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Abstract

Background: RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments.
Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression
measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This
results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell
RNA amounts where the total number of molecules present is minuscule.
To address this issue, we demonstrated the systematic identification of molecular species using transposable
error-correcting barcodes that are exponentially expanded to tens of billions of unique labels.

Results: We experimentally showed random-mer molecular barcodes suffer from substantial and persistent
errors that are difficult to resolve. To assess our method’s performance, we applied it to the analysis of
known reference RNA standards. By including an inline random-mer molecular barcode, we systematically
characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such
errors are extensive and become more dominant at low input amounts.

Conclusions: We described the first study to use transposable molecular barcodes and its use for studying
random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant
the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

Keywords: Transcriptome, RNA-Seq, Molecular barcoding

Background
RNA-Seq measures gene expression by counting
aligned sequencing reads [1, 2] and can quantitate
bulk and individual cell transcriptomes [3]. To im-
prove counting accuracy, ‘molecular barcodes’ have
been recently introduced to distinguish PCR dupli-
cates from new molecules [4–9]. Molecular barcodes
link sequence reads to a single originating nucleic
acid molecule by attachment to the sequencing
adapter, and enables the tracking of single molecules
through a sequencing assay. One barcode type is

composed of random nucleotides (‘random-mers’); each
unique random-mer tag assists in the identification of sin-
gle nucleic acid molecules [7, 8]. Alternatively, rationally
designed sequences can be used to identify individual mol-
ecules [4, 5, 9].
PCR amplification and sequencing chemistry intro-

duce barcode errors that adversely affect molecular
barcode analysis [8]. For example, an error in a
molecular barcode results in a false positive count of
a transcript molecule. While random-mer barcodes
are currently the most popular type of molecular
barcode, their inherent randomness means they can-
not encode any information about their identity. As
such, sequence errors may be difficult to distinguish
from genuine molecular barcode sequences. This has
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profound consequences when studying transcriptomes
derived from only a small number of total transcript
molecules, such as from sparing amounts of bulk
RNA or from single cells.
Several methods exist to address errors in random-

mer molecular barcodes. One robust random-mer
error correction scheme relies on finding reads that
contain the reverse complement of a barcode;
however, this requirement greatly reduces the yield of
informative data [8, 10]. Random-mers can also be fil-
tered by abundance, where rare molecular barcodes
due to PCR or sequencing errors are excluded [11].
However, this requires a high saturation of the sequencing
library and reduces the amount of useful sequencing
power. More commonly, edit distance or Hamming
distance metrics, are used to group together minimally
distorted molecular barcodes [12–14]. Recently, studies
have modified random-mer molecular barcode designs to
improve nucleotide balance [15]. Software packages that
employ network-based methods for detecting and correct-
ing random-mer based errors have also been recently
demonstrated [16].
Rationally designed molecular barcodes in contrast

are error-resistant, but the synthesis of individual bar-
codes is limited to the order of hundreds of oligonu-
cleotides; this is several orders of magnitude lower
than random-mer barcodes thus making molecular
assignment challenging [4, 5, 9]. Unique alignment
positions are thus used alongside molecular barcodes
to facilitate molecule identification, but the perform-
ance varies greatly between aligners [17]. Overall,
there is a need for robust molecular barcodes that
combines large diversities found in random-mer bar-
codes with error-correcting capabilities of rationally
designed molecular barcodes.
As a solution, we developed a rational molecular

barcoding strategy with giga-scale diversity (i.e. bil-
lions) and a novel error-correction strategy that is
robust against polymerase and sequencing errors.
These exponentially-expanded barcodes (EXBs) are
produced with an enzymatic molecular assembly
method, increasing the diversity of rationally designed
barcodes by six orders of magnitude. A transposase intro-
duces the EXBs into double stranded cDNA molecules
resulting in a paired-end inline barcode structure, and
enables the production of DNA sequencing libraries from
small amounts of nucleic acid molecules [18]. While
barcoded Tn5 transposon cassettes have been used for
tagging and mutagenesis inside bacterial genomes [19], we
believe that EXBs are the first demonstration of in vitro
transposition of molecular barcodes for next-generation
sequencing library preparation.
In this study, we validated this approach by character-

izing “ground truth” transcriptome libraries tagged with

EXBs. To the best of our knowledge, we also provided
the first study that investigates the extent of sequence
errors in random-mer molecular barcodes by utilizing
an inline barcode control. Although molecular counting
is typically used in single-cell RNA-Seq, extensive
technical variability and cellular heterogeneity would
appear as confounding factors when assessing counting
performance. Here, we instead focused on well-
characterized bulk RNA samples that have been exten-
sively examined over decades of consortium studies. We
showed improved molecular counting performance
when starting with picogram amounts of cDNA. We
demonstrated that random-mer molecular barcodes
suffer from nucleotide errors that are difficult to resolve
without improved tagging methods but can be recovered
with EXBs.

Results
Overview of EXB-based molecular barcoding
EXBs use a computationally designed set of highly error-
resistant barcodes followed by enzymatic assembly
process to generate high diversity. A linear code in the
form of a generator matrix produces a small set of
barcodes with high pairwise edit distances (Fig. 1a,
Additional file 1: Figure S1a). Linear codes are a type of
error correction strategy where redundant “bits” corre-
sponding to mathematical linear combinations of the
original signal are transmitted in tandem. For example,
Hamming codes are a type of binary linear code com-
monly used in computing systems to control for errors
in data transmission and storage [20]. DNA barcodes
generated with this strategy are robust; artefactual base
changes can be detected and corrected for the original
barcode. Using this strategy, shorter barcodes are length-
ened with redundancy bases. From all possible 3-mer
combinations, we used an optimal quaternary linear
generator matrix to product a corresponding set of 64
6-mer barcodes; over 90% of pair-wise edit distances are
4 or greater (Methods, Fig. 1b, Additional file 1: Table S1).
Overcoming the limits of rational barcode numbers,

our method generated exponentially large numbers of
unique, rationally-designed barcodes. Pooled barcode-
scaffold oligonucleotides are combinatorially assem-
bled with an enzymatic extension-ligation reaction
(Additional file 1: Figure S2, Methods). EXBs are
comprised of three subunits, each of which compris-
ing one of 64 previously generated 6-mer barcodes. In
total, 194 oligonucleotides corresponding to the three
subunit regions and two common oligonucleotides are
required (Additional file 2: Table S2), which results in
262,144 (643) molecular barcodes for each single-end
read. This led to the generation of 69 billion
(262,1442 = 68,719,476,736) paired-end EXBs. A Tn5
transposase introduces EXBs into double-stranded
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cDNA molecules [21, 22]; EXBs are read as inline
DNA elements before the cDNA sequence (Fig. 1c).
The total length of the inline EXB is 71 bp, which al-
lows for 80 bp bases of insert from a 2x151bp paired-
end assay. Gel electrophoresis showed that the EXB
adapter is estimated to be at least ~60-70% pure
(Additional file 1: Figure S1b), although downstream
transposase loading and subsequent library amplifica-
tion by PCR effectively selected for full length adapter
structures.

Technical performance of EXBs on cDNA standards
We generated EXB-based libraries with 10 ng, 1 ng, and
100 pg of brain and human cDNA from the Microarray
Quality Control project (MAQC) [23] (Additional file 1:
Table S3-S5). This protocol is adapted from an estab-
lished protocol for the ‘tagmentation’ of double-stranded
cDNA [22], and is the first demonstration of the inclu-
sion of molecular barcodes in the ‘tagmentation’ reac-
tion. To filter out EXB chimeras due to self-
tagmentation, we used size selection on a Pippin Prep
instrument to remove PCR products less than 500 bp
long (Additional file 1: Figure S1c). We counted the EXB
sequences on each read end and observed 99% of all
single-end EXBs are within a logarithm of the median
abundance, corresponding to coefficient of variations of
0.66 and 0.89 for read 1 and read 2 respectively (Fig. 1d).

The analysis of EXB-tagged sequence reads used an
alignment-free approach for counting molecules. A linear
check decoder matrix identified the closest matching bar-
code sequence along the adapter region (Methods, Add-
itional file 1: Figure S3a). A check matrix is derived from the
generator matrix, and detects the presence of “bits” that are
inconsistent with the mathematical formula used in the
generation of codes. In the context of this study, the erro-
neous barcode positions for each read are marked, then
matched to the closest possible barcode with only the er-
roneous positions changed (Additional file 1: Figure S3b).
To assess EXB decoding accuracy, we examined the per-

base mismatch rate between experimentally measured
EXBs sequences and the designed barcode. We observed
an average mismatch rate of ~0.1% across all sequenced
bases in the EXB adapter region (Fig. 2a). Among the pos-
sible 262,144 possible single-end EXBs, 100% were present
in sequence data across all experiments. The experimentally
observed EXB GC content also closely matched the theor-
etical distribution for all 6-mer barcode subunit combina-
tions (Fig. 2b), which suggested that the specific GC
content of each EXB subunit did not significantly skew
their representation.

Molecular counting with EXBs
We counted molecules using an alignment-free process.
We grouped together all reads into EXB read groups,

Fig. 1 Overview of EXB-based molecular barcoding. a Structure of the EXB adapter. The adapter consists of a paired-end Y-adapter structure followed
by a 6 bp random nucleotide sequence and three rationally designed 6 bp barcode subunits separated by distinct scaffold sequences. The 6 bp
barcode subunits are random combinations of 64 possible sequences as output from the linear generator matrix as shown. The Tn5 transposase
recognition sequence at the end of the adapter allows for the generation of sequencing libraries via in vitro Tn5 transposition. b Edit (substitution)
distance metrics for all possible 6 bp barcode pairs. Over 93% of pairwise comparisons between barcodes have an edit distance greater than 4. c
Schematic of in vitro transposition of EXBs. Tn5 transposase loaded with EXB adapters are incubated with double stranded cDNA. A gap-fill repair
reaction then generates paired-end EXB sequencing libraries. After PCR, EXBs are read as inline barcodes, after which the insert sequence is read. d
Single-end abundance of EXBs. Single-ended EXB identities were measured by pooling one million reads of each library
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where all members possess the same decoded paired-
end EXB sequence (Fig. 3a). This approach relied on
single-molecule tagging of sequenced fragments. We an-
ticipated that the high diversity of unique EXBs would
obviate the need for alignment-based positional indexing
as required in molecular counting with random-mers
[4–7, 9]. Assuming each cDNA fragment molecule
would be labeled by a unique tag, this implied that all
reads in an EXB read group should be ideally identical.
To test this hypothesis, we measured the sequence
similarity of the cDNA inserts per EXB read group, and
observed that the median proportion of matching base
pairs was 98.75 and 93.75% for read 1 and read 2
respectively. When considering sequencing error rates,
this indicated that EXBs uniquely label single molecules.
We next considered EXBs based on the paired-end

barcode structure. We observed ~105 million unique
paired-end EXBs across sequencing data derived from
10 ng input cDNA (Additional file 1: Table S3). The me-
dian EXB read group size was 1.0, and the barcode over-
lap rate was 0.397% across these samples. Decreasing
cDNA amounts led to a corresponding increase in the
number of reads in each EXB read group (Fig. 3b), with
a mean of 76.4, 47.9, and 48.6% of EXB read groups
being represented by only one read in the 10 ng, 1 ng,
and 100 pg inputs respectively. To assess whether some
paired-end EXBs are preferentially amplified during
PCR, a Pearson correlation analysis of observed paired-
end EXBs showed coefficients of less than 0.1 with 10 ng
input cDNA (Additional file 1: Fig. S4). This result indi-
cated a lack of biased amplification of specific EXB
sequences.

Gene expression analysis with EXBs
We assessed the performance of EXB-based transcriptome
quantification. Expression counts of technical replicates at
10 ng cDNA had a Spearman correlation coefficient of over
0.99 across all genes (Additional file 1: Figure S5), meaning
that EXB tagging is highly reproducible across replicates.
Smaller input amounts yielded lower Spearman correlation
coefficients (Additional file 1: Figure S6, Figure S7).
We next used the MAQC RT-qPCR dataset as a gene

expression ground truth set to compare the gene expres-
sion quantification performance of EXBs, as qPCR is an
orthogonal quantification platform and utilizes the
fewest number of intermediate processing steps. We ob-
served a Pearson correlation coefficient of ~0.90 when
comparing qPCR fold-changes versus EXB-based expres-
sion at 10 ng (Fig. 3c, Additional file 3:Table S6,
Additional file 4: Table S7). The correlation coefficient
was 0.86 at 1 ng cDNA, and 0.72 at 100 pg input cDNA.
As an independent validation with a custom qPCR gene
panel (Methods), we observed an increased Pearson cor-
relation of 0.85 for EXB-based expression on 100 pg of
cDNA. This result implied that EXB-based tagging of
cDNA produces gene expression results that are gener-
ally concordant with established datasets.

Characterization of random molecular barcode errors
with EXBs
We hypothesized that errors generated within random-mer
molecular barcodes are difficult to detect. Furthermore, the
extent of these errors has not yet been well characterized in
other studies. While comparisons between assay technolo-
gies can be made, a more straightforward approach would

Fig. 2 Experimental characterization of EXBs. a Error rate between single-end EXB sequence and best decoder matrix match. One million reads
from each bulk sample type and input amount are pooled. The mean mismatch rate between the experimentally-derived EXB sequence and the
best decoder matrix match is plotted as a percentage of all sequenced EXB bases against the base position along the EXB structure. b GC bias of
single-end EXBs. One million reads from each library were pooled. The mean GC content for both read 1 and 2 of the barcode containing region
(18 bp total) is calculated for each observed single-end EXB. An ideal GC-content distribution corresponding to a uniform distribution of all
single-end EXBs is shown as dots. t-test results: p = 1 (ideal versus read 1), and p = 1 (ideal versus read 2), indicating non-significant differences
between distributions
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be to include both molecular barcoding methods in
tandem such that any sequenced fragment includes
both types of tags.
Here, we compared molecular counting results be-

tween EXBs and random-mer barcodes. The EXB
structure included a 6 bp random sequence at the
beginning of each read that enables direct comparison
(Fig. 1a). As we above determined that an EXB read
group likely consists of PCR duplicates of a single
molecule, the random-mer barcode sequence should
ideally be identical as well. To perform this analysis,
we binned together reads by their corresponding EXB
tag and counted the number of distinct random-mer
sequences found in each group (Fig. 4a, Methods).
Mismatching random-mer sequences in each EXB
read group would correspond to new distinct reads.
We then introduced new reads corresponding to
every distinct random-mer species in an EXB read
group which is then fed into identical downstream
processing pipelines (Fig. 4b). The resulting gene
expression counts was then compared to those proc-
essed solely with EXB tagging.
We binned the overall probability of finding non-

unique random-mers by the number of reads found
in an EXB read group to investigate the effects of

PCR duplication. We observed that this probability
increases with the level of EXB duplication (Fig. 4c).
The probability of observing more than one unique
random-mer sequence quickly saturated at a moderate
duplication rate, which implied that this phenomenon
may be widespread amongst molecular duplicates. At
an EXB read group size of 42, there is on average a
50% probability of more than one distinct sequence
detected in the random-mer barcode region. While
we noted that the mismatch rate appears to be re-
markably high, it is empirically calculated and specific
to the context of this study; however, this effect was
previously difficult to observe in other methods as
they did not employ an orthogonal inline molecular
barcode.
We hypothesized that errors in the random-mer

molecular barcode sequence was due to the increasing
chances of a polymerase-induced error occurring as
the number of duplicate molecules increases. This
can happen during library amplification and the se-
quencing assay. By using a simple probabilistic model
based on Poisson statistics (Methods), we found that
depending on the amount of amplification, PCR and
sequencing errors both contribute substantially to the
observed mismatches (Fig. 5a,b). When considering

Fig. 3 Transcriptome quantification with EXBs. a EXB processing workflow. Reads with the same paired-end barcode subunit sequences are group
together into read groups. These read groups are then collapsed into consensus reads for downstream alignment and quantification. b EXB dupli-
cation rate. The number of aligning reads per paired-end EXB group is measured as a proportion of total reads. c Fold-change levels compared
between previously determined MAQC RT-qPCR data and EXB-based expression levels for 10 ng input cDNA

Lau and Ji BMC Genomics  (2017) 18:745 Page 5 of 13



only sequencing errors, fitting the model against ob-
served data (Fig. 4c) yielded an error rate of 0.136%
(p < 0.001), which is in the range of Illumina sequen-
cing error rates. The impact of this finding means
that highly duplicated molecules are the most likely
to contain barcode errors, and that this cannot be
simply mitigated by using longer barcodes.
Experimentally, we observed that the number of

distinct random-mer sequences found in an EXB read
group also generally increased as a function of its du-
plication rate (Fig. 5c), which indicates an increasing
problem of counting artefactual species. Moreover,
the edit distance between random-mer molecular bar-
codes in an EXB read group also rapidly increased as
a function of the duplication rate (Fig. 5d), supporting
the modeling results. At EXB duplication rates where
there was a 50% probability of non-unique random-
mer sequences being detected, we observed a wide
distribution in both the number of non-unique
random-mer sequences as well as the maximum edit
distance between them. For example, at an EXB du-
plication rate of 42, an edit distance filtering thresh-
old of one would be insufficient to account for all of
the possible errors in the associated random-mer bar-
code sequences. When taking these factors together,
this leads to substantial difficulties in computational
filtering of barcode errors.

Assessing the impact of barcode errors on transcriptome
analysis
We examined the impact of random-mer-based counting
versus EXB-based counting. As genes were quantified in
TPM units, which normalizes for the total number of
molecular species, expression levels of one gene can be
increased or decreased based on increased counts of an-
other gene. Nonetheless, as errors in molecular counting
will lead to false discovery of differentially expressed
genes, we focused on genes that were discordant be-
tween methods.
We initially performed a Spearman correlation ana-

lysis on each library quantified with random-mer-
based counting against previously determined qPCR-
based expression levels. At first, we observed that the
correlation coefficients were virtually identical to the
EXB-based counting. However, we noted that the
presence of outliers that did not substantially affect
the correlation analysis due to the large number of
genes counted. We then ranked the overall between-
method ratio (ie. random-mer versus EXB-based
counting) in gene expression levels for each replicate
and each sample type. As a result, a substantial num-
ber of genes have inflated expression levels when not
accounting for errors in the random-mer barcode se-
quence (Fig. 6a–c). In the 100 pg input cDNA sam-
ples, approximately ~10% of genes with non-zero

Fig. 4 Random-mer molecular barcode characterization. a Processing workflow. The combined 12 bp random-mer sequences for each read (6 bp
each for read 1 and read 2) in each EXB group are extracted. These represent new artefactual reads that are fed into downstream bioinformatic
pipelines. b Comparison of EXB and random-mer workflows. After creating new artefactual reads, the two sets of reads are fed through identical
pipelines for analysis. c Rate of mismatches found in random-mer sequences for each EXB group. Only EXB groups containing more than one
read are considered. For each group of 12 bp random-mer sequences, the presence of any mismatches between them are considered and
plotted as a function of the number of reads inside the EXB read group. The 12 bp random-mer sequence groups are also divided into 6 bp
sequence groups corresponding to reads 1 and 2. One million reads from each library are pooled and grouped by paired-end EXB sequence
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expression had a fold-change increase of greater than
1.5, indicating a general transcriptome-wide increase
in artefactual counts when using random-mer-based
molecular counting. In general, artefactual counts
were not biased towards particular transcript
abundances for 100 pg input cDNA (Additional file 1:
Figure S8), with an average Pearson correlation coeffi-
cient of −0.007 ± 0.001 (s.e.m., p > 0.05) between the
inflated random-mer-to-EXB counts ratio and the
actual EXB expression. We noted that the effect is
substantially less pronounced at 10 ng of input
cDNA, supporting that this phenomenon is driven by
artefactual molecular counting when starting with low
input amounts.
We hypothesized that increased counts from un-

detected errors in random-mer-based counting would
lead to inflated variance across replicates. Although less
than 100 genes in the 10 ng cDNA input assays showed
large discrepancies between counting methods, approxi-
mately 2000 genes in the 100 pg input (Fig. 6d)
corresponding to over 10% of expressed genes across
both sample types displayed higher levels of technical
variance when counting using random-mers versus

EXBs. This unpredictable confounding factor would sub-
sequently impede downstream gene expression analysis.
To assess the impact on differential gene expression
analysis, we used the quantified TPM expression values
under both EXB and random-mer pipelines to search for
differentially expressed genes (Methods, Fig. 6e). Even
with a generally good Spearman correlation with
external RNA-Seq datasets (Fig. 6e), we observed a gen-
erally increased number of differentially expressed genes
when counting random-mer molecular barcodes. The
effect was reduced at 10 ng input cDNA, but rises to al-
most 10% at 100 pg of input. Interestingly, when using
an edit distance of 1 for random-mer barcode error cor-
rection, the number of differentially expressed genes was
less than the EXB result. We observed 6440, 4760, and
2376 differentially expressed genes for 10 ng, 1 ng, and
100 pg input cDNA respectively, which supports previ-
ous studies indicating that barcode correction algorithms
simply involving edit distance may not recapitulate the
complex phenomena of molecular barcode errors [16].
We further spot-checked several genes to visualize the
aggregate effects of false gene expression counts and in-
creased technical variance (Additional file 1: Figure S9).

Fig. 5 Modeling of random-mer barcode errors. Barcode error probabilities in the random-mer barcode sequence were modeled as being com-
prised of either (a) errors arising during PCR, or (b) errors arising during the sequencing assay. Error probabilities are calculated per initial library
molecule. A simple model based on Poisson statistics was used; details are described in Methods. c Number of distinct random-mer sequences
found in each EXB read group. The number of distinct random-mer sequences is measured as a function of the EXB read group size. Dots indicate
the mean and the shaded area indicates the 5 and 95% quantiles. One million reads from each library are pooled and grouped by paired-end
EXB sequence. d Edit distance between distinct random-mer sequences found in each EXB read group. The edit distance between distinct
random-mer sequences is measured as the maximum edit distance between all random-mer sequences in a single EXB read group. Dots indicate
the mean and the shaded area indicates the 5 and 95% quantiles
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This led to the conclusion that as the input quantity de-
creases, the errors derived from incorrect counting of
random-mer molecular barcodes became increasingly
pronounced.

Discussion
In this proof-of-concept study, we described the novel
use of error correcting sequences to generate exponen-
tially large amounts of molecular barcodes. Because the
diversity of EXBs scale with length of barcode subunit
and to the number of repeats, the method could be
extended to even greater diversities as sequencing read
lengths and capacities develop over time. For example,
expanding the number of subunits from six to eight re-
sults in approximately peta-scale diversity. The assembly
protocol for combining barcode subunits is flexible, and
can be modified for any study and sequencing platform
of interest.
The scaffold structure required to synthesize the EXB

adapter necessitates the use of longer reads and adds to
the total sequencing reagent cost. In this study, we utilized
a 2 × 151 sequencing scheme, which is more expensive
than conventional 2 × 75 or even 1 × 75 sequencing assays
used in many transcriptome studies. Random-mer bar-
codes often require over-sequencing such that many

molecules are represented more than once. This substan-
tially reduced the number of reads that are informative for
molecular counting. EXBs, by virtue of error correction,
can be counted as a bona fide molecule even when repre-
sented as a singleton. Therefore, EXBs would require less
total reads and thus would reduce the sequencing cost.
The exact balance between between read length and
sequencing depth would be dependent on the specific
details of any assay; however, we note that sequencing
lengths continue to increase among next-generation
sequencing technologies.
The results from this proof-of-concept study showed

several clear paths for future methodological improve-
ments. The applicability of EXBs relies on its adaptation
towards other experimental assays. Although random-mer
barcodes, commonly in the form of an ssDNA poly-T-
tailed primer for reverse transcription, are simple and
inexpensive to synthesize, the inherent presence of
difficult-to-correct errors make them risky to employ and
motivates the adoption of alternative barcoding methods.
Overall, we envision that numerous improvements of
EXB-style molecular barcodes can be explored in future
studies, whereby EXBs can be incorporated into an
ssDNA-based adapter or the scaffold lengths can be
reduced to lower sequencing costs.

Fig. 6 EXB-based and random-mer-based transcriptome analysis. The ratio between random-mer and EXB-based gene expression level is shown
for a 10 ng, b 1 ng, and c 100 pg of input cDNA. The x-axis corresponds to the rank of the expression ratio, and is sorted independently for each
sample. To emphasize the number of inflated genes, the x-axis is shown in log scale. d Technical variation between counting methods. The ratio
between random-mer and EXB-based quantification coefficient of variation across technical replicates is shown for 100 pg input. For each sample
type, the coefficient of variation ratios is sorted by decreasing order. e Impact of counting methods on differential expression analysis. The
number of differentially expressed genes detected with an FDR threshold of 0.05 is shown for both random-mer and EXB-based
quantification methods
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Because EXBs can reliably label single molecules and
contain an inline random nucleotide sequence, we were
able to for the first time investigate errors that arise in
random-mer molecular barcodes. We surprisingly
observed a high number of EXB read groups that con-
tained more than one distinct random-mer sequence.
This is nonetheless consistent with our basic probabilis-
tic models of errors arising in both PCR and sequencing.
While strategies such as random-mer sequence similar-
ity grouping or abundance filtering can be used to
address this phenomenon, the fundamentally random
nature of random-mer molecular barcodes ultimately
leads to uncertainty in any correction scheme.
We note again that the observed error rates in this study

are context-specific and will change from study-to-study
due to technical differences in library preparation and se-
quence data quality. For example, the type of polymerase
used and the specific amplification method leads to differ-
ent error profiles. Furthermore, the structural properties of
a transposable adapter may display substantially different
tagging and sequencing performance versus a single-
stranded molecular barcoded oligonucleotide that is
commonly used for tagging cDNA. Nonetheless, random-
mer barcode errors are difficult to detect without an inline
rational barcoding strategy, and are near impossible to
correct when edit distances between error-containing
molecular barcodes are substantial. Experimentally, we ob-
served that the impact of errors in random-mer molecular
barcodes becomes considerably worse as the input amount
decreases. This would have profound impacts in single-cell
RNA-Seq studies, and will be a topic of further study.
We anticipate that EXBs would also be useful for se-

quencing platforms with substantially higher substitution/
indel sequencing error rates such as on Pacific Biosciences
or Oxford Nanopore sequencers. Correction of indels is
not possible with decoder matrix-based error correction,
but other methods such as Levenshtein distance metrics
can be used to match to the closest barcode. Furthermore,
the total throughput of these sequencers still needs to be
increased in order for molecular counting to become feas-
ible. As the capacity of these sequencing technologies im-
prove, EXBs would in the future be an attractive option
for molecular barcoding.
We have described the use of EXBs to robustly identify

and count single molecules for transcriptome studies. In
contrast to random-mer molecular barcoding, EXBs
robust to PCR and sequencing errors that can generate
false positive counts. In comparison to other molecular
barcoding methods (Additional file 1: Table S8), EXBs are
the first type of molecular barcode that enables high diver-
sity molecular tagging with rational barcodes via
transposase-based insertion. Overall, we anticipate that
EXBs will be particularly useful for the quantification of
single molecules that are found in miniscule abundances.

Conclusion
In this study, we have demonstrated the first use of
transposable molecular barcodes for transcriptome
quantification. By applying the method to cDNA stan-
dards, we characterized the method’s performance.
Furthermore, we also demonstrated the first system-
atic detection and characterization of errors that may
occur in random-mer molecular barcodes. We discov-
ered that such errors are extensive, which may have
large impacts for studies utilizing miniscule amounts
of transcriptome material.

Methods
Molecular barcode design
EXBs are comprised of combinatorially expanded set of
6 bp barcodes along scaffolds. To generate each barcode,
we used an optimal linear generator matrix in quater-
nary space where the bases A, C, G and T correspond to
the integers 0, 1, 2 and 3. We performed matrix multi-
plication between all possible 3-mer sequences (N = 64).
The output is a set of 64 6 bp barcode sequences where
the last 3 bp of each barcode corresponds to a linear
combination of the first 3 bp as specified by the gener-
ator matrix (Additional file 1: Table S1). The specific
generator matrix is known as the Hexacode [24] and has
been characterized as an optimal generator matrix where
the edit (substitution) distance between possible bar-
codes is maximized. The edit distance between these
barcodes can be determined by pairwise comparison
(Fig. 1b, Additional file 1: Figure S1).

Molecular barcode synthesis and assembly
To combinatorially expand these barcodes, we used a
modified extension-ligation approach [25]. Subunits con-
taining a single 6 bp barcode are annealed along four com-
mon scaffold regions A, B, C and the Illumina sequencing
adapter (Fig. 1a, Additional file 1: Figure S2a). We
synthesized 192 oligonucleotides via column synthesis
(Sigma-Aldrich) corresponding to each of the possible 6 bp
barcodes flanked by the Illumina adapter and A; A and B;
and B and C (Additional file 2: Table S2). Barcodes flanked
by the Illumina adapter and A also contain a random-mer
sequence of 6 bp. We also synthesized two additional
oligonucleotides corresponding to the reverse complement
of the Tn5 recognition sequence and the reverse comple-
ment of the Illumina multiplexed Read 2 sequence (Add-
itional file 2: Table S2). All oligonucleotides were
normalized to 100 μM in 10 mM Tris-HCl, pH 8.0 buffer.
Afterward, oligonucleotides of the same subunit group (ie.
those with common flanking scaffolds) were pooled
together.
To perform the extension-ligation reaction, we com-

bined 9 μl of each oligonucleotide pool corresponding to
the three-subunit groups with 9 μl of each common
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oligonucleotide into an 8-strip PCR tube. We then heat-
denatured this mixture by incubation in a thermocycler
for 5 min at 95C and quickly placing the tube on ice. To
this mixture we further added 50 μl of 2× Quick Ligase
Buffer (New England Biolabs) and 5 μl of Optikinase
(Affymetrix). After pipet mixing we incubated this tube
at 37C overnight in a thermocycler.
After incubation, we heat denatured the oligo-

nucleotide mixture at 95C for 5 min and then held
forever at 50C with a ramp of 1C/min. During the
ramping process, we combined in a separate tube
20 μl of 5× assembly reaction buffer [25], 40 μl
Betaine (Sigma-Aldrich), 2.5 μl Phusion polymerase
(New England Biolabs), 4 μl high concentration Ampligase
(Epicentre), 12.5 μl 40% PEG 8000 (Sigma-Aldrich), 1 μl
thermostable inorganic pyrophosphatase (New England
Biolabs) and 20 μl molecular grade water. Once the ther-
mocycler reached 50C, we pipetted the enzyme mixture
into the oligonucleotide mixture while leaving the PCR
strip tube at 50C. After gentle pipet mixing, we split the
final mixture into two by pipetting 100 μl into the adjacent
well on the strip tube, sealed the strip tube with a new lid,
closed the thermocycler, and incubated for another 48 h at
50C (Additional file 1: Figure S2a).
The contents of the two wells were pipetted into a

1.7 ml microcentrifuge tube. 600 μl of Ampure XP beads
(Beckman Coulter) were added to the mixture and
mixed well. Immediately afterward we also added 200 μl
of molecular grade isopropanol (Sigma-Aldrich). This
mixture was incubated for 15 min before placing on a
microcentrifuge tube-sized magnetic stand (Promega)
for 10 min. The collected beads were rinsed twice with
90% ethanol, air-dried for 10 min, and then resuspended
in 100 μl 10 mM Tris-HCl, pH 8.0 buffer. The assem-
bled adapter is then quantified by absorbance with a
Nanodrop instrument.

Transposase expression and purification
The plasmid psfTn5-c006 was a kind gift from Sten
Linnarsson’s group. The plasmid is a modification of an
existing protocol to express Tn5 transposase [26], and
encodes an N-terminal His-tagged hyperactive Tn5
transposase under T7-controlled expression inside a
pNIC-Bsa4 vector. This plasmid was transformed into
ArcticExpress competent cells (Agilent) with standard
protocols and plated under kanamycin selection. A sin-
gle colony was picked and inoculated into 50 ml of
auto-inducing Magic Medium (Life Technologies) with
50 μg/ml kanamycin selection. The culture was
incubated at room temperature for 24 h in a 180 rpm
shaking platform at room temperature, and then placed
in a cold room for 4 h. The culture was poured into two
50 ml conical tubes, centrifuged at 4000 g, and stored as
pellets at -80C.

To lyse the pellets, 10 ml of lysis buffer (6 ml B-
PER Complete, 2.5 ml BioStab enzyme stabilizer
(Sigma-Aldrich), 1 ml 5 M NaCl, 2 μl 500 mM
EDTA, 1 ml glycerol, 50 μl 2 M imidazole, and 50 μl
Protease Inhibitor Cocktail (Promega)) was added.
The pellet was gently resuspended with a 10 ml sero-
logical pipet and the mixture was rotated for an hour
at 4C. The crude lysate was centrifuged at 4000 g for
20 min, and then was passed through a prepacked
and equilibrated HisPur Ni-NTA column at 700 g.
The column was washed three times with wash buffer
(100 mM Tris-HCl 8.5, 250 mM NaCl, 0.1 mM EDTA,
10% glycerol, 25 mM imidazole) before elution with 3 ml
eluting buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl,
0.1 mM EDTA, 1X BioStab enzyme stabilizer, 500 mM
imidazole, 25% v/v glycerol). The enzyme is quantified by
a Nanodrop instrument, after which Triton X100
(Promega) and DTT (Sigma-Alrich) is added to a final
concentration of 0.1% and 1 mM respectively. The enzyme
is normalized to 4 μg/ml and stored at -20C.
Purified transposases are loaded with the molecular

barcode adapter by combining 1.5 μl of transposase en-
zyme, 25 pmol of adapter, and bringing up to 20 μl with
a solution of 50% glycerol and 1X BioStab enzyme
stabilizer. The mixture is then incubated at room
temperature for 1 hour at room temperature before pla-
cing on ice or storage at -20C.

Sample library preparation and sequencing
Purified brain and human reference RNA (Life Technologies
and Agilent) used for the MAQC/SEQC projects [23] were
used for this study. Full-length double-stranded cDNA was
generated from 5 μg of starting material using the Maxima
H- double-stranded cDNA synthesis kit (Life Technologies)
under standard protocols. This stock was diluted down to
10 ng/μl, 1 ng/μl, and 100 pg/μl immediately before library
generation.
We performed transposition of full-length DNA by

combining on ice 1 μl of diluted cDNA stock with 1 μl
transposase in 1× TD buffer (10 mM TAPS, pH 8.5,
5 mM MgCl2, 5% v/v DMF) and incubating at 55C for
15 min before returning to ice. 1 μl of 10% sodium do-
decyl sulfate (SDS) detergent (Sigma-Aldrich) was added,
and the mixture was incubated for a further 15 min at
55C. The mixture was then purified with 1.8X Ampure
XP beads under standard manufacturer protocols.
To fill gaps generated by Tn5 transposase, the mag-

netic beads are resuspended in 20 μl of 1X Ampligase
buffer (Epicentre), 0.25 mM dNTP, 0.75 U T4 DNA
Polymerase (New England Biolabs), 2.5 U E. coli DNA
Ligase (New England Biolabs), and 5 μg/μl T4 Gene 32
Protein (New England Biolabs). T4 gene product 32 in-
hibits single-stranded exonuclease activity of T4 DNA
polymerase but allows for polymerase activity to proceed
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[27]. The mixture is then incubated at 25C for 1 hour
followed by 65C for 20 min. To this mixture, 30 μl of
molecular grade water and 50 μl of SPRI solution
(13% PEG, 2.5 M NaCl, 0.05% Tween-20) is added,
followed by bead magnetization, aspiration, and wash-
ing with 80% ethanol. The beads are then resus-
pended with PCR amplification mix (1X KAPA HiFi
HotStart ReadyMix (Kapa Biosystems), 1X BioStab
PCR Optimizer (Sigma-Aldrich), 500 nM universal
PCR primer, 500 nM sample index primer, 0.5 U
Thermostable Inorganic Pyrophosphatase (New
England Biolabs)) and amplified with the following
protocol: 45 s at 98C, C cycles of 15 s at 98C, 30 s
at 65C, 90 s at 72C, and 5 min at 72C. C corre-
sponds to 18 cycles, 21 cycles, and 24 cycles for
10 ng, 1 ng, and 100 pg input cDNA respectively.
The amplified libraries are purified with 1.8X Ampure
XP beads with standard protocols. 1 μg of PCR
product is loaded into one lane of a 1.5% Pippin Prep
(Sage Sciences) cartridge and size selected to 500-1000 bp
on the Pippin Prep instrument (Sage Sciences). The size-
selected fragments are purified again with 0.65X Ampure
XP beads with standard protocols, and are then quantified
by qPCR (Kapa Biosystems) using Illumina P5 and P7
primers and 600 bp insert size. Libraries are then pooled
and normalized to 2 nM before sequencing on a
HiSeq 2500 under Rapid Run v2 mode with ~15%
PhiX. To prevent mispriming by sequencing primers
complementary to the Tn5 recognition sequence used by
Nextera-based libraries, we loaded the TruSeq R1 (5′-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)
and R2 oligonucleotides (5′- GTGACTGGAGTTCA
GACGTGTGCTCTTCCGATCT and 5′- CGGTCTCGG
CATTCCTGCTGAACCGCTCTTCCGATCT) as custom
sequencing primers.

Barcode processing
After generation of FASTQ files with bcl2fastq
(Illumina), barcodes are processed using a custom multi-
threaded Python (v2.7) scripts (https://github.com/bill-
ytcl/EXB). The six 6 bp segments corresponding to
barcode subunits from both reads (three 6 bp segments
from read 1, and three 6 bp segments from read 2) are
individually extracted and decoded using a decoder
matrix (Additional file 1: Figure S3). These six-number
tuples correspond to the indexes of a hash table in
which all reads are grouped.
Perfectly matching 6 bp subunits, when multiplied into

the decoder matrix, result in a vector of zeros. Mismatches
in the 6 bp sequence are detected as a non-zero vector in
the decoder matrix output, known as a syndrome.
Syndromes correspond to a set of possible error patterns,
that when reversed allow for the measured error-containing
barcode to match those that are generated by the generator

matrix (Additional file 1: Figure S3). We utilized the
principle of parsimony and selected for error patterns of
the lowest edit distance; for example, edit distance patterns
requiring only one substitution are selected over those re-
quiring two. We set aside reads containing multiple error
patterns with the same edit distance; at the end of decoding
analysis we checked from the final set of decoded barcodes
for the presence of a barcode matching every possible result
of error correction. Given the observation of low EXB over-
lap between distinct DNA fragments, we searched for
matches between an error-prone EXB and one from the
observed pool. If none of the possible EXBs were previously
observed in the sample, then the error-prone barcode was
identified as a unique molecule to be used for counting.
For each group of reads, a consensus is formed based

on majority counts of the base call. If a majority cannot
be distinguished (eg. two bases of equal abundance), the
final consensus base is output as N. consensus reads are
output as interleaved paired-end FASTA files with no
quality scores, and then trimmed using cutadapt [28]
using the parameter -b CTGTCTCTTATACACATCT.
To compare our molecular barcoding strategy to those

utilizing random barcodes, we included a 6 bp random
nucleotide sequence immediately after the end of the
read 1 and read 2 (12 bp in total) sequencing primer
sites (Fig. 1a). After grouping of our molecular barcodes,
we extracted only those which had a duplication rate of
greater than 1. From these reads we measured the rate
at which any of the 12 bp sequences were discordant
amongst reads belonging to a single EXB read group.

RNA-Seq alignment and quantification of MAQC
transcriptomes
Consensus sequencing reads are aligned using STAR
[29] (v2.4.2) by de-interleaving the output FASTA file
from above. We used the GRCh37.75 ENSEMBL release
with the following options:
–outSAMtype BAM SortedByCoordinate –quantMode

TranscriptomeSAM GeneCounts –outSAMunmapped
Within –outFilterType BySJout –outSAMattributes NH
HI AS NM MD –outFilterMultimapNmax 20 –alignSJo
verhangMin 8 –alignSJDBoverhangMin 1 –sjdbScore 1
–outFilterMismatchNmax 999 –alignIntronMin 20
–alignIntronMax 1000000 –alignMatesGapMax 1000000
–outFilterMatchNminOverLread 0 –outFilterScoreMinO
verLread 0. This increases the sensitivity of the align-
ment while still providing excellent concordance to
MAQC expression standards. The parameters are also
are similar to the parameters used by ENCODE and
built into RSEM (https://github.com/deweylab/RSEM/
blob/master/rsem-calculate-expression) [30].
The resultant aligned reads are then quantified with

RSEM [30, 31] (v1.2.22) using the following options:
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–bam –estimate-rspd –no-bam-output –seed 12345
–paired-end –no-qualities.
We use the gene level transcript abundance estimates

for downstream analyses.
We used the tool EBSeq [32] to detect differentially

expressed genes. It is built into the RSEM (v1.2.22) as an
integrated pipeline. We used a stringency false discovery
rate (FDR) cutoff of 0.05.

Comparison of EXB-based and random-mer processing
To compare between the two methods, the 12 bp random-
mer sequence associated with each read in each EXB-read
group (6 bp for each read) is tabulated to determine the
number of unique random-mer sequences. Similar to
EXB-based processing, a consensus FASTA sequence iden-
tical to the EXB-based output is generated, but with an
extra read for every distinct random-mer sequence ob-
served. This corresponds to an inflation in the total number
of molecules detected. This output is then fed into identical
processing workflows to determine alignment, gene expres-
sion levels, and differential expression.
To compare differential expression with an external

RNA-Seq dataset, we downloaded the public dataset corre-
sponding to TruSeq stranded mRNA libraries performed
on the MAQC samples and sequenced on the HiSeq 2500
as provided on Illumina Basespace. Identical alignment and
expression quantification workflows were performed.

Modeling of errors in random-mer sequences
We used a simple model to investigate the rate at which
errors arise in random-mer molecular barcodes. We
hypothesize that there are two major sources of error:
during PCR, and during the sequencing assay.
Errors during the PCR process can be modeled by a

simple Poisson model. Given a PCR error rate e, barcode
length l, and number of duplicated molecules m, the
average error rate for a single starting template molecule
would be λ = elm. For sufficiently small λ, we can use a
Poisson distribution and determine the probability of no
error occurring for a single starting template molecule
as p0 = exp(−λ) = exp(−elm). Additionally, we have to
consider that errors during PCR have multiple chances
to occur at each amplification cycle; therefore, the
probability of no errors over the entire PCR process for
a single starting template molecule is approximately
p0 cð Þ ¼ Qc

1 exp −el�2cð Þ ¼ exp −el�2 −1þ 2cð Þð Þ where
m = 2c. The probability of a single starting template
molecule receiving an error during the PCR process
is thus perror(c) = 1 − p0(c).
Errors that occur during the sequencing process can

also be similarly modeled. As above, given a sequencing
error rate e, barcode length l, and number of duplicated
molecules m, the average error rate for a single starting

template molecule would be λ = elm. For sufficiently
small λ, we can use a Poisson distribution and determine
the probability of no error occurring for a single starting
template molecule as p0 = exp(−λ) = exp(−elm). Here, we
do not need to consider the cumulative effects of each
PCR cycle, and thus the random-mer error probability
of a single starting template molecule that has been du-
plicated to m copies is perror(c) = 1 − exp(elm).

Custom gene panel qPCR
We loaded 100 pg of cDNA from either the brain or hu-
man MAQC standard into each well of a 384-well SAB
cell lineage identification panel (Bio-Rad). Each well, in
addition to loaded cDNA, contained 1X SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad) in a total of
10ul. Each sample type was run in quadruplicate to oc-
cupy an entire 384-well plate. We performed qPCR on
an Applied Biosystems 7900HT qPCR system under the
following conditions: 95C for 2 min, then 30 cycles of
95C for 5 s and 60C for 30 s. Ct values were automatic-
ally generated with standard software settings. We fil-
tered for reaction dropout by requiring all replicates for
a target gene to have a non-zero and finite Ct. We then
averaged across replicates for each gene and generated
fold-changes by dividing one sample type by the other.
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