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Abstract

Background: We developed a novel software package, XCAVATOR, for the identification of genomic regions involved
in copy number variants/alterations (CNVs/CNAs) from short and long reads whole-genome sequencing experiments.

Results: By using simulated and real datasets we showed that our tool, based on read count approach, is capable to
predict the boundaries and the absolute number of DNA copies CNVs/CNAs with high resolutions. To demonstrate
the power of our software we applied it to the analysis lllumina and Pacific Bioscencies data and we compared its
performance to other ten state of the art tools.

Conclusion: All the analyses we performed demonstrate that XCAVATOR is capable to detect germline and somatic
CNVs/CNAs outperforming all the other tools we compared. XCAVATOR is freely available at http://sourceforge.net/

projects/xcavator/.
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Background
Copy number variants (CNVs) are operationally defined
as 50 bp or larger DNA segments [1] that can be present
at a variable copy number in comparison with a refer-
ence genome. CNVs have been demonstrated to be one
of the main sources of genomic variation in humans
[2—6] and have been shown to participate to phenotypic
variation and adaptation by disrupting genes and alter-
ing gene dosage. Some CNVs can be apparently benign
polymorphisms present at variable frequency in the popu-
lation or confer susceptibility to various diseases including
cancer, HIV acquisition and progression, cardiovascular,
autoimmune, Alzheimer and Parkinson diseases [7].
Moreover, somatic copy number alterations (SCNAs)
are common in cancer and the analysis of cancer genomes
led to the identification of recurrent sCNAs in spe-
cific cancer types [8], and in some instances, of cancer
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causing-genes which are targets for tailored therapeutic
approaches [9].

The last decade has seen the emergence of several sec-
ond generation sequencing (SGS) platforms [10] that -
by simultaneously generating billions of short DNA
fragments (reads) - have revolutionized our ability to
study genome variation and complexity. The advent of
these technologies, together with the development of
novel computational approaches, have transformed bio-
logical and biomedical research allowing the development
of large-scale re-sequencing projects, such as the 1000
Genomes Project (1000GP) [11] or The Cancer Genome
Atlas (TCGA, www.cancergenome.nih.gov), and opening
a new era for personal genomics [12, 13]. The cost of
SGS decreased so steeply that hundreds or even thousands
of whole genomes can be now sequenced at affordable
price. Whole genome sequencing (WGS) enables identifi-
cation of point mutations and structural variations (SVs)
of any size, ranging from small insertions/deletions to
large CNVs, with unprecedented accuracy in determining
position and orientation.
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From a computational point of view, there are four main
approaches for detecting SVs with SGS data that include
read pair (RP), split read (SR), assembly methods (AS) and
read count/depth of coverage (RC/DOC). RP methods
identify insertions and deletions by comparing the dis-
tance between mapped paired reads to the average insert
size of the genomic library. Although this method is able
to identify deletions < 1 kb with high sensitivity, it does
not allow for the discovery of insertions larger than the
average insert size of the library and of the exact bor-
ders of SVs in complex genomic regions rich in segmental
duplication.

On the other hand, SR algorithms allow to detect dele-
tions and small insertions by directly analyzing the map-
ping information and how high-throughput sequencing
reads are aligned to the reference genome: a continuous
stretch of gaps in the reads indicates a deletion while
in the reference indicates an insertion. SR can detect, at
least in theory, deletions without size limitation, while it
can not detect insertions larger than read length, because
the insertion can not be contained in a single read. The
AS approach consists in a reference free, in silico, recon-
struction of an entire genome consensus sequence from a
collection of reads and its comparison with the reference
genome by using softwares such as MUMmer [14], Mugsy
[15], and Mauve [16] to discover structural differences.
However, owing to the short size of the reads generated by
SGS technologies, assembly algorithms have been demon-
strated to collapse in highly repeated and highly dupli-
cated genomic regions [1], and although showing a lot of
potential, their application as routine methods still needs
further efforts, for both computational and technological
developments.

The most recent approach for the detection of SVs is
RC that is based on the assumption that the sequenc-
ing process is uniform and consequently the number
of reads mapping to a region (the total coverage of a
region) is expected to be proportional to the number of
times the region appears in the DNA sample [17]. Follow-
ing this idea, the absolute number of DNA copy of any
genomic region can be inferred by counting the number
reads/bases aligned to that particular region.

Although all the aforementioned approaches are capa-
ble to detect SVs with high accuracy, it has been
shown that each method detects events with specific
structural characteristics. A large fraction of events
detected with RC approaches overlaps with annotated
segmental duplications, while RP-specific events show a
greater enrichment of simple repeat. RP and SR meth-
ods show the greatest extent of overlap [18]. RC and
SR are the most discordant approaches, with fewer than
20% overlapping SVs detections, with the main differ-
ences primarily found in duplication- and repeat-rich
regions.
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At present, several tools have been introduced in liter-
ature for detecting SVs from WGS data and they include
RC methods (CNV-seq [19], FREEC [20], CNANorm
[21], HMMCopy, BICSeq [22], CNVnator [23], RDXplorer
[24]), RP approaches (BreakDancer [25], PEMer [26], Vari-
ationHunter [27]), SR (Pindel [28], SVseq2 [29]) and also
combined approaches that take advantage of the unique
features of multiple tools (Genome Strip [30], Delly [31]).
FREEC, CNANorm, HMMCopy and BICSeq were prop-
erly devised for the identification of somatic copy number
variants by using pairs of matched tumor/normal samples,
while other methods, such as RDXplorer, BreakDancer,
CNVnator and PEMer are capable to study only germline
CNVs. Moreover, all these tools are able to classify each
genomic region with a three states classification scheme
(deletion, normal, amplification) that is not capable to
discriminate between two- and single-copy deletions and
between three- and multiple-copies amplifications, thus
limiting the use of sequencing data in the prediction of the
exact number of DNA copies.

In order to overcome the limits of currently available
methods, thanks to our experience in CNVs detection
methods [17, 32-34], we developed a novel tool based
on RC approach, XCAVATOR, that is capable to dis-
cover genomic regions involved in CNVs from WGS
data. To this end we first studied the statistical proper-
ties and biases of RC data distribution, we developed a
two-step procedure to mitigate the effect of these source
of biases and we evaluated the capability of normalized
RC to identify and predict the absolute number of DNA
copies of deleted and duplicated genomic regions. As a
further step, by using synthetic simulations, we demon-
strated that our shifting level model (SLM) algorithm is
capable to detect the boundaries of deletions and dupli-
cations from RC genomic profiles outperforming the state
of the art circular binary segmentation (CBS) approach.
Finally we combined our normalization and segmentation
approach with a calling procedure for the classification of
each genomic region into five discrete copy number states
(double deletion, single deletion, normal, duplication and
multiple copy duplication) and we packaged them in the
XCAVATOR tool.

To demonstrate the accuracy of our tool we applied it
to the analysis of three different WGS datasets generated
with second and third generation sequencing (TGS) tech-
nologies (929 WGS from the 1000GP, the TCGA bench-
mark dataset 4 and a genome sequenced with Pacific
Bioscience long reads) and we compared its performance
to other 10 state of the art tools for the identification of
CNVs or sCNAs from WGS data. All the analyses we per-
formed demonstrate that our computational pipeline is
capable to detect germline CN'Vs and sCNAs in data from
SGS and TGS experiments outperforming all the other
tools we compared.
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Results

RC bias distribution and normalization

The RC approach is based on the simple idea that during
the sequencing process each read is randomly and inde-
pendently sequenced from any location of the genome.
Under this assumption the number of reads mapping to
any region of the reference genome follows a Poisson dis-
tribution and is proportional to the number of times the
region appears in the DNA sample: a genomic region that
has been deleted (duplicated) will have less (more) reads
mapping to it than a region not deleted (duplicated). Fol-
lowing this assumption, the copy number of any genomic
region can be estimated by counting the number of reads
(read count) aligned to consecutive and non overlapping
windows of the genome.

In order to evaluate the capability of RC data to pre-
dict the copy number state of genomic regions involved
in deletions and duplications, we studied the statistical
properties and biases of RC distribution by using the
high coverage genomes sequenced by Eberle et al. with
the Illumina HiSeq platform (see “Methods” section for
more details). To better understand the properties of
RC distribution, the original 50x WGS experiments were
downsampled to simulate sequencing coverages from 5x
to 50x (see “Methods” section) and RC were calculated for
four different window sizes (100 bp, 200 bp, 500 bp and
1000 bp).

The results summarized in Fig. 1la show that RC data
are better modeled by means of a negative binomial
distribution than a Poisson distribution (the Kolmogorov-
Smirnov statistic DNB is smaller than DP for all sequenc-
ing coverages). In accordance with the results reported in
[17, 24], we found that RC distribution exhibits an index
of dispersion (ratio between variance and mean) largely
greater than one and this overdispersion can be ascribed
to two main sources that are local GC content and map-
pability, defined as the inverse of the number of times that
a sequence originating from any position in the reference
genome maps to the genome itself (Fig. 1b-c).

The correlation between RC and GC content has been
previously reported in several papers for SGS data and
is mainly due to the amplification step of the sequencing
process. On the other hand, mappability bias is generated
by ambiguous read alignments in genomic regions with
many repetitive elements. By analyzing Illumina, 454 and
SoLID reads we observed that RC is maximum for values
of GC content between 35% and 60% while it decreases at
both extremes [17]. In the same paper, we also found that
RC distribution for highly mappable regions is closer to
Poissonian than genomic regions with low mappability.

In order to mitigate the effect of these biases and make
data comparable within and between samples, RCs need
to be normalized. In [17] we demonstrated that the GC-
content and mappability effects can be minimized by
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using the median normalization approach (see “Methods”
section). The results reported in Fig. 1d-e and Additional
file 1: Figures S1 and S2 demonstrate that median normal-
ization approaches are able to mitigate the effect of the
two sources of bias, equalizing the mean level of each bin
to the same master mean.

As a further step, in order to understand the capabil-
ity of the RC data to discriminate altered and normal
genomic regions of different size, we generated synthetic
deletions, duplications and normal copy regions made
of different number of windows by sampling RCs from
genomic regions previously predicted as deleted, dupli-
cated and normal by McCarroll et al. [35] (see “Methods”
section). To deeply understand the resolution limits of the
RC approach, the simulations were performed for differ-
ent sequencing coverages (from 5x to 50x) and window
sizes (100 bp, 200 bp, 500 bp and 1000 bp). As expected,
the larger the coverage and window size and the higher
the capability to predict deletions and duplications made
of small number of RC windows and the smaller the num-
ber of false positive events (Fig. 1f-h and Additional file 1:
Figure S3). This is due to the fact that higher coverages
and larger windows reduce the signal to noise ratio of RC
distributions.

Finally, to test the effect of window size and sequenc-
ing coverage on the capability of RC data to predict
the absolute number of DNA copies of genomic
regions, we studied the RC distribution of genomic
regions predicted to have copy number from 0 to 6.
In particular, we performed regression analysis for
estimating the relationships between two-copies
normalized RC and the copy number of genomic
regions previously genotyped by McCarroll et al
Also in this case, the larger the coverage and window
size and the higher the correlation between real and pre-
dicted copy number states (Fig. 1i and Additional file 1:
Figure S4). Taken as a whole, these simulation analyses
demonstrate that for high sequencing coverages (> 30x)
the use of small window sizes (100/200 bp) gives high
resolution (high true positive rate (TPR) and accurate
copy number states prediction) with low increase of
false positive rate (FPR), while for low sequencing cov-
erages (< 10x) it is preferable to use larger window size
(500/1000 bp) to obtain good TPR and FPR.

RC signal analysis

Once the RCs have been corrected for local GC content
and mappability and ordered for genomic position, the
data that we obtain are noisy signals in which deletions
or duplications are identified as decrease or increase of
RC across multiple consecutive windows. Although the
correction for GC and mappability substantially reduces
the biases that affect RCs, they are still affected by
noise caused by mapping errors and random fluctuations
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in genome coverage and, as demonstrated in previous
section, strongly dependent on average sequencing cov-
erage and the choice of window size. For these reasons,
the detection of CNVs from RCs need very sophisticated
algorithmic recipes that are capable to identify with high
precision the boundaries (segmentation) of increased or
decreased RC data.

In the last few years we developed a class of algo-
rithms, based on shifting level models (SLM), that allow to
segment genomic profiles generated by high throughput
platforms (see “Methods” section). The first SLM algo-
rithm [32] was developed for analyzing logy-ratio data
from array-CGH, the multivariate version, JointSLM [33]

was written for the joint segmentation of multiple RC
signals, while the heterogeneous version, HSLM [34] was
properly tailored for segmenting spatially sparse data from
whole exome sequencing experiments.

RC signals from WGS experiments are obtained by
dividing the genome into consecutive and non overlap-
ping windows of the same size and for this reason, the
best SLM approach for segmenting WGS RC signals is
the classical homogeneous SLM algorithm [32]. Moreover,
since our SLM method is based on gaussian distribu-
tions, normalized RC data need to be log-transformed to
obtain signals that are as close as possible to a normal
distribution (see Additional file 1: Figure S5).
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To test the ability of the SLM algorithm to detect CN'Vs
of different size from WGS signals as a function of window
size and sequencing coverage, we performed an intensive
simulation based on synthetic chromosomes generated
from the RC data of the platinum genomes described in
the previous section (see “Methods” section).

RC data were calculated for four different window
length (100 bp, 200 bp, 500 bp and 1000 bp), corrected
for GC-content and mappability bias, median normalized
to two-copies and then log,-transformed. Each synthetic
chromosome was made of 1000 logy-RC windows and
contained one deletion or duplication placed at random
position. The copy number states of each synthetic chro-
mosome were simulated by exploiting the results obtained
by McCarroll et al. [35]:

e normal copy regions were simulated by sampling
(1000-N) logz-RC windows from genomic regions
previously predicted as 2-copies by [35]

e deletions (duplications) were simulated by sampling
N logz-RC windows from regions previously
predicted as deleted (duplicated) by [35].

For each window size and sequencing coverage, we
performed simulations with N variable from 1 to 500
(see “Methods” section). As a first step, to assess the
accuracy of SLM in detecting CNV boundaries we cal-
culated the area under the receiver operating charac-
teristic (AUC) curve and we compared its performance
with the CBS algorithm that is the most widely used
and cited algorithm for segmenting genomic profiles from
aCGH and NGS experiments. Moreover, to assess the
ability of our segmentation algorithm in correctly iden-
tifying the exact breakpoint of a CNV region, for each
synthetic chromosome we calculated the distance (in win-
dows) between the predicted and the correct breakpoint
position and we compared its performance with CBS.
The results of Fig. 2a-b and Additional file 1: Figures
S6 and S7 demonstrate that our segmentation approach
outperforms the CBS for all the alteration size we sim-
ulated and is capable to detect breakpoints with higher
precision.

As a further step, in order to study the sensitivity and
specificity of SLM and CBS in detecting altered seg-
ments made of different number of windows, we evaluated
TPR and number of false positive events (# FP) as in
[24, 33]: a detected segment is considered a true positive
(TP) if there is a reciprocal overlap larger than or equal
to 50% between the detected segment and the synthetic
altered region, while it is considered a false positive (FP)
if the reciprocal overlap with a synthetic altered region
is smaller than 50%. Figure 2c-e and Additional file 1:
Figure S8 show that, although SLM detects a slightly
higher fraction of small FP events , it outperforms CBS
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in the detection of both deletions and duplications for all
window sizes.

Genomic segments detected by SLM need to be
classified into discrete copy number states. In [36] we
introduced FastCall, an algorithm based on a mixture
of truncated gaussian distribution that is able to classify
segmented regions according to a five state classification
scheme (2-copies deletion, 1-copy deletion, normal, 1-
copy duplication and multiple-copies amplification). In
order to evaluate the performance and resolution of SLM
and FastCall methods in detecting CN'Vs of different size
we applied them to the aforementioned synthetic chromo-
somes. Figure 2f-h and Additional file 1: Figure S9 show
that for high sequencing coverage (> 30x) our approach is
capable to detect CN'Vs as short as 5 kb (TPR > 0.9), while
for low coverages (< 10x) the resolution decreases to
CNVs as short as 10 kb. However, although the adoption
of small window size increases resolution, this is obtained
at the expense of an increased number of FP events
(Fig. 2i-k and Additional file 1: Figure S10). These results
are in accordance with those obtained in previous section,
and suggest to use small window sizes (100/200 bp)
to increase resolution (in particular for high coverage
data) and larger window size (500/1000 bp) to contain FPR
(in particular for low coverage data).

Remarkably, all the synthetic analysis we performed in
this section show that both CBS and SLM detect 1-copy
regions with higher sensitivity than 3-copy regions and
this result can be mainly ascribed to the fact that the vari-
ance of RC data is lower for deleted states (zero or one
copy) and it proportionally increases with copy number
values [24]: the larger is the variance and the smaller is the
sensitivity of segmentation algorithms in detecting signal

shifts.

Population data analysis

To demonstrate the validity of our computational
approach in population genomic studies, we used XCA-
VATOR to analyze 929 low coverage WGS experiments
(from 4x to 15x) generated by the 1000GP consortium
with the Illumina platform and comprising individuals
from 14 different sub populations (see Materials and
Methods for more details). To evaluate the performance
of our tool, we compared its results with those obtained
by other six state-of-the-art methods used in Phase 1 of
the 1000GP for the detection of bi-allelic deletions and
that include two RP algorithms (Pindel and BreakDancer),
two RC approaches (CNVnator and RDXplorer) and two
combined methods (Delly and GenomeStrip).

Since the great majority of 1000GP WGS experiments
have coverage smaller than 10x, in order to maximize TPR
and minimize FPR, according with the results obtained
in “RC bias distribution and normalization” section, we
decided to run our tool with a window size of 1000 bp.
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By using this window size, XCAVATOR detected CNVs
with a size distribution that range from 1 kb to 10 Mb
(Fig. 3a-b). Conversely, the size distribution of the
SVs detected by five of the 1000GP methods (Delly,
GenomeStrip, CNVnator, BreakDancer and Pindel) are
mainly concentrated between 100 bp and 10 kb, with the
exception of RDXplorer that detect CNVs with length
similar to our tool.

Recently, Sudmant et al, by analyzing the low cov-
erage WGS data of 2,504 unrelated individuals from
1000GP phase 3, identified around 69,000 SVs that
range from 100 bp to 1 Mb and with a significant
fraction below 10 kb. To obtain this high resolution
SVs map, they used a very complex computational
and experimental strategy based on the combina-
tion of nine state-of-the-art tools (BreakDancer, Delly,
VariationHunter, CNVnator, Read-Depth, GenomeStrip,
Pindel, MELT and Dinumt) and on validations with

other techniques that include PacBio, Nanopore and
Complete Genomics sequences and Microarray tech-
nologies. The results obtained with our tool (Fig. 3a)
demonstrate that XCAVATOR is capable to explore a
large spectrum of SV events (from 1 kb to 10 Mb)
with respect to other state of the art methods. More-
over, while XCAVATOR detected a comparable number
of CNV events (from 800 to 2000 with an average
number of 1000) across analyzed sample, the num-
ber of SVs per individual identified by the six 1000GP
approaches is very variable (Fig. 3b), with CNVnator
and Pindel that detected more than 20,000 events per
sample.

To study sensitivity and specificity of all these methods,
we compared these seven sets of calls with the CN'Vs pre-
viously identified by McCarroll et al. [35], the HapMap
[37] and the 1000GP Pilot 1 [18] projects in the same
samples. The CNV regions of HapMap and McCarroll
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datasets were genotyped by using SNP-array technologies,
while the 1000GP pilot CNVs were discovered by using
several computational approaches (based on RD, PEM
and SR) applied on the low-coverage WGS experiments of
179 individuals (see “Methods” section for more details).
The technological and computational nature of the
events present in the three validation datasets allowed us
to deeply examinate the detection power of our approach
and the other six tools in the identification of different
classes of structural variants. To measure the performance
of the seven tools, for each of the three reference sets,
we calculated precision as the ratio between the number
of correctly detected events (the intersection between the
tool calls and the validation set calls) and the total num-
ber of events detected by a tool. The recall was calculated
as the ratio between the number of correctly detected
events and the total number of events in the validation set.

An event was considered correctly detected if we found a
reciprocal overlap larger than or equal to 50% with a CNV
of the validation set. The 50% reciprocal overlap criterion
has been previously used is several papers for evaluat-
ing the performance of algorithms for CN'Vs identification
[23, 27, 29].

Since the capability of detecting regions involved in
CNVs is highly influenced by their size, precision-recall
analysis was performed taking into account all event
size (Fig. 3c-e) and distinguishing three size classes
(Additional file 1: Figure S11): Small (size < 20kb),
Medium (20kb < size < 100kb) and Large (size > 100kbD).
Moreover, since the structural variants reported in the
1000GP Phase 1 for the six state of the art approaches
contain only deletions, we calculated precision and recall
taking into account only heterozygous and homozygous
deletions also for XCAVATOR.
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The results reported in Fig. 3c-e and Additional file 1:
Figure S11 clearly show that our approach outperforms
the other six tools in terms of trade off between pre-
cision and recall both precision and recall for all the
three validation dataset in the three size classes. Globally,
CNVnator and XCAVATOR obtained the best F-measure
in the identification of large and medium events, while
small variants were best identified by XCAVATOR and
GenomeStrip. RDXplorer obtained good results in the
detection of medium size deletions, but completely failed
the identification of large events. GenomeStrip best per-
formed in small deletions identification, while Pindel,
Delly and BreakDancer obtained poor results in all the
three size classes.

Panels c-e of Fig. 4 also show that XCAVATOR and
CNVnator obtained high recall rate in almost all the val-
idation datasets, while GenomeStrip and BreakDancer
have high precision. As expected [24], the three RC
approaches (XCAVATOR, CNVnator and RDXplorer)
best performed in the recognition of array-based events,
while the multiple approach (GenomeStrip) obtained
good results in the 1000GP dataset. Although most of
the 1000GP events were called by the six tools used
in this comparison analysis, our approach is capable
to obtain very good results in the identification of the
deletions of this validation dataset, demonstrating its
uniqueness in the analysis of structural variants from
WGS data.
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As a final step, in order to evaluate the capability of our
tool to infer the absolute number of DNA copies, we stud-
ied the correlation between the copy number predicted
by XCAVATOR and those present in the three valida-
tion datasets (see “Methods” section for more details).
The results reported in Fig. 3f-h and Additional file 1:
Figure S12 show that our tool is capable to correctly infer
the exact number of DNA copies of genomic regions of
any size class.

Somatic copy number variants detection

sCNAs are acquired by cancer genomes during the
carcinogenesis and the duplication of oncogenes or
the deletion of tumor suppressor genes can have
pathogenic effect. In particular, genomic regions
involved in recurrent sCNAs (shared by several can-
cer samples) have high probability to contain cancer
genes and several cancer-related genes have been
identified thanks to sCNAs detection. Moreover, pat-
terns of sSCNAs can divide cancer types into different
subgroups with different prognostics and treatment
responses.

To show the power of our tool to detect sSCNAs we used
XCAVATOR to analyze the TCGA Benchmark 4 dataset
that comprises WGS experiments obtained from two pairs
of cell lines derived from grade 3 breast ductal carcinomas
and the corresponding patient matched normal samples
derived from blood (see “Methods” section). To measure
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the performance of our method we compared its results
with those obtained by other four state of the art tools
(FREEC, CNANorm, HMMCopy and BIC-Seq) using a
250K SNP-array dataset as gold standard (see “Methods”
section). Since the average physical distance between con-
secutive probes in 250K SNP-array is around 1.2 kb, in
order to obtain comparable CNA profiles, XCAVATOR,
FREEC, CNANorm, HMMCopy and BICSeq were run
with default parameter setting using a windows size of
1000 bp.

As a first step, to evaluate the accuracy of the genomic
profiles generated by each method, we compared the
logy-ratio median values obtained from WGS and SNP-
array data of each segmented region detected by XCA-
VATOR and the other four state of the art tools,
considering small (< 20kb) and large (> 20kb) genomic
segments separately. The results reported in Fig. 4a-e and
Additional file 1: Figure S13 show that the computa-
tional pipeline at the base of our tool is capable to better
predict the copy number states of cancer genomes obtain-
ing the best results in terms of correlation coefficients
for both large and small genomic segments followed by
HMMCopy, BICSeq, FREEC and CNANorm. As a further
step, to test the capability of XCAVATOR and the other
four tools to correctly detect alterations of different size,
we calculated precision and recall as in previous section
(with a 50% reciprocal overlap criterion) by using SCNAs
detected with SNP-array as reference set (see “Methods”
section) and we found that our tool (Fig. 4f-h) outper-
forms the other methods in the detection of both large
(> 20kb) and small (< 20kb) CNAs.

Due to the contamination and the subclonal nature of
cancer samples, a given sSCNA can only be found in a frac-
tion of cancer cells generating genomic profiles with weak
shifts that reflect the allelic fraction of somatic events. The
signal shifts generated by sCNAs in RC profiles can be
exploited to estimate tumor contamination and character-
ize the subclonal populations present in a cancer sample.
In order to demonstrate the power of XCAVATOR to
correctly detect weak signals generated by low frequency
sCNA, we exploited the WGS experiments with varying
levels of normal contamination and tumor samples simu-
lated in the TCGA Benchmark 4 dataset (see “Methods”
section). In particular, we combined the copy number
profiles generated by the five methods with the Tumor
Heterogeneity Analysis (THetA) tool [38]. THetA is a
computational approach that infers the most likely collec-
tion of genomes and their proportions starting from copy
number aberrations profiles detected by high-throughput
DNA sequencing data. The results of Fig. 4i show that
THetA obtain the best estimation results by using the
CNA profiles generated with XCAVATOR, demonstrating
the capability of our tool to manage even low frequency
events with high precision.
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Third generation sequencing

As reported in previous sections, the absolute number
of DNA copies of any genomic region is inferred, in
the RC approach, by counting the number of reads that
map to consecutive and non overlapping windows of the
reference genome. Each read is uniquely assigned to a
window when its first mapping position falls into the
window interval. When window size is larger than read
length, RC is a good approximation of the total sequencing
throughput mapping to a region, while, conversely, when
read length is much larger than window size, counting
reads can generate windows with low RCs, even at high
sequencing coverages. In this situation, it is preferable to
measure the total sequencing throughput of a region by
using the average sequencing depth of coverage (DOC) of
each window.

The last few years have seen the emergence of a
new generation of sequencing platforms based on single-
molecule real-time (Pacific Bioscience, PacBio) [39] and
nanopore sequencing (MinION) [40], that interrogate
single molecule of DNA and are capable to produce
sequences in the order of tens of Kb in size. In [41] we
demonstrated that both MinION and PacBio reads can
be used to detect genomic regions involved in CNVs by
means of the DOC approach with an accuracy comparable
to that of Illumina data.

To demonstrate that our computational pipeline is capa-
ble to analyze TGS data, we studied the statistical proper-
ties of the DOC distribution of SMRT Pacific Bioscience
sequences generated by the Genome in a Bottle Con-
sortium (GIAB) for the NA12878 sample (see “Methods”
section for more details).

In order to better understand the statistical properties of
DOC data as a function of sequencing coverage, we down-
sampled the 45x experiment to simulate 5x, 10x, 20x and
30x experiments. As previously reported in [41], PacBio
DOC data are distributed as a negative binomial distri-
bution and classical GC-content and mappability biases
can be mitigated with median normalization approaches
implemented in XCAVATOR (Fig. 5a-e). To study the
capability of PacBio data to predict the exact number of
DNA copies of genomic regions involved in CN Vs, we cal-
culated the average value of normalized DOC signal of
regions previously predicted duplicated or deleted by [35].
The results reported in Fig. 5f and Additional file 1: Figure
S14 demonstrate that normalized DOC data are highly
correlated with the CNV states of any genomic region.

As a further step, to evaluate sensitivity and specificity
of XCAVATOR in the analysis of DOC signals from long
reds data (see Materials and Methods), we calculated TPR
and FP as in “RC signal analysis” section and we compared
the results with those obtained with Illumina SGS data
(Fig. 5g-h and Additional file 1: Figure S15). Although the
genomic profiles of PacBio data generate an high number
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of FP they give a sensitivity similar to Illumina profiles,
demonstrating that our approach is capable to manage
also this new generation of genomic profiles even at low
sequencing coverages.

Implementation
All the computational approaches described in this paper
have been packaged in the XCAVATOR software tool.
XCAVATOR is a collection of perl, bash, R and fortran
codes and its computational architecture has been derived
from the EXCAVATOR tool that we published in 2013
[34] for the detection of CNVs/sCNA from whole-exome
sequencing data. Our tool takes as input WGS data as
BAM files and gives as output plots reporting raw, nor-
malized, segmented and called data and a list of detected
CNVs in tab-delimited and VCF format.

The tool allows to analyze WGS data with three
different experimental designs: “pooling’, “paired” and

“nocontrol”. In “paired” mode each test sample is com-
pared with its matched control and it is the best scheme
to detect SCNA from pairs of tumor and matched nor-
mal samples. The “paired” mode has been used to ana-
lyze the TCGA Benchmark 4 dataset. In “nocontrol”
mode the RCs of each test sample are normalized to
two copies and this scheme is best suited for popu-
lation genomics studies and has been used to analyze
the 929 WGS experiments sequenced by 1000GP con-
sortium. In “pooling” scheme, each test sample is com-
pared to a pool control samples by summing the RC
of each window across all the control samples. XCAVA-
TOR can run on any unix system (desktop and servers)
and allows the user to set the number of processor to
analyze multiple samples in parallel. On a desktop com-
puter with a 2.5 GHz cpu and 8 GB of ram, by using
four cores, it takes four hours to perform the analysis
of ten WGS samples sequenced at 60x. The XCAVATOR
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tool is freely available at https://sourceforge.net/projects/
xcavator/.

Conclusion

In the last few years, the cost of sequencing experiments
has decreased so steeply that it is now possible to ana-
lyze large cohorts of whole genomes at affordable prices.
In this scenario, the availability of software tools that are
capable to handle the data generated with this experi-
mental strategies is of fundamental importance. In this
work, we present a novel software tool based on RC
approach for the detection of CNV or sCNAs from WGS
experiments generated by SGS or TGS platforms. We
studied the statistical properties and biases of RC data as
a function of sequencing coverage, we introduce a two
step normalization procedure to mitigate the effects of
these biases and we demonstrated that normalized RC
data are capable to predict the exact number of DNA
copies of genomic regions involved in CNVs. As a fur-
ther step, to analyze the RC genomic profiles generated
by WGS experiments we tested two algorithms originally
devised for the analysis of array-CGH data, SLM and
FastCall.

By using synthetic simulations we demonstrated that
our segmentation SLM algorithm outperforms the state of
the art CBS method in terms of both sensitivity and speci-
ficity and that the combination of SLM with the FastCall
calling method is capable to detect CNVs as long as 10
kb with low coverage WSG experiments and as long as 1
kb with high coverage WGS data. The two median nor-
malization methods and the SLM and FastCall algorithms
were packaged in a novel software tool that we named
XCAVATOR.

To demonstrate the power of our computational
pipeline in the detection of genomic regions involved in
CNVs or sCNAs, we used it for the analysis of three WGS
datasets generated with two different sequencing tech-
nologies and we compared with other ten state of the art
tools. To show the power of XCAVATOR in population
genetics studies, we used it to analyze 929 low coverage
WGS experiments sequenced by the 1000GP consortium
and we compared the results with known CNVs from
microarray and SGS studies. The results of these analyses
show that our method obtains excellent performance in
the detection of small, medium and large CNVs and that is
capable to predict the exact number of DNA copies with
high accuracy.

As a further step, we tested our tool in cancer genomic
studies by using the TCGA Benchmark 4 dataset and
comparing the results with those obtained with SNP-
array data. Finally, we tested XCAVATOR in the analysis
of WGS data generated by novel long reads sequencing
platforms. The results obtained in this analysis demon-
strated that our software tool is capable to handle this

Page 11 of 15

new generation of sequencing data detecting CNVs with
a resolution comparable to that of SGS data. All the
comparative analysis we performed in this work clearly
demonstrate the versatility of our tool in the analysis
of WGS data and its capability of overcoming the lim-
its and drawbacks of currently available state of the art
tools. Remarkably, while other state of the art methods
allow to classify CNVs into three states (deletions, normal
and duplications), XCAVATOR is capable to discriminate
five copy number states, allowing to distinguish one-copy
from two-copy deletions and one-copy duplications from
multiple-copies amplifications.

Methods

RC bias distribution and normalization

Eberle at al. [42], by using the Illumina HiSeq sys-
tem, generated the WGS data of 17 individuals of the
CEPH pedigree (1463) at 50x sequencing coverage. Raw
sequencing data in fastq format were downloaded from
ENA at http://www.ebi.ac.uk/ena/data/view/PRJEB3381
and aligned to the human reference genome (hgl9) with
BWA mem using default parameter settings. Aligned
reads were processed, sorted and filtered (discarding
MQ < 10) with SAMtools and PCR duplicates were
removed with Picard MarkDuplicates (http://picard.
sourceforge.net). To study the statistical properties of RC
data, the original 50x experiments of NA12877, NA12878,
NA12879 samples were downsampled at 5x, 10x, 15x,
20x, 25x, 30x, 35x, 40x and 45x with samtools view -s
command.

To evaluate if RC data are distributed as a Poisson or
negative binomial distribution we used the Kolmogorov-
Smirnov statistics D that quantifies the distance between
two empirical distribution function and the smaller is D
the closer are the two distributions.

To mitigate the effect of GC content % and mappabil-
ity biases we used a bias removal procedure based on
the median normalization approach that we introduced in
[17] and in [34]. For each GC percentages (0, 1, 2,..,100%)
and each bin of mappability score (0, 0.1, 0.2,..,1) we
calculated the deviation of RC or DOC from the win-
dow average and then corrected each RC according to the
following formula:

— m
RC; =RC; - —, 1)
myx
where RC; are the window mean read counts of the i-th
window, my is the median RC of all the windows that
have the same X value (where X=[GC content, mappabil-
ity score]) as the i-th window, and m is the overall median
of all the windows.
For each window of the reference genome, GC content
% was calculated with the nucBed command of bedtools
[43] while the mappability score was estimated by using
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the gem-mappability module of the Genome Multitool
(GEM) mapper [44]. To evaluate the capability of RC
data to discriminate between normal and altered genomic
regions, we used RCs normalized for GC content % and
mappability and rescaled to copy number 2. Deletions,
duplications and normal copy regions of different size
were simulated by sampling N RC windows (N=1, 2, 3,
4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400 and 500)
from genomic regions previously predicted as deleted,
duplicated and 2 copies by McCarroll et al. [35]. Syn-
thetic events were simulated for different window sizes
(100 bp, 200 bp, 500 bp and 1000 bp). A simulated deletion
was considered correctly predicted (TP) if the RC median
value was < 1.5. A simulated duplication was considered
correctly predicted (TP) if the RC median value was > 2.5.
A simulated normal copy region was considered an FP if
the RC median value was > 2.50r < 1.5

Segmentation and calling algorithms

In 2010 we introduced a powerful segmentation algo-
rithm, based on SLM, for analyzing log, — ratio genomic
profiles from array-CGH. SLMs [32] model noisy sequen-
tial processes with sudden shifts in the mean x =
(%1, . X5, ., xN) as the sum of two independent stochastic
processes:

x; = m; + €, )

mp=1—z_1) -mi_1+zi—1-(n+8). (3)

where m; is the unobserved mean level that follows

a normal distribution with mean u and variance 05

(mi ~N (/L, 03)) and €; is a normally distributed white
noise with variance o2 (ei ~N (0, 03) , Fig. la).

The process m; changes its value independently of m;_;
and is controlled by the process z; : when z;_; = 0, m; is
the same as m;_1 and when z;_; = 1, m; is incremented by
the normal random variable §; (8i ~N (0, aﬁ)). 21,225+
are independent and identically distributed random vari-
ables taking the values 0,1 with probabilities n = Pr(z; = 1),
1—n=Pr(zi =0).

It has been demonstrated that SLM is a special class
of hidden markov models (HMM) and for this reason we
can use classical HMM algorithms, such as Baum and
Welch and Viterbi algorithms to estimate its parameters
[32]. Once the RC or DOC signals have been segmented
by SLM, each segmented region need to be classified into
discrete copy number states. To this end we used the Fast-
Call calling procedure, that is an ultra fast algorithm based
on mixture of five truncated normal distributions and that
is capable to classify each segmented genomic regions into
five predefined copy number states: double loss, loss, neu-
tral, gain and multiple gain. Our calling procedure is also
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able to take into account sample heterogeneity by means
of a cellularity parameter c [34, 36].

Population data analysis

In Phase 1, the 1000GP consortium analyzed the
low-coverage WGS data of 1092 individuals to dis-
cover bi-allelic structural variants larger than 50 bp.
To this end, they used several tools that include
Delly, GenomeStrip, CNVnator, BreakDancer, RDX-
plorer and Pindel. We used XCAVATOR to analyze
all the low-coverage WGS experiments sequenced with
the Illumina platform (929 samples) and we com-
pared its results with the CNV calls obtained by the
1000GP consortium with the six aforementioned meth-
ods. For all the six methods, CNV calls were down-
loaded at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/working/20110531_phasel_sv_callsets/.

Concerning XCAVATOR analysis, RC data were first
corrected for GC-content and mappability bias, median
normalized to two-copies and then log,-transformed. In
order to evaluate the performance of the seven methods,
we calculated precision and recall by using the McCarroll
et al., the HapMap and the 1000GP Pilot 1 datasets as gold
standard. McCarroll et al. [35] developed a hybrid geno-
typing array (Affymetrix SNP 6.0) to interrogate 906,600
SNPs and copy number at 1.8 million genomic locations.
All the experiments were performed in duplicates, using
two different computational approaches for analyzing
array data and using quantitative PCR to validate CN'Vs.
Thanks to this strategy, they created a high resolution
map of genomic regions involved in CNVs for 270 sam-
ples previously genotyped by the HapMap consortium.
The HapMap consortium [37] identified 886 copy num-
ber polymorfisms by studying a set of 1184 individuals
from 11 populations with a combination of two distinct
SNP array platforms (Affimetrix 6.0 and Illumina 1M)
and two algorithms for CNV detection (QuantiSNP27 and
Birdseye5).

In phase Pilot 1, the 1000GP consortium [18] sequenced
(with an average coverage of 3.63) the whole-genome
of 179 samples that include 59 Yoruba individuals from
Nigeria (YRI), 60 individuals of European ancestry from
Utah (CEU), 30 of Han ancestry from Beijing (CHB), and
30 of Japanese ancestry from Tokyo (JPT). By using RP,
SR, RC and AS approaches they detected 22,025 deletions
most of which were mapped to nucleotide resolution. The
McCarroll and HapMap datasets were downloaded from
the Database of Genomic Variants (DGV, http://dgv.tcag.
ca/dgv/app/home), while the 1000GP Pilot 1 dataset were
downloaded from http://www.internationalgenome.org/.

TCGA Benchmark 4

TCGA generated benchmark exercises for the compar-
ative evaluation of of somatic mutation calls on sin-
gle nucleotide variants (SNVs) and structural variants
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(SVs) under a variety of conditions designed to simu-
late the effects of tumor purity (i.e. normal contamina-
tion) by combining various fractions of tumor-derived and
normal-derived cell line DNA.

The TCGA benchmark 4 dataset is made of high cover-
age WGS experiments derived from two pairs of grade 3
breast ductal carcinomas cell lines: HCC1143/HCC1143
BL and HCC1954/HCC1954 BL (where 'BL’ indicates the
sample is the paired normal sample derived from blood).

To simulate varying levels of normal contamination in
tumor samples there are two sets (one for HCC1143 and
one for HCC1954) of six comparisons: normal 5% - Tumor
95%, normal 20% - Tumor 80%, normal 40% - Tumor 60%,
normal 60% - Tumor 40%, normal 80% - Tumor 20%, nor-
mal 5% - Tumor 95%. To evaluate the performance of our
tool in the detection of sSCNAs we used it to analyze the
two pairs of WGS experiments (HCC1143/HCC1143 BL
and HCC1954/HCC1954 BL) and we compared its results
to those obtained by FREEC, CNANorm, HMMCopy and
BICSeq. XCAVATOR was run in “paired” mode, in which
the logy-ratio between the normalized RCs from cancer
and blood samples are segmented by SLM and called with
FastCall.

To estimate the accuracy of the five tools we used
Affymetrix GeneChip Human Mapping 250K data as gold
standard (GEO code GSE34754). The normalized log,-
ratio values between cancer and blood samples were
segmented using the SLM segmentation algorithm fol-
lowed by the FastCall calling procedure to classify all the
segmented genomic regions into defined CN states.

Pacific bioscience data

The Genome in a Bottle (GIAB) Consortium (https://
github.com/genome-in-a-bottle) is creating diverse set of
sequencing data for seven human genomes that include
two Personal Genome Project trios, one of Ashkenazim
Jewish ancestry and one of Asian ancestry and the
NA12878 from the CEPH Utah Reference Collection [45].

The sequencing data come from 11 technologies:
BioNano Genomics, Complete Genomics paired-end
and LFR, Ion Proton exome, Oxford Nanopore, Pacific
Biosciences, SOLiD, 10X Genomics GemCodeTM
WGS, and Illumina paired-end, mate-pair, and synthetic
long reads.

NA12878 sample was sequenced with the Pacific Bio-
sciences Single Molecule Real-Time (SMRT) platform
using the P6-C4 chemistry and obtaining a 45x total
sequencing coverage. The bam files of PacBio reads
mapped to the human reference genome (hgl9) with
BLASR (v1.3.2) were downloaded from ftp://ftp-trace.
ncbi.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_
MtSinai/. To simulate different sequencing coverage
(5%, 10x, 20x, 30x), the original 45x bam file were
downsampled with samtools view -s.
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DOC data were first corrected for GC-content and
mappability bias, median normalized to two-copies and
then log,-transformed.

Additional file

Additional file 1: Supplemental PDF file containing Figures S1-S15.
(PDF 1540 kb)
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