinary) clusters of genes with similar expres-
sions profiles are first detected and enrichment analysis
[5] is subsequently applied on such clusters, is in fact an
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example of (‘manual’) semantic clustering. The two steps
in the latter workflow can also be merged into a single
phase as demonstrated in [6, 7]. Semantic clustering is also
related to the subgroup discovery approach [8], although
in an unsupervised setting. The term semantic clustering
is also employed in the software-engineering context [9]
and captures a roughly similar meaning as in the present
context.

In this study we explore the combination of the two con-
cepts, that is semantic biclustering. Specifically, we want
to be able to detect biclusters as outlined above; however,
we also want their elements to share a joint description
as in semantic clustering. In the case of biclustering, the
description pertains to both the rows (that is, genes) as
well as the columns (that is, situations). We follow this
goal because formal ontologies are frequently available
and relevant to either dimension of the input data matrix.
An example of such a data set is the Dresden ovary table
[10, 11]. Simply put, our goal is to design an algorithm
able to detect biclusters characterized e.g. as “glucose
metabolism genes in late developmental stages” when-
ever such genes in such stages are uniformly expressed.
To the best of our knowledge, the previous approaches
most related to semantic biclustering are [12], where for-
mal knowledge associated with both rows and columns
of a data matrix is used to specify filters for detected
patterns and [13, 14], which aim at biclustering of gene
expression data with biclusters coherent in terms of gene
functional annotation. The authors of [15] proposed a
new iterative bi-clustering algorithm and applied it to a
binary gene set expression dataset, i.e., the dataset where
expression of whole gene sets was captured. They worked
with the semantic annotation of the original gene expres-
sion data, but they employed the semantics solely in the
preprocessing step.

In the rest of the paper we formalize the problem of
semantic biclustering first. Then, we propose two strate-
gies for semantic biclustering and test them comparatively
on two experimental datasets. Our contributions also
include a design of a suitable validation protocol, as eval-
uation criteria are not fully evident in unsupervised data
analysis.

Methods
Problem formalization
We assume a set of genes �, a set of situations �, and
a binary set of expression indicators {0, 1}. We further
assume a joint probability distribution over these three
sets p : {0, 1} × � × � →[ 0; 1]. In a gene-expression
assay, a set G ⊆ � of genes and set S ⊆ � of situations
are selected and expression is sampled for all pairs of the
selected genes and situations. In other words, a matrix
A = (ag,s), g ∈ G, s ∈ S is formed such that ag,s = 1 with
p(1|g, s) (0 otherwise).

In standard multivariate analysis of gene expression,
A = (ag,s) represents a sample set in the sense that a
sample corresponds to a column inA. For benefits of sta-
tistical inference, it is typically assumed that samples are
independent and identically distributed (i.i.d.); more pre-
cisely, that S is drawn i.i.d. from the marginal p(s). Note
that the drawing is with replacement, so strictly speaking
S (and G analogically) is a multi-set rather than a set. This
distinction is however immaterial in the present context.
In the present biclustering context, we put genes and sit-
uations (rows and columns) on equal footing. That is to
say, a sample corresponds to a single measurement ag,s.
Under this view, the sample set {(ag,s, g, s) : g ∈ G, s ∈ S} is
not an i.i.d. sample from p(a, g, s) even if both G and S are
i.i.d. samples from the respective marginals p(g) and p(s),
which is due to the sample set’s rectangularity. Indeed, if
the latter contains a sample for a particular pair (g, s), it
will necessarily also contain all pairs (g′, s), g′ ∈ G and all
pairs (g, s′), s′ ∈ S, so the samples are mutually dependent.

Ordinary biclusters
A bicluster in matrix A = (ag,s), g ∈ G, s ∈ S is a subma-
trix defined by a subset of rows and columns, i.e., a tuple
(G′, S′) where G′ ⊆ G and S′ ⊆ S. A system of biclusters
of A is B = {(Gk , Sk)} where (Gk , Sk) are biclusters in A.
The extension of B is

ext(B) = {(g, s) : g ∈ G′, s ∈ S′, (G′, S′) ∈ B} (1)

A usual requirement is that a system of biclusters covers
regions of A that are homogeneous regarding the con-
tained values. This may be interpreted in multiple ways
and here we adhere to the simplest interpretation that the
bicluster system B should ideally include all 1’s present in
A and exclude all 0’s. Then a natural quality measure of B
counts 1’s inside its extension and 0’s outside of it

∑

(g,s)∈ext(B)

ag,s +
∑

(g,s)∈G×S\ext(B)

1 − ag,s (2)

For convenience, we introduce an indicator function b :
G × S → {0, 1}

b(g, s) = 1 iff (g, s) ∈ ext(B) (3)

which allows us to rephrase the above quality measure as
|{(g, s) ∈ G × S : ag,s = b(g, s)}|. Normalizing this to the
interval [ 0; 1], one obtains the formula

Âcc(b) = |(g, s) ∈ G × S : ag,s = b(g, s)}|
|G||S|

which is known as the training (in-sample) accuracy of b
viewed as a classifier. This quantity provides an empirical
approximation to the true b’s accuracy on G × S, which is
p(g, s, b(g, s)|(g, s) ∈ G × S) according to our probabilistic
model. The conditional part is important since b’s domain
is restrained to G × S. On one hand, this classification
viewpoint provides an additional motivation to maximize



Kléma et al. BMC Genomics 2018, 18(Suppl 7):752 Page 43 of 71

the ad-hoc formula (2). On the other hand, viewing Âcc as
a proxy for the true accuracy entails certain problems.

First, as we have commented already, the sample set
where Âcc is determined is not i.i.d. as normally required
for a training set, although this could be tolerated if the
intended use of Âcc is as a heuristic guiding the search
for B, rather than as an unbiased estimator. Second, Âcc
can be trivially maximized by a system of single-element
biclusters covering exactly all 1’s in A. Such an overfitting
solution is commonplace in classification and is usually
avoided by an additional regularization term. Here, the
latter could penalize small biclusters, or alternatively a
high number of them. So one would search B maximizing

Âcc(b) + λ/|B|
with λ determining the trade-off between accuracy and
the size of the bicluster system. In fact, a regularizer is
normally added to formula 2 in biclustering algorithms
[16, 17] to prevent the trivial solution, irrespectively of any
classification context.

The third problem lies in the restriction of b onto the
G × S domain, which does not enable us to use b on
genes and situations not in the training set. At first sight,
this does not seem a problem if one is not interested in
using the bicluster system B for classification. However,
it makes the assessment of B’s quality problematic in the
following sense. Besides the training accuracy Âcc acting
as a search heuristic, we are also interested in an unbi-
ased estimate of the quality of the final system B produced
by the biclustering algorithm. An ideal quality measure
is the true accuracy p(g, s, b(g, s)) of b, which would nor-
mally be estimated using a hold-out or testing data set
Test = {(gk , sk , ak)} drawn i.i.d. from p(g, s, a), as

Acc(b) = |{(gk , sk , ak) ∈ Test : ak = b(gk , sk)}|
|Test| (4)

However, this value cannot be established as b is not
defined for arguments with values outside the training
sample set and—to our best intelligence—there is no sen-
sible way in which the bicluster system B could induce a
classifier beyond the G×S domain. We will see in turn that
this problem is overcome elegantly by semantic biclusters.

Semantic biclusters
Here we consider biclusters which are not defined by an
enumeration of the selected rows and columns, but rather
by enumerating conditions according to which the rows
and columns are selected. In particular, the conditions
are represented by semantic annotation terms pertaining
to genes (rows) and situations (columns). Formally, we
assume a set of gene annotation terms γ , and analogi-
cally situation annotation terms σ . Furthermore, relations
Rγ ⊆ G × γ , Rσ ⊆ S × σ are defined, associating genes
and situations with selected annotation terms.

For an arbitrary gene set G, a term set Tγ ⊆ γ induces
the set {g ∈ G : ∀t ∈ Tγ , (g, t) ∈ Rγ } of exactly those
genes in G that comply with all the terms in Tγ . We denote
this induced set as G(Tγ ). Similarly for a situation set S
and a situation term set Tσ , S(Tσ ) = {s ∈ S : ∀t ∈
Ts, (s, t) ∈ Rσ }.

Thus within a matrix of genes G and situations S, a
semantic bicluster (Tγ , Tσ ) induces a unique ordinary
bicluster (G(Tγ ), S(Tσ )), and a system of semantic biclus-
ters SB = {(

Tγ

k , Tσ
k
)}

defines a unique ordinary system
of biclusters B. Due to this correspondence between SB
and B, SB can be searched using the heuristic Âcc(B) we
elaborated above.

Unlike the extension of an ordinary system of biclus-
ters (Eq. 1), the extension ext(SB) of a system of semantic
biclusters SB is not confined to the matrix of genes G and
situations S

ext(SB) = {(g, s) : g ∈ �(Tγ ), s ∈ �(Tσ ), (Tγ , Tσ ) ∈ SB}
(5)

and thus also the indicator function sb : � × � → {0, 1}
defined as in (3) now has all genes and situations in its
domain. (Note that the restriction of ext(SB) to the matrix
G × S coincides with the extension ext(B) of the ordinary
system B of biclusters defined by SB; this is easy to see by
replacing � and � respectively by G and S in Eq. 5).

This means that for a system SB of semantic biclusters,
we can obtain an extra-sample (testing) quality estimate
Acc(sb) per Eq. 4 which was not possible with ordi-
nary biclusters. Note that the testing sample set Test =
{(gk , sk , ak)} needed for the estimate is drawn i.i.d. from
p(g, s, a) and is not expected to form a matrix. This has
a positive practical implication for the evaluation proce-
dure, which will be commented further in the experimen-
tal section.

Soft semantic biclusters
The last extension we introduce is that of soft semantic
biclusters, motivated by the fact that in the terms sets Tγ ,
Tσ defining a semantic bicluster (Tγ , Tσ ), some of the
terms may be more important than others. The reason for
this will follow from the algorithm implementations elab-
orated below. Here we simply assume that the sets Tγ , Tσ

consist of pairs (t, w) where t ∈ γ (t ∈ σ ) and the weight
w ∈ (0; 1]. In this situation, we adapt the classification
function to

sb(g, s) = 1 iff (Tγ , Tσ ) ∈ SB

and
∑

(t,w)∈Tγ ,(g,t)∈Rγ

w ≥ θG

and
∑

(t,w)∈Tσ ,(g,t)∈Rσ

w ≥ θS

(6)
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where θG, θS ∈ R are some real thresholds (hyper-
parameters). Informally, the classifiers outputs 1 iff at least
one of the biclusters in SB supports the classified tuple
(g, s). The tuple is supported by a bicluster (Tγ , Tσ ) if the
weights of terms which are simultaneously (i) assumed by
Tγ (Tσ , respectively), (ii) and among the annotations of g
(s), sum up to at least θG (θS). The earlier definitions of Âcc
and Acc apply to this redefined classifier sb as well.

Algorithms
At least two different strategies lend themselves to find a
good system of semantic biclusters SB. The first option is
to find a system B of ordinary biclusters first, and then
identify the characteristic annotation terms Tγ and Tσ for
each of the biclusters in B. The second option is to search
directly in the space of (sets of ) semantic biclusters, i.e.
explore systematically various combinations of the anno-
tation terms. We explore both strategies henceforth. In
the first one we employ an existing biclustering algorithm
and subject its results to an enrichment analysis [5] algo-
rithm, revealing annotation terms which are enriched on
either dimension of the produced biclusters. The alterna-
tive strategy is materialized by an arrangement of classical
symbolic machine-learning techniques known as decision
rule and tree learning [18]. It is implemented in terms of
two closely related methods that share the preprocessing
step and differ in the consecutive learning step.

Bicluster enrichment analysis
The enrichment approach to semantic biclustering first
searches for a set of ordinary biclusters. The goal is to
find a small set of biclusters that cover as many 1’s as
possible and as few 0’s as possible. In other words, we
search for the most concise biset-based description that
minimizes the occurrence of false positives and false neg-
atives. In the field of biclustering, this is a well-known task
that can be tackled with approximate pattern matching
[17, 19, 20], non-negative matrix decomposition [21, 22],
bipartite graph partitioning [23] or heuristic algorithms
[24–27]. The bicluster semantics are disregarded for the
moment.

In our approach, we employed the popular PANDA+
tool [17] to accomplish the first step. PANDA+ adopts a
greedy search that iteratively builds a sequence of biclus-
ters. The constructed bicluster set gradually increases its
coverage of the input matrix. This bicluster set is ini-
tially required to be noise-less, i.e. without false positives.
In a subsequent step, PANDA+ extends the biclusters by
allowing false positives. The main guiding parameter is
the level of accepted noise which may be used to balance
between the size of the description (the number of biclus-
ters and their size) and the quality of the description (the
amount of false predictions).A has to be transformed into
the FIMI sparse format [28] before calling PANDA+.

Algorithm 1: Bi-directional enrichment.
input :Am×n, ai,j ∈ {0, 1, NA}; // NAs for

testing fields
Rγ ; Rσ ; // gene (GO, KEGG) and
location annotation relations

output: �S; // the matrix of gene and
location p-values

1 /* Get list of biclusters, i.e.,
bi-sets of gene/location indices

*/
2 A ← convertToSparseFIMIFormat(A);
3 B ← PANDA+(A); // obtain ordinary
biclusters

4 /* Get actual genes and locations,
e.g., from A row/column names */

5 G ← getAllGeneNames(A); // all genes
in A

6 γ ← getAllGeneTerms(Rγ , G); // filter
all gene terms relevant to A

7 S ← getAllLocationNames(A); // all
locations in A

8 σ ← getAllLocationTerms(Rσ , S);
// filter all location terms
relevant to A

9 g ← |γ |; s ← |σ |; �S ← 0k×(|γ |+|σ |);
10 /* Annotate the individual

biclusters */
11 for k ← 1 to |B| do
12 for i ← 1 to g do
13 �S

k,i ←
enrichmentGet(Bk,genes, γi, G, Rγ)

14 end
15 for j ← 1 to s do
16 �S

k,g+j ←
enrichmentGet(Bk,locs, σj, S, Rσ)

17 end
18 end

In the second step, the biclusters are annotated in
terms of prior domain knowledge, i.e., their semantics
are revealed. In our case, we use the gene ontology (GO)
terms [29, 30] and KEGG terms [31] to annotate the indi-
vidual genes. The dedicated Drosophila location ontol-
ogy (DLO) terms [10] and Drosophila anatomy ontology
(DAO) terms [32] were used to annotate the situations;
in particular, these terms define the developmental stages
and anatomical locations of the sample. Each non-trivial
bicluster (comprising more than 1 gene and 1 stage)
is annotated by all the terms (GO+KEGG and situa-
tion/anatomy ontology, respectively) whose enrichment
exceeds the predefined statistical significance threshold.
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In order to avoid this hyperparameter in our workflow,
we propose setting the threshold automatically within
the permutation-based test that compares the bicluster
enrichment scores with the scores reached in permuted
gene expression matrix. The significance threshold is set
to guarantee that the false discovery rate for annota-
tion terms in real biclusters remains small. The individual
terms are scored proportionally to their statistical signifi-
cance, yielding the weights w assumed by the classification
principle in Eq. 6. We employed the topGO Bioconductor
package [33] to find the GO terms and the Fisher test to
reveal the KEGG and location ontology terms enriched in
the individual biclusters.

This approach to semantic biclustering could as well be
referred to as bi-directional enrichment. The procedure
pseudocode is shown in Algorithm 1. Despite the NP-
complexity of the general problem of finding the optimal
set of biclusters [2], the suboptimal heuristic algorithm
is computationally scalable. The size of the input matrix
influences mainly the initial bicluster search; time com-
plexity of PANDA+ is O(|B|mn2) [17] where |B| is the
number of biclusters and m = |G|, n = |S| are the dimen-
sions of the expression matrix. The sizes |γ |, |σ | of the
annotation vocabularies influence solely the annotation
step whose time complexity is O(|B|(|γ | ∗ m + |σ | ∗ n)).

Rule and tree learning
The alternative approach is based on a reduction of the
problem to a classification-learning problem. This entails
a transformation of the original data matrixA into an aux-
iliary binary matrix M of dimensions (|G| · |S|) × (|γ | +
|σ | + 1). Matrix A is unrolled into M so that each row of
M corresponds to one element ai,j ofA and has the form

t1, t2, . . . t|γ |, t|γ |+1, t|γ |+2, . . . t|γ |+|σ |, expression (7)

where the first |γ | numbers are binary indicators of anno-
tation terms (acquiring a value of 1 iff the corresponding
term is associated with gene in i’th row of A), the subse-
quent |σ | numbers are analogical indicators of situation
ontology-terms for situation in j’th column of A, and the
last number is the expression indicator for the said gene
and situation, and thus equals ai,j. The transformation
details are shown in Algorithm 2.

The next step is learning a classification model to pre-
dict expression from t1, . . . t|γ |+|σ |. To this end, M repre-
sents the training data with individual rows such as (7)
corresponding to learning examples with the last element
being the class indicator. The model we search for takes
the form of a list of conjunctive decision rules [18], each
of which acquires the form

∧i∈I ti ∧j∈J tj+|γ | → expression (8)

where the rule conditions I ⊆ [ 1; |γ |], J ⊆ [ 1; |σ |] are
learned selections of gene and situation ontology terms.

Algorithm 2: UnrollingA intoM.
input :Am×n, ai,j ∈ {0, 1, NA}; // NAs for

testing fields
Rγ ; Rσ ; // gene (GO, KEGG) and
location annotation relations

output:M(m·n)×(|γ |+|σ |+1), bi,j ∈ {0, 1}
1 /* Genes are represented by a set of

FBgn identifiers */
2 G ← getAllGeneNames(A); // all genes
in A

3 γ ← getAllGeneTerms(Rγ , G); // list all
gene annotation terms

4 S ← getAllLocationNames(A); // all
locations in A

5 σ ← getAllLocationTerms(Rσ , S); // list
all location terms

6 g ← |γ |; s ← |σ |;
7 for i ← 1 to m do
8 T ← 0|γ |+|σ |+1; // term indicator

vector initialization
9 for j ← 1 to g do

10 if (γj, Gi) ∈ Rγ then Tj ← 1
11 end
12 for k ← 1 to n do
13 for j ← 1 to s do
14 if (σj, Sk) ∈ Rσ then Tg+j ← 1
15 end
16 T|γ |+|σ |+1 ← ai,k ; // add expression

indicator
17 M(i−1)·n+k,∗ ← T ;
18 end
19 end
20 M ← filterGeneTerms(M, 	); // wrt to

a given threshold 	;

The rule stipulates that a gene annotated with all the gene-
ontology terms indexed by I is likely to be expressed in
situations annotated with all the situation-ontology terms
indexed by J. If no rule in the learned rule set predicts
expression for a pair (g, s), the rule set defaults to the
no-expression prediction.

Consider the set P = G × S containing all the gene-
situation pairs (g, s) satisfying the conditions of rule (8).
It is easy to see that P forms a submatrix of A, i.e., there
exists a permutation ofA’s rows and columns making P a
rectangular section ofA. Indeed, G identifies a set of rows
and S identifies a set of columns. The conjunction in (8)
is satisfied perfectly by the genes in the intersection of G
and S, which is thus a rectangle. Therefore, each rule such
as (8) identifies a bicluster inA. Note that the rectangular
property essentially follows from the propositional-logic
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form of the rule and would not hold true for the more
general relational rules considered in [8].

Moreover, a rule set optimized for classification accu-
racy on training data such as (7) will produce those biclus-
ters of A which contain a high number of 1’s. Indeed,
perfect training-set accuracy is achieved if and only if
the biclusters represented by the rules in the rule-set
collectively cover all the 1’s and no 0’s inA.

Summarizing the two observations, the learned rule
set represents a set of biclusters of A, each of which
is homogeneous in that it collects positive indicators of
expression. Furthermore, each such bicluster is character-
ized by the ontology terms G and situation terms S found
in the corresponding rule such as (8). Thus, the procedure
described does indeed convey the semantic biclustering
task.

In addition, we propose a variation to the workflow
described, in which the rule-set learner is replaced by a
decision tree learner [18]. Each vertex in a learned tree cor-
responds to one ontology term, and the test represented
by the vertex determines whether the term is among the
annotation of the classified pair of gene and situation.
Since all the attributes (including the class attribute) of
the training data (7) are binary, the learned tree is also
binary. Each path from the root to one positive leaf can be
rewritten as a rule in the form (8), except that some of the
literals may be negated. For example, literal ¬t1 expresses
the condition that t1 is not among the annotation terms.
So the learned decision tree defines a set of semantic
biclusters as the rule-set does, except these biclusters are
defined in a more expressive language (allowing negation)
than we considered in the original formalized model.

The main reason for exploring this decision tree alter-
native is that it is often claimed that decision trees exhibit
performance superior to that of decision rule sets.

In our implementation of this approach, we used the
JRip and J48 algorithms from the WEKA machine-
learning software [34] to learn the rule-sets and decision
trees, respectively. The JRip algorithm is an implementa-
tion of a propositional rule learner, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) [35]. J48 is
an implementation of the well-known C4.5 algorithm [36].

The time complexity of this approach is determined
by the complexity of converting the A into M, which is
O(mn(|γ | + |σ |)), and the complexity of the subsequent
learning algorithm. In the case of binary decision trees,
the runtime of the heuristic J48 algorithm grows linearly
with the number of training instances and quadratically
with the number of features [37], in our problem it is
O(mn(|γ | + |σ |)2). As the total number of annotation
terms can be large, the actual runtime of this approach
would be much larger than for the bi-directional enrich-
ment. For this reason, we perform a feature selection
step prior to the learning step. The published JRip’s time

complexity [35] implies the learning complexity for our
problems O(mnlog2(mn)). In other words, a large num-
ber of samples in M indicates a time consuming run if
compared to the other methods implemented in our work.

Evaluation procedure
Both biclustering and enrichment analyses are unsuper-
vised data mining methods and the exact way of validating
their performance is not obvious. For example, perfectly
homogeneous biclusters can usually be found at the cost
of their very small size. The size and homogeneity should
thus be traded-off but their relative importance would
have to be set apriori. Similarly, the semantic annota-
tions discovered may either represent genuine charac-
teristics of the biclusters, or the included terms may
be enriched merely by chance. Distinguishing these two
effects through a statistical test involves distributional
assumptions which we cannot guarantee.

We solve the latter dilemma by measuring the quality
of semantic biclusters from the point of view of predictive
classification, and particularly using an extra-sample (test-
ing) accuracy estimate as proposed in Eq. 4. This assumes
that the available data is split randomly into a training
partition where the semantic biclusters are found, and a
testing partition where they are evaluated. The training
split is a (strict) submatrix of the input matrix and thus
its complement (the testing split) is not a matrix. Fortu-
nately, a matrix form is not required of the testing split as
explained in the Problem formalization section.

As stated already, the strategy based on conventional
biclustering and subsequent enrichment analysis results in
a set of soft semantic biclusters inducing the classification
principle described by Eq. 6. The latter depends on the two
hyper-parametric thresholds θG and θS, and their different
choices result in different values of the accuracy measure
(4). In such a situation, it is convenient to visualize the
global performance profile through ROC analysis. Here,
the accuracy measure (4) is decomposed into the false pos-
itive rate component FPr and the true positive rate TPr,
both of which are functions of θG and θS. By varying these
hyperparameters, a set of (FPr, TPr) points is obtained,
forming the ROC curve. The area under this curve (termed
AUC) represents the quality of the classifier for the entire
range of the hyperparameters. The semantic biclustering
validation procedure is summarized in Algorithm 3.

The approach based on rule and tree learning pro-
duces crisp semantic biclusters, and as such it induces
classifiers in the standard form given by (3). For the
sake of unified comparison, we also evaluate these classi-
fiers through ROC analysis although they do not contain
explicit threshold parameters. This is made possible by
the employed JRip and J48 algorithms which provide con-
fidence values along with the expression predictions. We
make a positive expression call only if the corresponding
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confidence value exceeds a threshold 	, and we obtain the
ROC curve by varying 	.

Algorithm 3: Predictive evauation of bi-directional
enrichment.

input : �S;Am×n, ai,j ∈ {0, 1, NA}; // NAs
for training fields
Rγ ; Rσ ; // gene (GO, KEGG) and
location annotation relations

parameters: θG; θS; // gene and location
term score thresholds
pperm; // p-val permutation
threshold

output :Pm×n, pi,j ∈ {0, 1, NA} // the
predicted expressions

1 /* Initialize predicted expressions,
zeroes or NAs only */

2 P ← A;P[P == 1] ← 0;
3 /* Get GO and KEGG term indication

vectors for all genes */
4 G ← getAllGeneNames(A); // all genes
in A

5 TG ← getTermsForGenes(Rγ , G); // a
binary m×g incidence matrix

6 /* Get location term indication
vectors for all stages */

7 S ← getAllLocationNames(A); // all
locations in A

8 TS ← getTermsForStages(Rσ , S); // a
binary n×s incidence matrix

9 /* Apply the individual biclusters

*/
10 for k ← 1 to |�S| do
11 /* turn p-values into scores,

apply the permutation threshold

*/
12 for i ← 1 to |γ | + |σ | do
13 if �S

k,i < pperm then �S
k,i = −log10(�

S
k,i) else

�S
k,i = 0

14 end
15 /* Search for the genes and stages

covered by the bicluster, use
them to fill in P */

16 P[TG�S
k,1...g > θG,TS�

S
k,g+1...|γ |+|σ | > θS] ← 1

17 end

Results
Experimental datasets
We conducted our experiments on two real datasets.
The first one is the Dresden ovary table [10]. The table
captures the distribution of different mRNA molecules
in various cell types involved in oocyte production in
the ovary of female Drosophila melanogaster flies. The
authors of the table believe [11] that the resource can
be used to gain insight into specific genetic features that
control the distribution of mRNAs and this insight may
be instrumental in cracking the ‘RNA localization code’
and understanding how it affects the activity of proteins
in cells. In this problem, the dedicated situation ontol-
ogy (available from the same source) describes Drosophila
ovary segments and their developmental stages. The
ontology is in fact a location term hierarchy that binds
the locations available in the Dresden ovary table by the
relations part_of and develops_from. As such, the hier-
archy deals with 100 terms. The gene ontology was used
in its standard available form [29, 33] including 8,407
GO terms in total. The set of KEGG terms was con-
siderably smaller, we dealt with 133 terms that anno-
tated a limited set of 1605 genes. For this reason, the
importance of KEGG is smaller than that of GO. After
minor data cleansing, the expression matrix has 6510 rows
(genes) and 100 columns (situations) with 47.5% positive
data instances. The detailed data statistics can be found
in Table 1.

The second experimental dataset comes from the same
organism, i.e., Drosophila melanogaster, and captures
the spatial gene expression in the larval imaginal discs
(IDiscs). An imaginal disc is a part of insect larva from
which the adult body parts develop. The dataset is a binary
representation of an automatically processed large collec-
tion of fluorescent in situ 2D hybridization images. The
images were collected for more than 1000 genes in 4 dif-
ferent imaginal discs (wing, antenna-eye, leg and haltere).
About 20 distinct locations (image segments) were dis-
tinguished for each disc, see Fig. 1 for further details. A
set of semantically annotated biclusters may help to reveal
and understand the local expression patterns in larval
development. Altogether, the binary imaginal disc dataset
contains the expression of 1207 genes in 72 different loca-
tions with 75.4% positive data entries. The detailed data
statistics can be found in Table 2. Similarly to the Dresden
ovary table, we assigned a set of GO and KEGG terms to
each gene. 114 KEGG terms appeared in the annotation

Table 1 Drosophila ovary table statistic

Complete dataset Train Test

all keepLocations keepGenes bd

#of rows/genes 6,510 5,447 1,063 5,447 1,063

#of columns/locations 100 84 84 16 16
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Fig. 1 Segmentation of an imaginal disc. An example of segmentation of an imaginal disc (left), altogether with its annotation by the Drosophila
ontology terms (right). The disc is split into 20 segments distinguished in colors, the split was found to best capture the gene expression patterns
observed in the individual in situ hybridization images. The annotation stems from [40]

records of 423 distinct genes. Further, each segment of
a particular imaginal disc was manually assigned a set
of DAO terms. The DAO consists of over 8000 terms
with broad coverage of Drosophila anatomy including the
descriptions of imaginal discs and their compartments, we
made use of 148 distinct terms. The summary ontology
term counts are available in Table 3.

For the evaluation purposes, each data set was ran-
domly split into a submatrix containing 70% of the original
matrix elements, and the complement which was used as
the testing set.

Experimental protocol
The bicluster enrichment method was run with the
PANDA+ noise parameters that minimized the total cost
of biclusters in the training set (i.e., the summarizing
criterion that controls both bicluster size and the num-
ber of false positives and negatives). This setting can be
reached in a fully unsupervised way and avoids both too
noisy and too detailed sets of biclusters. For the ovary
dataset, the statistical significance thresholds were set to
0.05 for genes and 0.1 for situations. For the imaginal disc
dataset, the statistical significance thresholds were set to
0.01 for genes and 0.1 for situations. The reason for differ-
ent values between the gene dimension and the situation
dimension is that the number of situations is lower than
the number of genes and the location ontology is less com-
plex than the gene annotation. For this reason, even less
significant location terms prove helpful when generaliz-
ing to unseen data. The method was run repeatedly with

the following sets of match thresholds: θG ∈ {1, 5, 10, 50}
and θS ∈ {1, 5, 10, 50}. The results in ovary dataset sug-
gested that precision decreases slowly with decreasing
match thresholds while recall grows quite rapidly. The
best precision/recall trade-off is thus achieved for the
minimum match threshold values θG = θS = 1. The size
of bicluster description does not directly change with the
match threshold values, their decrease raises the number
of genes and developmental stages matched by bicluster
annotation terms. To the contrary, in imaginal discs we
were able to find biclusters with strongly related location
terms. For this reason, θS = 50 seems to be the best
threshold as it already provides a sufficient recall and its
decrease only leads to decreasing precision.

The rule and tree learning was performed with the
default WEKA parameters for JRip and J48. In order
to work with a reasonable number of features, feature
selection was employed first. All the features (annota-
tion terms) of the train matrix (originating from the M
matrix) that occurred in fewer than approximately 1�
expression entries (the train matrix rows) were removed.
The cut-off threshold was found with the feature fre-
quency histograms. Eventually, we worked with a train
matrix size of 457,548×326 and 60,600×403, respectively.
Besides speeding up the learning process, we avoided the
annotation terms that cannot generalize over a reasonable
number of locations.

Table 4 shows the results including the AUROC
achieved by the two proposed strategies (the rule and
tree learning strategy is represented by the rule learning

Table 2 Imaginal disc dataset statistic

Complete dataset Train Test

all keepLocations keepGenes bd

#of rows/genes 1,207 1,010 197 1,010 197

#of columns/locations 72 60 60 12 12
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Table 3 The number of annotation terms available for our
experimental datasets

GO KEGG DAO DLO

Ovary 8,407 1,605 - 100

IDisc 5,083 423 147 -

method and the tree learning method, they are evaluated
independently) as well as further information regarding
the found biclusters. The table summarizes 10 experi-
mental runs, each for a different random train-test split.
Note that the traditional cross-validation scenario can-
not be applied in the two-dimensional setting. AUROC
evaluates the proposed methods from the point of view
of their generalization ability. Importantly, both the pro-
posed strategies generalize far better than random. In
other words, the semantic descriptions of the biclusters
can be used to predict the expression for combinations of
genes and situations not present in training data.

Discussion
The bicluster enrichment method seems to be the
most reliable predictive method in datasets that can be
described by a coherent biclusters whose size allows
their reliable subsequent annotation. In the ovary dataset,
the mean bicluster size exceeded 30,000 entries and the
biclusters proved to generalize well. If given an unseen
pair of positive (present) and negative (absent) expres-
sion entries, it correctly guesses the positive entry with
more than a 82% chance. On the other hand, the method
employs a large number of bicluster annotation terms to
reach a reasonable recall. In our experiments, the average
number of GO, KEGG and location terms per bicluster
was 59, 2 and 4 respectively (as the KEGG and loca-
tion ontology deal with a smaller number of terms). This
number of terms may make the interpretation hard for
a human expert. At the same time, in more fragmented
and difficult domains such as the imaginal disc dataset,
the mean size of biclusters drops (we observed the mean
bicluster size 3,998 in the imaginal disc dataset) and the
biclusters seem to generalize worse. J48 proved to be the
method that copes well with this increased fragmentation.
The decision tree grows without an immediate decrease

Table 5 Biological homogeneity of the found biclusters in terms
of their enrichment

Dataset Method % enriched

Ovary

Bicluster Enrichment 0.952±0.063

Rules (JRip) 0.981±0.017

Tree (J48) 0.974±0.021

IDiscs

Bicluster Enrichment 0.851±0.102

Rules (JRip) 0.962±0.041

Tree (J48) 0.931±0.043

in its generalization power. JRip outputs the most con-
cise bicluster description, its disadvantages lie in the low
AUROC and by far the slowest runtime.

The experimental results conform to expectations.
The bicluster enrichment method ignores the semantic
description when building the biclusters. Consequently,
they tend to faithfully fit the expression matrix and com-
pactly represent the expression patterns that the matrix
contains. On the other hand, their postponed semantic
annotation may turn out complex and fuzzy. The rule and
tree learning does just the opposite; it directly searches for
concise semantic descriptions that separate positive and
negative expression values in training data. As a result,
the descriptions have a tendency to be short and crisp
with potentially lower recall. Table 5 evaluates biologi-
cal homogeneity of the found biclusters in terms of their
enrichment. The table shows the proportion of generated
biclusters that have at least one enriched annotation term
in each dimension at the level of significance 0.05. As the
rule and tree learning methods directly define biclusters
by the annotation terms, their proportions are naturally
high. Biclusters without an annotation in one of the direc-
tions may originate namely if a bicluster is defined solely
by one type of terms (either gene, or location terms).
The proportions of enriched biclusters reached by bi-
directional enrichment are lower but satisfactory too. We
ascribe it to the PANDA’s ability to cope with noise and
search for large and semantically interpretable biclusters.
The biological homogeneity is comparable with the result

Table 4 Evaluation results of the proposed approaches to semantic biclustering

Dataset Method AUROC # of biclusters # of terms per bicluster

Ovary Bicluster Enrichment 0.823±0.006 11.8±1.5 64.8±3.4

Rules (JRip) 0.636±0.01 102.6±21.5 7.1±0.61

Tree (J48) 0.659±0.01 109.9±5.2 25.4±2.0

IDiscs Bicluster Enrichment 0.608±0.03 16.4±4.7 47.9±2.13

Rules (JRip) 0.565±0.01 25.9±6.2 7.89±0.53

Tree (J48) 0.627±0.05 20.6±11.09 11.01±4.71
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Fig. 2 Semantic biclustering ROC curves for Drosophila ovary table (left) and Imaginal disc dataset (right)

published in [14], where homogeneity in gene dimension
only was measured.

Figure 2 presents the individual ROC curves. For the
bicluster enrichment method, the curve is constructed as
a convex hull for 16 binary classifiers reached for different
θG and θS settings. However, the curve suggests that one
of the classifiers (namely the one for θG = θS = 1) makes
the major contribution to the aggregate AUROC while the
other classifiers approach the trivial convex hull or fall
under it. J48 and JRip can provide both binary and prob-
abilistic outcomes. Here, we work with the probabilistic
outcome, the curve is constructed with different proba-
bility thresholds for assigning an example to the positive
class.

Eventually, we compared the generalization ability inde-
pendently in terms of gene and location annotation terms.
Under this evaluation protocol, the test matrices were split
into three parts, see Fig. 3. The first submatrix denoted as
kG (keepGenes), contains only the rows whose gene iden-
tifiers were already observed in the complementary train
set while its columns correspond to the locations that
were not observed there. Consequently, each biclustering

Fig. 3 Train and test matrices

method has to generalize towards the locations. The sec-
ond submatrix denoted as kL (keepLocations), covers the
locations already observed in the train set and the previ-
ously unobserved genes. Each biclustering method has to
employ gene annotation terms to be able to predict here.
Finally, the third submatrix bd contains the rest of test-
ing entries. Bi-directional generalization has to be applied
here. The results are summarized in Table 6. The main
conclusion is that it is much easier to generalize in terms
of locations than in terms of genes. The locations common
for a bicluster tend to share location annotation terms
observed for other genes with a similar local expression
pattern. On the contrary, the description in terms of genes
is often extensive with more difficult application to exter-
nal genes. The bicluster enrichment method provides the
best generalization for the bd region, where both the genes
and locations were previously unseen.

Runtimes of all the three implemented methods are
summarized in Tables 7 and 8. All tests were performed
with the same configuration: 8-core Intel Xeon E5-2630v3
2.40 GHz. We measured runtimes in 10 experimental runs
with different random train-test splits. The tables dis-
tinguish the individual subtasks that underlie the imple-
mented methods. Table 8 for bi-directional enrichment

Table 6 Generalization in terms of genes and locations. The
table compares the AUROC for three different settings

Dataset Method kG kL bd

Ovary

Bicluster Enrichment 0.929±0.013 0.677±0.03 0.818±0.014

Rules (JRip) 0.692±0.02 0.583±0.01 0.583±0.02

Tree (J48) 0.725±0.002 0.604±0.01 0.604±0.02

IDiscs

Bicluster Enrichment 0.705±0.06 0.560±0.02 0.593±0.03

Rules (JRip) 0.588±0.01 0.546±0.01 0.537±0.02

Tree (J48) 0.630±0.06 0.627±0.05 0.602±0.04

kG tests the generalization across locations, kL the generalization across genes and
bd the generalization in both the dimensions
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Table 7 Runtimes (in seconds) of rule and tree learning methods on DOT and IDiscs datasets. The process of transforming original
matrix onto ARFF file (build ARFF) and the process of building classification models were measured separately

Split

DOT IDiscs

Build ARFF
Build model Test model

Build ARFF
Build model Best model

J48 JRip J48 JRip J48 JRip J48 JRip

1 1,033 1,237 26,810 17.00 23.44 274 59.59 510.84 3.08 3.11

2 1,091 1,503 21,384 19.45 18.67 272 38.03 557.92 2.93 3.19

3 1,042 1,076 19,519 19.09 18.19 287 71.62 363.00 3.16 3.16

4 1,096 1,300 20,054 17.59 19.07 270 64.65 438.87 3.16 3.25

5 1,127 2,010 20,605 18.61 21.22 278 39.47 941.30 3.20 3.64

6 1,121 1,999 24,568 19.38 18.69 260 39.77 550.50 3.11 3.05

7 1,097 1,656 25,279 18.90 18.60 281 47.61 288.14 2.98 3.00

8 1,058 1,087 22,459 26.47 18.48 269 44.00 641.16 3.14 3.26

9 1,023 1,236 14,062 17.81 18.24 288 54.83 201.10 3.25 2.91

10 1,268 1,583 27,299 18.81 21.07 276 42.83 506.14 2.96 3.06

x̄ 1,096 1,469 22,204 19.31 19.57 629.4 50.24 499.9 3.10 3.16

sd(x) ±70.6 ±343 ±3,995 ±2.64 ±1.75 ±32.3 ±11.78 ±204.8 ±0.11 ±0.2

distinguishes the preparatory subtask (data and ontology
upload, train-test split preparation), the model building
(biclustering in PANDA+) and the model testing (anno-
tation of the individual biclusters and their application
to test data). Table 7 splits the runtime between the
ARFF building (process of unrolling the gene expression
matrix into the ARFF file), the model building (learning
of decision trees or rule sets) and the model testing (the
application of the trees or rules to test data). The runtimes
show that biclustering enrichment method is in the order
of magnitude faster than rule and tree learning. Firstly,
it is the result of large semantic description as discussed
during the theoretical complexity analysis. Secondly, it

stems from efficient implementation of PANDA+ in C
while the rest of the code runs in R, Perl and Java. Con-
sequently, only the building of ARFF file in rule and tree
learning takes more time than bi-directional enrichment.
These two reasons also contribute to the fact that biclus-
ter annotation and application to test data is more time
consuming than bicluster construction in bi-directional
enrichment. It is also clear that JRip algorithm is much less
computationally efficient than J48.

Conclusion
We have motivated and defined the task of semantic
biclustering and proposed two strategies to solve the

Table 8 Runtimes (in seconds) of bi-directional enrichment on DOT and IDiscs datasets

Split
DOT IDiscs

Prepare data Build model Test model Prepare data Build model Test model

1 21.80 74.75 278.79 14.75 133.14 70.42

2 20.44 122.27 233.85 13.96 112.36 53.41

3 14.76 100.80 259.17 10.11 101.49 49.12

4 16.05 87.42 223.64 9.36 107.10 47.32

5 14.54 120.49 266.52 9.28 72.78 60.17

6 16.98 110.70 228.80 13.87 124.81 45.06

7 14.79 100.55 231.63 9.51 153.33 82.83

8 14.43 80.02 229.41 14.08 144.09 50.18

9 14.58 94.29 204.34 9.73 176.95 61.83

10 14.02 103.77 230.10 15.60 90.13 45.86

x̄ 16.24 99.51 238.63 12.03 121.62 56.62

sd(x) ±2.73 ±15.88 ±22.46 ±2.61 ±31.26 ±12.30
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task, based on adaptations of current biclustering, enrich-
ment, and rule and tree learning methods. We compared
them in experiments with Drosophila ovary and imagi-
nal disc gene expression data. Our findings indicate that
the bicluster enrichment method achieves the best perfor-
mance in terms of the area under the ROC curve, at the
price of employing a large number of ontology terms to
describe the discovered biclusters.

In future work, the statistical implications of the non-
standard way of splitting the data matrix into the (rect-
angular) training set and the testing set could be inves-
tigated. Furthermore, a method for semantic biclustering
that would combine the complementary advantages of the
proposed approaches could be devised. In principle, the
biclustering enrichment ignores prior knowledge when
searching for biclusters. None of the biclusters have to be
interpretable as a result. The rule and tree-based meth-
ods directly stem from prior knowledge and search for
the most general conjunctive concepts that fit the train-
ing data at the risk of their overfitting. Finally, a biological
interpretation of the results reached in particular domains
could be provided.

We made the project publicly available through GitHub
[38]. The repository contains source code of both the
implemented strategies as well as both the experimental
datasets.
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Jiří Kléma is an associate professor at the Czech Technical University in Prague.
He is the vice-chair of the Department of Computer Science. His main research
interest is data mining and its applications in bioinformatics, medicine, and
industry. He focuses namely on knowledge discovery and learning in domains
with heterogeneous and complex background knowledge.

František Malinka is a PhD student at the Czech Technical University in Prague.
His research interests focus on symbolic machine learning in bioinformatics.
Filip Železný is a full professor at the Czech Technical University in Prague. He
is the head of Intelligent Data Analysis group and the vice-chair of the
Department of Computer Science. He focuses on machine learning and
inductive logic programming.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 16 October 2017

References
1. van Mechelen I, Bock HH, De Boeck P. Two-mode clustering methods: a

structured overview. Stat Methods Med Res. 2004;13(5):363–94.
2. Madeira SC, Oliveira AL. Biclustering Algorithms for Biological Data

Analysis: A Survey. IEEE Trans Comput Biol Bioinforma. 2004;1(1):24–45.
3. Kluger Y, Basri R, Chang JT, Gerstein M. Spectral Biclustering of

Microarray Data: Coclustering Genes and Conditions. Genome Res.
2003;13(4):703–16.

4. Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters
in gene expression data. Bioinformatics. 2002;18(suppl 1):S136–S44.

5. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci USA.
2005;102(43):15545–50.

6. Krejnik M, Klema J. Empirical evidence of the applicability of functional
clustering through gene expression classification. IEEE/ACM Trans
Comput Biol Bioinforma (TCBB). 2012;9(3):788–98.

7. Verbanck M, Lê S, Pagès J. A new unsupervised gene clustering
algorithm based on the integration of biological knowledge into
expression data. BMC Bioinforma. 2013;14(1):1.

8. Zelezny F, Lavrac N. Propositionalization-Based Relational Subgroup
Discovery with RSD. Mach Learn. 2006;62(1-2):33–63.

9. Kuhna A, Ducasseb S, Girbaa T. Semantic clustering: Identifying topics in
source code. Inf Softw Technol. 2007;49(3):230–43.

10. Dresden Ovary Table. [Online; Accessed 15 Feb 2016]. http://tomancak-
srv1.mpi-cbg.de/DOT/main.

11. Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P.
Systematic imaging reveals features and changing localization of mRNAs
in Drosophila development. eLife. 2015;4(e05003):.

12. Soulet A, Kléma J, Crémilleux B. In: Džeroski S, Struyf J, editors. Efficient
Mining Under Rich Constraints Derived from Various Datasets. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2007, pp. 223–39.

13. Nepomuceno JA, Troncoso A, Nepomuceno-Chamorro IA,
Aguilar-Ruiz JS. Integrating biological knowledge based on functional
annotations for biclustering of gene expression data. Comput Methods
Prog Biomed. 2015;119(3):163–80.

14. Nepomuceno JA, Troncoso A, Nepomuceno-Chamorro IA, Aguilar-Ruiz
JS. Biclustering of Gene Expression Data Based on SimUI Semantic
Similarity Measure. In: International Conference on Hybrid Artificial
Intelligence Systems. Cham: Springer; 2016. p. 685–93.

15. Gusenleitner D, Howe EA, Bentink S, Quackenbush J, Culhane AC. iBBiG:
iterative binary bi-clustering of gene sets. Bioinformatics. 2012;28(19):2484–92.

16. Miettinen P, Vreeken J. Model order selection for Boolean matrix
factorization. In: Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. New York: ACM;
2011. p. 51–59.

17. Lucchese C, Orlando S, Perego R. A Unifying Framework for Mining
Approximate Top-Binary Patterns. IEEE Trans Knowl Data Eng. 2014;26(12):
2900–13.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-7
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-7
http://tomancak-srv1.mpi-cbg.de/DOT/main
http://tomancak-srv1.mpi-cbg.de/DOT/main


Kléma et al. BMC Genomics 2018, 18(Suppl 7):752 Page 53 of 71

18. Russell SJ, Norvig P, Davis E. Artificial intelligence, 3rd ed. Upper Saddle
River: Prentice Hall; c2010.

19. Miettinen P, Mielikainen T, Gionis A, Das G, Mannila H. The discrete basis
problem. IEEE Trans Knowl Data Eng. 2008;20(10):1348–62.

20. Xiang Y, Jin R, Fuhry D, Dragan FF. Summarizing transactional databases
with overlapped hyperrectangles. Data Min Knowl Disc. 2011;23(2):
215–51.

21. Zhang ZY, Li T, Ding C, Ren XW, Zhang XS. Binary matrix factorization for
analyzing gene expression data. Data Min Knowl Disc. 2010;20(1):28–52.

22. Žitnik M, Zupan B. Nimfa: A python library for nonnegative matrix
factorization. J Mach Learn Res. 2012;13(1):849–53.

23. Dhillon IS. Co-clustering documents and words using bipartite spectral
graph partitioning. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining. New
York: ACM; 2001. p. 269–74.

24. Chen HC, Zou W, Tien YJ, Chen JJ. Identification of bicluster regions in a
binary matrix and its applications. PLoS ONE. 2013;8(8):e71680.
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