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Abstract

Background: Sclerotinia Stem Rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is ubiquitous in
cooler climates where soybean crops are grown. Breeding for resistance to SSR remains challenging in crops like
soybean, where no single gene provides strong resistance, but instead, multiple genes work together to provide
partial resistance. In this study, a genome-wide association study (GWAS) was performed to dissect the complex
genetic architecture of soybean quantitative resistance to SSR and to provide effective molecular markers that could
be used in breeding programs. A collection of 420 soybean genotypes were selected based on either reports of
resistance, or from one of three different breeding programs in Brazil, two commercial, one public. Plant genotype
sensitivity to SSR was evaluated by the cut stem inoculation method, and lesion lengths were measured at 4 days
post inoculation.

Results: Genotyping-by-sequencing was conducted to genotype the 420 soybean lines. The TASSEL 5 GBSv2
pipeline was used to call SNPs under optimized parameters, and with the extra step of trimming adapter
sequences. After filtering missing data, heterozygosity, and minor allele frequency, a total of 11,811 SNPs and 275
soybean genotypes were obtained for association analyses. Using a threshold of FDR-adjusted p-values <0.1, the
Compressed Mixed Linear Model (CMLM) with Genome Association and Prediction Integrated Tool (GAPIT), and the
Fixed and Random Model Circulating Probability Unification (FarmCPU) methods, both approaches identified SNPs
with significant association to disease response on chromosomes 1, 11, and 18. The CMLM also found significance
on chromosome 19, whereas FarmCPU also identified significance on chromosomes 4, 9, and 16.

Conclusions: These similar and yet different results show that the computational methods used can impact SNP
associations in soybean, a plant with a high degree of linkage disequilibrium, and in SSR resistance, a trait that has
a complex genetic basis. A total of 125 genes were located within linkage disequilibrium of the three loci shared
between the two models. Their annotations and gene expressions in previous studies of soybean infected with S.
sclerotiorum were examined to narrow down the candidates.
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Background

Many advances are being made in soybean (Glycine max
(L.) Merrill) breeding that have been reflected by continual
increased production worldwide [1]. For example, in the
US there has been a steady approximate 1.9% average in-
crease in yield (kg/ha) per year from 1960 to 2015 (http://
usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.
do?documentID=1290/). However, although yields are in-
creasing, yields are still vulnerable to a variety of environ-
mental restrictions, such as the constraint caused by the
constant attack by pests and pathogens. The pathogen
Sclerotinia sclerotiorum (Lib.) de Bary is one such yield-
limiting pathogen, causing the disease Sclerotinia Stem
Rot (SSR), and causing considerable damage in regions
that have had several weeks of cool wet weather during
the flowering period [2].

Resistance to S. sclerotiorum is not complete in most di-
cotyledon crops such as soybean. Instead, resistance in soy-
bean to SSR is only partial, with multiple alleles providing a
small amount of enhanced defense. Due to this lack of
adequate resistance in commercial varieties, and the heavy
influence of weather conditions, losses due to SSR can be
zero one year, but then account for nearly half of all
disease-associated losses the next, as seen in Iowa 2003 and
2004 [3]. Even though complete resistance to SSR is cur-
rently not available for soybean, there are clear differences
in the susceptibility of tested genotypes [4-11]. And al-
though not ideal, partial resistance to SSR does increase the
yield potential, as slowing of the disease progression can be
successful enough to allow plants to recover with minimal
damage, especially if the weather changes to be more favor-
able to the plant, and less favorable to the pathogen.

Molecular studies looking into genes that are differen-
tially expressed during SSR development in soybean
identified thousands of genes responding within the first
24 h [12, 13]. These results, in addition to those of
physiological and biochemical studies of S. sclerotiorum
infection [14-16], show that S. sclerotiorum — plant mo-
lecular interactions are very complex, involving numer-
ous pathogen-released proteins and oxalic acid for the
plant to cope with [17]. The complexity of SSR partial
resistance has led many researchers to use QTL analyses
to identify markers associated with SSR resistance. Some
early QTL mapping studies used biparental populations
with limited genetic variation, or with populations of
limited size [9, 18-21]. But due to limits of mapping
studies involving only a few genotypes, and due to the
subtle effect of these QTLs, it has been a challenge to
find markers consistent enough to be satisfactorily ap-
plied to marker-assisted selection on a commercial scale.

In recent years the use of next generation sequencing
technologies has led to a drastic reduction in the cost of
genotyping, facilitating the identification of vast numbers
of SNPs from large numbers of genotypes that can then
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be used for more accurate association mapping [22, 23].
The technique of genotype-by-sequencing (GBS) is one
such approach to rapidly and cheaply produce a large
number of single base polymorphisms (SNPs) based on
the comparison of restriction fragment sequences that are
held in common within the population [24, 25]. In this
sense, studies of genomic association, proposed by Meu-
wissen et al. [26], are analyzed based on the evaluation of
a large number of markers widely distributed throughout
the genome. This type of association mapping involves the
search for genotype-phenotype correlations in unrelated
individuals and is often faster and more profitable than
traditional biparental mapping [27]. Genotypic and pheno-
typic data are collected from a population in which kin-
ship is not strongly controlled by the researcher, and
correlations between genetic markers and phenotypes are
sought within this population. In this context, the Gen-
ome Wide Association Studies (GWAS) may be a promis-
ing strategy for the identification of QTLs for genes of
interest. Several GWAS reports have been published re-
cently on soybean response to S. sclerotiorum, highlighting
the common view that GWAS is a valuable approach to
identify key genes and regions providing some enhanced
resistance to this importance disease. Using GWAS to
look at soybean response to SSR, Iquira et al. [28] found
SNPs of high significance on chromosomes 1, 3, 8, and 20
with the strongest being on 1; Bastein et al. [29] found sig-
nificance on chromosomes 1, 15, 19, and 20 with the
strongest being on 15. By measuring chemical changes to
pigments that might be associated with SSR resistance
[30], Zhao et al. [31] found significance on chromosomes
6, 10, and 13 with the strongest being on 13. Of these two
pathogen-based studies conducted by the same lab
[28, 29], only two of the six QTL were identified in
both studies, highlighting that conducting only one
GWAS is not 100% effective in identifying all the variable
nature of the SSR disease interaction, and that there is a
need for additional analyses to identify more SNPs that
are significantly associated with enhanced SSR resistance.

In this manuscript we present the results of another
GWAS of soybean response to SSR, with a focus on geno-
types from three different SSR resistance breeding pro-
grams in Brazil, and with the use of a Brazilian isolate for
inoculations. Previously published SSR GWAS studies
were conducted on genotypes largely used in breeding
programs in Canada, US, and China, and with pathogen
isolates collected in the Northern hemisphere [28, 29, 31].
Additionally, we compared significance using the GWAS
analysis methods CMLM [32] and FarmCPU [33], as these
programs handle testing markers, population structure,
and kinship differently. The results provide soybean
breeders with additional SNPs that they can have high
confidence are associated with enhanced resistance to SSR
and that could be used in marker-assisted selection.
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Methods

Plant material, inoculation, and phenotypic scoring
Soybean [Glycine max (L.) Merrill] plants were grown in
500 ml plastic cups filled with Bioflora® (Bioflora LTDA-
ME, Prata, MG, Brazil) organic plant growth substrate
based on pine, other natural fibers, minerals and nutri-
ent enriched, in a greenhouse at approximately 25-30 °C
under natural light cycle in Uberlandia Brazil from De-
cember 2015 through February 2016 (approximately
12 h days). At least nine seeds were planted for each
genotype. Soybean genotypes originated from the breed-
ing programs of FT Sementes (Ponta Grossa, PR, Brazil),
Tropical Melhuramente & Genetica (TMG, Cambé, PR,
Brazil), or the Federal Universidade de Uberlandia (MG,
Brazil), as well as various plant introductions (PIs) of the
Embrapa Soja collection chosen from the literature. Im-
mature shoot tips were removed at the V2 stage, and
within 2—4 days, the plants were taken to the lab and
cut just below the second trifoliate node. The freshly cut
stems were inoculated with 2—3 day old S. sclerotinorum
cultures of isolate Jatai [11] grown on potato dextrose
agar plates for cut stem inoculation, a method shown to
have low variability [34], with mycelial plugs picked up
with a 200 pl pipette tip, similar to the straw test [35].
Plants were placed in an 18-20 °C, low light, growth
chamber immediately after inoculation. After 4 days in-
cubation, plants were phenotyped by measuring the
length of necrotic lesion in centimeters.

DNA extraction, GBS library construction and sequencing

Total DNA was extracted using a CTAB based method
as previously described [36]. DNA integrity was verified
on an agarose gel. Samples that were determined to be
intact and of high quality, were pipetted into 96 well
plates. Aliquots were removed to new plates to quantify
with picogreen (Molecular Probes, Eugene Oregon,
USA) on a Synergy HT (BioTek, Winooski, Vermont,
USA) microplate reader. Based on both DNA amounts
and plant samples, 352 samples were chosen, together
with 32 controls (10 water blanks and 22 random re-
peats) for GBS library construction. GBS library con-
struction was based on the method described in Poland
et al. (2012) [25]. In summary, after adjusting DNA con-
centrations to be approximately 50 ng/pl, five microliters
(250 ng) were pipetted into a new set of 96-well plates
containing 2.5 pl 0.1 uM specific DNA barcoded HindIII
adaptors. Pretesting of restriction enzyme pairs Pstl-
HinP1I, Pstl-Mspl, Pstl-Msel, HindIII-HinP1I, HindIII-
Mspl, and HindIII-Msel indicated that the HindIII-Msel
pair gave the best digestion results of having an even
smear, with a broad peak near 300 nt (Additional file 1:
Figure S1). Samples were therefore restriction digested
using 1 U HindIII and 1 U Msel in a buffer mix at 37 °C
two hours, followed by 80 °C for 20 min (all enzymes
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and buffers used for the GBS library construction were
purchased from New England Biolabs, Ipswich, Massa-
chusetts, USA). Following digestion, a common Msel
adaptor was added, in addition to 40 U T4 Ligase and
1 mM ATP and 2x Cutsmart buffer were added, and the
samples incubated at 25 °C for 2 h, followed by a 65 °C
incubation for 20 m. After ligation, 8 pl of each well
from each row were collected in a strip of 8 PCR tubes.
Then 25 pl from each of the tubes of a strip were trans-
ferred to a 1.5 ml microfuge tube, totaling 200 pl that
originated from one 96-well plate. Then 50 pl of samples
were cleaned using Agencourt AMPure XP beads (Beck-
man Coulter Life Sciences, Indianapolis Indiana, USA),
dried, and suspended in 15 pl a resuspension buffer.
PCR enrichment was performed using master mix con-
taining Illumina primers and NEB Phusion Master Mix.
The following PCR settings were used for the enrich-
ment reaction: 98 °C 30s, 15 cycles (98 °C 10s, 68 °C
30s, 72 °C 30s), 72 °C 5 m, 4 °C forever. After PCR, sam-
ples were purified using the Agencourt AMPure XP
beads, and then pooled such that all the wells of a single
96-plate were now represented in a single microcentri-
fuge tube, and run on a Bioanalyzer 2100 (Agilent, Santa
Clara, CA) using a DNA7500 chip to verify correct size,
general success of amplification, and estimation of DNA
amounts. Concentrations were adjusted to have approxi-
mately 10 nM DNA in 10 mM TRIS-HCI, 0.05% Tween-
20 and run on a single lane of an Illumina HiSeq4000
using a HiSeq SBS sequencing kit version 4 at the Roy J.
Carver Biotechnology Center on the University of Illi-
nois (Urbana, IL) campus. The Fastq sequence files were
demultiplexed with bcl2fastq v2.17.1.14 conversion soft-
ware (Illumina).

Processing the data from the Illlumina sequence readings
and selection of SNPs

The TASSEL 5 GBS v2 SNP-calling pipeline [37], to-
gether with the soybean reference genome assembly,
Gmax_Wm82.v2 [38], were used for SNP identification.
Prior to running TASSEL, the adapter sequences were
removed from reads using the software Cutadapt [39].
To run the TASSEL pipeline, the default settings were
used, except for the following parameters: minimum
base quality score (mnQS 20), minimum mapping qual-
ity score (minMAPQ 20), and kmer length (kmerLength
80). The alignment step was performed using BWA-
MEM [40] with default settings. SNPs with more than
50% missing data were removed, as were genotypes with
more than 75% missing SNPs, prior to the imputation
step, which was accomplished using Beagle 4.1 [41] with
the parameter window = 1000, overlap = 200, and
ne = 1000. After imputation, SNPs or genotypes with
higher than 10% heterozygosity were removed from the
dataset.
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Genome-wide association analysis

For the association analysis of SNPs to phenotypes, the
compressed mixed linear model (CMLM) was selected and
performed within the GAPIT package of R, which assigned
similar individuals into 259 groups to estimate the kinship
matrix [30, 39]. The reduced kinship matrix and three prin-
cipal components (PCs) generated from principal compo-
nent analysis (PCA) (Additional file 2: Figure S2) were
included in the model to control population structure and
individual relatedness. A batch effect was also included in
the model as a covariate to control for possible variation
between different phenotyping dates. The SNPs with a
minor allele frequency (MAF) higher than 0.01 were used
to estimate the population structure and the kinship. Only
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SNPs with a MAF higher than 0.1 were used for associ-
ation tests. The cutoff of significant association was a False
Discovery Rate (FDR) adjusted p-value less than 0.1 using
the Benjamini and Hochberg procedure to control for
multiple testing [40].

Another computational method named FarmCPU [31]
was also implemented to do an association analysis,
which separated the mixed linear model into a fixed ef-
fect model and a random effect model to reduce false
negatives that might result from confounding population
structure, kinship, and SNPs. The same batch effect and
three PCs generated from GAPIT were included as co-
variates. Likewise, only SNPs with a minor allele fre-
quency higher than 0.1 were used for association tests,
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and the cutoff for significant association was a FDR-
adjusted p-value less than 0.1.

In addition to the two main models described above,
three other models were also performed to test marker-trait
associations. They were a naive model without any control
for population structure, a general linear model (GLM) with
three PCs, and a mixed linear model (MLM) with three
PCs and a kinship matrix without any compression.

Linkage disequilibrium (LD) analysis

A function built into the TASSEL 5.0 program was used
to determine squared allele-frequency correlations (r*) be-
tween pairs of SNPs with MAF greater than 0.1. The local
LD was viewed, and LD plots were built, using Haploview
4.2 [42]. The LD blocks were defined with the Confidence
Interval methods and the default parameters [43]. The LD
decay plot was built based on the r* values and distances
between each pair of SNPs. To calculate the physical dis-
tance of LD decay (r? < 0.2), a nonlinear model was used
to estimate the expected values of E(r?) [44, 45].

Results

Phenotyping

Plants that germinated and grew healthily were used for
DNA extraction and phenotyping. Most (108 of the 352
total utilized) genotypes were represented by nine plants,
86 samples had eight plants, 52 had seven, 48 had six, 26
had five, 20 had four, and only eight genotypes relied on
just three plants. Following stem inoculation with S. sclero-
tiorum, the size distribution of necrotic lesions after 4 days
incubation ranged from 0.67 to 8.43 cm, and all genotypes
developed a lesion, even the most resistant genotypes, indi-
cating that an infection had successfully occurred in all the
plants assayed. Samples were removed from analysis if: the
standard deviation of their phenotypic values was greater
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than 2.0 cm (19 genotypes), the range of their major and
minor phenotypic values was greater than 5.0 cm (five ge-
notypes), viral infected or miss-labeled (four genotypes).
The remaining 324 genotypes had an approximate normal
distribution of phenotypes (Additional file 3: Figure S3)
and an average lesion length of 4.65 cm (Additional file 4:
Table S1), and were used in for SNP analysis. The geno-
types that were the most resistant, including genotypes like
EMGOPA 316 [11], P1194639 [8, 9], and NK S19-90 which
have been reported to have partial resistance, are shown in
Additional file 5: Table S2. The most susceptible, including
genotypes like BRSGO Ipameri, BRS RAISSA RES 1/3
NCS, and MSOY 7908 RR which have previously been
shown to be very susceptible [10], are listed in
Additional file 6: Table S3.

Genotyping
The HindIIl and Msel restriction enzyme double digestions
produced a wide peak of fragments in the range of 300—
500 bp with little strong banding (Additional file 1: Figure
S1F), and therefore this enzyme pair was used for construction
of the GBS libraries. The HindIIl adaptors were barcoded,
allowing all the libraries to be pooled and sequenced on a sin-
gle lane of an Illumina flow cell, yielding 373 million high-
quality, single-stranded readings of 100 nucleotides in length.
With the TASSEL 5 GBS v2 SNP-calling pipeline,
68,242 SNPs were identified. After filtering for less than
50% missing datas 14,637 SNPs remained. After imput-
ation and removing high heterozygosity, 12,411 SNPs
remained. Among them, 11,811 SNPs met the MAF
threshold at 0.01, and 6478 SNPs at MAF >0.1. The
11,811 SNPs spread across all chromosomes (Fig. 1),
with chromosome 18 containing the most SNPs (1179)
and chromosome 5 the fewest (276) SNPs. Filtering of
genotypes that had missing data at 75% or more of the
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SNP sites, or that showed more than 10% heterozygous
SNPs, reduced the samples to 275 genotypes for use in
association of SNPs to phenotypes. The phenotypes of
these 275 genotypes were fairly normally distributed
(Fig. 2) and the most resistant (Table 1) and most sus-
ceptible (Table 2) are listed.

Association analysis using SNP data from the TASSEL 5
GBS v2 SNP-calling pipeline

A principal component (PC) analysis was performed
with the 11,811 SNPs with a MAF >0.01 and the 275
soybean genotypes to estimate the population structure.
Based on the resulting scree plot (Additional file 2:
Figure S2), the first three PCs were included in the asso-
ciation analysis. PC1 explained 10.3% of the genetic vari-
ation, PC2 explained 7.8%, and PC3 explained 5.5%. The
PC analysis scatter plot (Fig. 3) showed that the first and
second PCs were composed largely of three subpopula-
tions of genotypes originiaing from different sources.
The subpopulation “LAGER-UFU” was more obviously
separated while the subpopulations ‘FT-Sementes’ and
‘TMG’ were more close to each other. Soybean geno-
types in the ‘miscellaneous’ group were collected from
different sources, including many that were selected
based on the literature.

Four different models were implemented and com-
pared in the marker-trait association tests. Q-Q plots
were generated to visualize the effectiveness of control-
ling population structure and familial relatedness (Fig. 4).
The expected distribution of p-values is a uniform [0,1]
distribution under the assumption that no associations
exist between SNP markers and the trait. The naive
model and the GLM model resulted in 38.7% and 23.1%
of SNPs with p-values <0.05, respectively and it can be
seen from the Q-Q plot that both models produced a
large proportion of p-values that deviated from the ex-
pected distribution, which indicated an excess of false
positives. Compared to the naive model and the GLM,
the CMLM and the FarmCPU resulted in 3.8% and 4.9%
of SNPs with p-values <0.05, indicating the inflation of
p-values was reduced and supported the appropriateness
of including population structure and kinship matrix in
the model. In addition, FarmCPU yielded most of the
SNPs fitting the expected distribution of p-values with a
few SNPs exhibiting high significance (higher signifi-
cance than CMLM).

Because the CMLM and FarmCPU both seemed ap-
propriate for analyzing the association between the soy-
bean SNPs and SSR resistance, the association results
from CMLM (conducted in the R package GAPIT) and
FarmCPU (conducted in the R package FarmCPU) were
compared. Setting the FDR-corrected p-value cutoff at
0.05, six SNPs (on chromosomes 1, 4, 9, 11, 16, and 18)
were detected as significant by FarmCPU, with each
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Table 1 Most resistant genotypes (<3.0 cm, 1.5 s.d., 3.0 max

range)

Genotype Score (cm) Stand Dev Range cm
FT-1 067 021 0.60
P1C142-128.686 0.89 0.58 1.70
P1C142-158.243 1.08 1.29 2.70
EMGOPA 316 1.14 045 1.50
P1C142-116.940 1.25 0.79 2.00
IAC 100 1.25 1.31 2.70
V-Max RR 1.35 1.08 2.60
FMT05-40.907/1 1.36 047 1.30
FT-3 146 0.34 1.10
P1C142-102.143 1.60 0.79 1.90
P1C142-123.850 1.60 0.75 2.20
P1C142-127.559 1.65 0.83 250
P1C142-126.986 167 0.86 240
P1C142-112.208 1.73 097 2.00
P1C142-170.130 1.80 1.14 260
V-Top RR 1.82 0.69 1.90
P1C142-167.428 1.88 0.54 1.20
P1C142-151.788 1.94 0.89 1.80
P1C142-151.674 1.98 0.51 140
BMX Turbo RR 2.00 0.73 2.30
P1C142-126.380 2.06 036 1.10
L79-1404 2.08 0.79 1.70
P1C142-169.669 2.08 0.74 2.10
L91-8052 208 0.87 230
P1C142-120.656 2.10 0.85 240
P98Y30 2.1 1.29 2.90
P1C142-168.153 220 0.88 240
P1C142-124.500 2.23 045 140
FT-37 2.27 1.04 2.90
P1C142-168971 235 1.28 2.80
P1C142-116.766 240 059 140
P1C142-107.220 245 087 1.90
P1C142-124.193 247 0.57 1.10
P1C142-117.050 263 0.83 250
FT-9 2.78 0.90 2.50
FT-46 2.81 1.03 3.00
P1C142-122.870 287 1.14 3.00
NK S19-90 298 1.01 2.70

significant SNP explaining approximately 2% to 3.2% of
the total phenotypic variation (Table 3). The CMLM
analysis did not identify any SNPs as significantly associ-
ated at the 0.05 FDR-corrected p-value cutoff. But
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Table 2 Most susceptible genotypes (>6.25 cm, <1.5 s.d,, 40 cm
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Table 2 Most susceptible genotypes (>6.25 cm, <1.5 s.d,, 4.0 cm

max range) max range) (Continued)
Genotype Score (cm) Stand Dev Range (cm) Genotype Score (cm) Stand Dev Range (cm)
L196 7.68 0.89 240 TC12-0-52.294/G026 6.37 0.38 1.20
BRSGO Ipameri 7.62 0.69 1.70 TC12-0-51.331 6.37 092 3.30
PI1196157 7.57 0.87 2.70 P1C142-170.329 6.27 043 1.20
L25 746 0.96 2.80 P1C142-170.215 6.26 049 1.30
379 (T50) 741 042 1.10
TC12-0-49.220 7.34 0.60 1.60
FT-64 733 060 170 loosening the strict threshold to an FDR-corrected
FT-20 230 037 110 p-value <0.1, a total of 19 SNPs (on chromosomes 1, 11,
13 230 035 110 18 and 19) showed significant associations with CMLM,
‘ ‘ ‘ where each SNP explained 3.2% to 4.4% of the total pheno-
11271750655 7:29 034 100 typic variation (Table 3). No additional SNPs were signifi-
L19 7.29 .77 2.70 cant with FarmCPU at the <0.1 cutoff. The three most
TC12-2-56.681 7.29 090 3.00 significant SNPs detected by FarmCPU (S1_36,045,483,
BRO58114 RR 7.28 064 150 S11_6,493,121 and S18_14,327,556) were also deemed sig-
TC12-0-52.243/G022 79 063 180 nificant by CMLM, as shown by the Manhattan plot (Fig. 5
TMGERITS 31787 218 064 520 and Table 3). However, the SNPs on chromosomes 4, 9 and
16 that were identified with FarmCPU as significant, were
BRS RAISSARES T/3 NG5S 718 146 +00 not significant by CMLM, although weak signals could be
CHAPMAN 7.16 082 240 seen at those sites on the CMLM-produced Manhattan plot
P1C142-101.828 7.15 049 140 (Fig. 5). A single SNP on chromosome 19 determined by
MSOY 7908 RR 7.12 069 220 CMLM did not pass the significance threshold with the
PI358318A 709 096 340 FarmCPU, but there was a weak peak on the FarmCPU-
TMGERTS 31786 209 055 160 produced Manhattan plot (Fig. 5). The Manhattan plots
generated by the two models look different for the signifi-
1C12-0-52.294 7.05 051 140 cant loci, as the LD associated with the SNPs affected
TC12-0-51.186 7.03 102 300 whether there would be a string of hits (on the CMLM
TC12-0-50.332/G027 7.02 104 330 plot) or a single spot (on the FarmCPU plot) as FarmCPU
TC130-00.011 7.01 037 110 removed all the SNPs in LD, and these SNPs in LD were
L263/264 CT 689 115 380 kept by the CMLM analysis (Fig. 5).
BRO5736154 6.84 1.36 3.10
LD and candidate genes analysis of three major loci
6004501413260 - A 677 070 190 Because both CMLM and FarmCPU analyses identified
T1C12-1-47.590 6.71 0.36 120 significant SNPs on chromosome 1, 11 and 18, these
BSR 101 6.69 107 250 three loci were considered to be the most significant of
TC12-2-60.290 668 122 4.00 the study, and further analyses were therefore performed
Pl189861 6.64 127 360 on them. LD plots were generated for these three loci to
671 (T3) 650 oo 580 examine the local LD blocks. Seve‘:n §ignificant SNPs on
chromosome 1 were located within a LD block of
Fr7i 659 R 340 1738 kb from 35 to 36.8 Mb, and all SNPs in this LD
TC12-0-46.100 6.56 034 120 block showed moderate to high r* values from 0.4 to 1
Pickett 6.53 088 250 (Fig. 6), indicating that these seven SNPs were highly as-
L165 (T92) 6.50 035 1.10 sociated, and therefore might have the same causal
PIas788 6.49 122 300 site(s) that contributed to enhanced resistance. The sig-
I 649 038 100 nificant SNP.on chromosome .11 lied within an LD block
of 822 kb (Fig. 7). However, since the LD block was de-
P1C142-195052 048 067 160 termined by D’ values, the SNP at 5711798 bp showed
TC12-0-48.687 647 044 110 fairly low LD with the other three SNPs in the block
TC12-0-52.213 643 079 230 considering r* values (r* < 0.1). Three SNPs from
P1C142-185.974 641 057 160 6.2 Mb to 6.5 Mb showed high r* values with each other,

suggesting the r>-based LD block here was about 0.3 Mb
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(Fig. 7). Another large (1194 kb) LD block was located The soybean reference genome [46] was queried to
around the most significant SNP on chromosome 18, identify the genes that predicted to be within the LD
from 13.3 Mb to 14.5 Mb. By the CMLM analysis, this  blocks. The 1.7 Mb LD block around the SNP peak on
block contained ten significant SNPs that exhibited very = chromosome 1 contained 36 genes, the 0.3 Mb LD block

high pairwise r* values >0.9 (Fig. 8). on chromosome 11 contained 35 genes, and the 1.1 Mb
1 O — @ Naive o0 o *
m GLM .
@ CMLM
® FarmCPU -

o0}
]
3

Observed —log10(P)

0 1 2 3 4

Expected —log10(P)

Fig. 4 Quantile-quantile (QQ) plots comparing different GWAS models using data from the in-house SNP calling pipeline. GLM: generalized linear
model, CMLM: compressed mixed linear model, FARMCPU: Fixed and random model Circuitous Probability Unification. Note: when plotted, the
MLM overlapped with the CMLM points, and therefore, only the CMLM plot is shown
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Table 3 SNPs associated with the defense response at fdr p-value <0.10

GAPIT/CMLM

SNP Chromo Position Alleles MAF p-value FDR p-value R2 Allelic Effect
S18_14,327,556* 18 14,327,556 T/C 0491349481 2.23E-05 0.0751889 441% 0.81844
S18_14,327,607 18 14,327,607 A/G 0493079585 3.86E-05 0.0751889 4.15% —0.79800
S1.36,783,951 1 36,783,951 G/A 0.264705882 5.50E-05 0.0751889 3.98% 0.65452
$1_36,497,505 1 36,497,505 A/G 0.269896194 6.33E-05 0.0751889 391% -0.63779
S1_35474,053 1 35,474,053 aT 0.261245675 9.03E-05 0.0751889 3.75% —-0.62749
S11.6,493,121* 11 6,493,121 T/C 0.228373702 9.48E-05 0.0751889 3.72% -0.58271
$1_35,045,463 1 35,045,463 aT 0.26816609 1.03E-04 0.0751889 3.69% —0.62200
S1_36,006,734 1 36,006,734 A/G 0.271626298 1.06E-04 0.0751889 3.67% —-0.60778
S18_14,517,407 18 14,517,407 C/A 0489619377 1.17E-04 0.0751889 3.62% 0.74685
S18_14,517,362 18 14,517,362 aT 0489619377 1.17E-04 0.0751889 3.62% —0.74685
S1_36,045,483* 1 36,045,483 G/A 0.262975779 1.81E-04 0.0878468 342% 0.58989
S18_14,282,760 18 14,282,760 A/G 0496539792 1.97E-04 0.0878468 3.38% 0.72465
S18_14,282,812 18 14,282,812 A/G 0496539792 1.97E-04 0.0878468 3.38% 0.72465
$18_14,282,806 18 14,282,806 T/C 0496539792 1.97E-04 0.0878468 338% —0.72465
S1.35,152,187 1 35,152,187 T/G 0.271626298 2.09E-04 0.0878468 3.35% 0.59070
S19_1,289,850 19 1,289,850 A/G 0.155709343 2.25E-04 0.0878468 3.32% -0.61268
S18_14,324,249 18 14,324,249 G/T 0496539792 246E-04 0.0878468 327% 0.71140
S18_14,324,245 18 14,324,245 T/C 0496539792 246E-04 0.0878468 3.27% -0.71140
S18_14,334.212 18 14,334,212 T/C 05 2.86E-04 0.0968226 3.20% —0.69934
FarmCPU

SNP Chromo Position Alleles MAF p-value FDR p-val R2 Allelic Effect
S18_14,327,556* 18 14,327,556 T/C 0491349481 1.54E-07 0.0009911 326% 064476
S11_6,493,121% [ 6,493,121 T/C 0228373702 248E-06 0.0079806 244% -041685
S1._36,045,483* 1 36,045,483 G/A 0.262975779 5.38E-06 0.0115419 2.29% 040215
S9_32,113,409 9 32,113,409 aT 0335640138 7.51E-06 0.0120836 225% 034200
S4_7,210,961 4 7,210,961 /G 0.249134948 9.64E-06 0.0124086 227% 038084
S16_3,111,366 16 3,111,366 G/A 0.14532872 1.50E-05 0.0160900 2.09% -0.46977

* SPNs marked were significant by both GAPIT/CMLM and FarmCPU

LD block on chromosome 18 contained 54 genes
(Additional file 7: Table S4).

The number of genes within the LD blocks on chro-
mosomes 1, 11, and 18 totalled 125. The translations of
the putative coding sequences of these genes were
aligned by blastx to the nr database of NCBI [47] to
identify possible gene function (Additional file 7: Table
S4). The genes with the LD blocks were also checked for
their expression pattern in a microarray experiment in-
volving soybean transcriptome response to S. sclero-
tiorum infection [12]. Although most of the genes
showed moderate to no expression change in response
to infection, 34 of the 125 genes were identified as being
differentially expressed (inoculated vs mock) during the
first 36 h post inoculation (hpi) (Fig. 9). There were six-
teen genes with significant differential expression

between infected samples and mock treated samples in
at least one time point, making them more promising
candidates for genes potentionally involved in defense
efforts. Several of the genes in the microarray study (Fig.
9) showed a much stronger expression during S. sclero-
tiorum infection than the others. The gene with the
strongest differential expression was Glyma.01G106000,
that encodes a tau class glutathione S-transferase; it had the
strongest expression differences in both genotypes used in
that sudy, at 12, 24, and 36 hpi, and is about 189.0 kb away
from the peak SNP on chromosome 1, S1_36,045,483.
Three genes on chromosome 11, Glyma.11G084000, Gly-
ma.11G084200, and Glyma.11G086600, that are in LD with
the peak SNP S11 6,493,121, also showed fairly strong in-
duction of expression after infection compared to other
genes. Other genes that were part of the microarray study
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did not change any more than 2 fold in response to inocu-
lation (Fig. 9).

Discussion

The study was successful in identifying SNPs signifi-
cantly associated with soybean defense against SSR, a
disease that is increasing in importance worldwide, and
whose resistance QTL are very challenging to map due
to the high phenotypic variability of the disease, and the
minor contribution from each QTL. The use of GWAS
with thousands of SNP markers, improves the ability to
identify QTL with higher statistical significance, and sev-
eral other research groups have already applied GWAS
to identify loci associated with SSR responses [28, 29,
31].

GWAS succeeded in identifying new QTL associated with
SSR

In this presented GWAS of soybean resistance to SSR,
six QTL were identified using the FarmCPU computa-
tion, and four with the CMLM computation, with an
overlap of three QTL identified by SNPs: S1_36,045,483,
S11_6,493,121, and S18_14,327,556. The study did not
have good overlap with the QTL identified in the other
recent GWAS studies, except the possible overlap of our
QTL on chromosome 1 near 35.5 Mb, to the QTL near
27.7 Mb (position updated to the same version of the
soybean reference genome sequence) of Bastein et al.

(2014). The QTL on chromosome 19 was only identified
as significant by CMLM, but it might be the same
identified by Vuong et al. (2008) where a QTL for SSR
resistance in PI194639 was bordered by Satt495
(Chr19:650,674) and Satt388 (Chr19:4,212,645) [9, 48].
This lack of overlapping QTL identification between dif-
ferent experiments, might reflect the subtle effects of
each QTL for SSR resistance or the high variability in
phenotyping this disease. The lack of QTL overlap could
also be due to the use of different soybean genotypes,
the use of different pathogen isolates that were collected
on different continents, or the use of different inocula-
tion methods or treatments. Among the other GWAS,
two of the studies inoculated flowers and measured dis-
ease progression down the stem seven days later [28,
29], and the other study treated soybeans with oxalic
acid released by S. sclerotinia, at 40 mM, and measured
pigment induction in response to this treatment 48 h
later [31]. In the present study, young seedlings were in-
oculated on freshly cut stems. Therefore, it is not too
surprising that the QTL identified in each study could
differ.

How CMLM and FarmCPU compare

The model chosen to conduct GWAS should be care-
fully decided based on species and traits being studied.
For this study of soybean, it involved a plant that is self-
pollinated and with high LD across the genome, and
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resistance to SSR is underlied by multiple genes with
small effects. The analysis tested two different methods,
CMLM and FarmCPU, for marker-trait association. The
Q-Q plot showed both CMLM and FarmCPU controlled
inflated p-values due to population structure better than
the other more naive models. The FarmCPU method
identified more significant loci and with higher levels of
significance for the most significant SNPs.

The mixed linear model has been widely used in
GWAS studies on soybean and in a variety of other
crops as it was shown to largely reduce the spurious as-
sociations resulting from both population structure and
unequal individual relatedness [49-53]. Based on the
MLM, the CMLM implemented in the GAPIT package
to deal with large and computational challenging data-
sets by clustering individuals into groups in the kinship
matrix [32, 54]. Although popular for GWAS, in some
cases the CMLM can be insufficient due to the con-
founding between the population structure, kinship, and
different testing SNPs, which could potentially lead to
compromise of true postives. It was reported that the re-
cently developed method FarmCPU mitigated this prob-
lem and led to both increased statistical power and
reduced false positives [33]. FarmCPU implements a

fixed effect model that contains the testing markers and
multiple associated markers as covariates, and a random
model that contains the kinship matrix. These steps are
performed separately but optimize each other iteratively.
So compared to CMLM in which the kinship matrix re-
mains constant for all the markers, FarmCPU adjusts its
kinship based on the testing markers and covariates in
the fixed effect model. Moreover, since the CMLM only
tests one marker at a time, other associated loci nearby
or elsewhere in the genome will sometimes disrupt with
the test and resulted in false positives or false negatives,
especially when the effects of the other loci are large
[55]. Therefore, FarmCPU puts selected associated
markers as covariates and tests multiple markers simul-
taneously, thus improving control of both false positives
and false negatives [33]. This could be illustrated by
comparing the Manhattan plots (Fig. 5) where “spikes”
consisting of multiple SNPs in LD are present with
CMLM, but only single SNPs, representing the most sig-
nificant association, appear with FarmCPU. However,
FarmCPU has a weakness in that removing the signifi-
cant SNPs in LD with the peak SNPs, reduces informa-
tion, and these SNPs in LD help to confirm the
existence of an truly associated locus. Considering
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sclerotiorum infected soybean tissue was available. Expression values are the log; ratios of inoculated genotypes versus mock inoculated, at 12, 24,

PREDICTED: isochorismate synthase 2, chloroplastic-like isoform X1 [Glycine max]
PREDICTED: protein NRT1/ PTR FAMILY 5.6-like [Glycine max]

PREDICTED: proteasome subunit alpha type-2-A-like [Glycine max]

tau class glutathione S-transferase [Glycine soja]

probable glutathione S-transferase [Glycine max]

PREDICTED: serine/threonine-protein kinase pakD-like [Glycine max]

PREDICTED: copper transporter 2-like [Glycine max]

DUF3527 domain protein [Medicago truncatula)

PREDICTED: myb protein-like [Glycine max]

PREDICTED: isocitrate dehydrogenase [NAD] regulatory subunit 1, mitochondrial-like isoform X1 [Glycine max]
PREDICTED: protein GRIP-like [Glycine max]

PREDICTED: phosphoserine aminotransferase 1, chloroplastic [Glycine max]
PREDICTED: probable serine/threonine-protein kinase Cx32, chloroplastic [Glycine max)
Protein RKDS [Glycine soja)

PREDICTED: pentatricopeptide repeat-containing protein Atdg13650-like [Glycine max]
PREDICTED: rab proteins geranylgeranyltransferase component A 2 [Glycine max]
Syntaxin-binding protein 5 [Cajanus cajan]

unknown protein

Proton-coupled amino acid transporter 4 [Glycine soja)

PREDICTED: probable protein phosphatase 2C 47 [Glycine max]

PREDICTED: putative Myb family transcription factor At1g14600 [Glycine max]
PREDICTED: glucomannan 4-beta-mannosyltransferase 9-like [Vigna radiata var. radiata]
Oxygen-evolving enhancer protein 2, chloroplastic [Glycine soja]

PREDICTED: reticulon-like protein B8 isoform X1 [Glycine max]

Putative oxidoreductase, chloroplastic [Glycine soja)

unknown protein

PREDICTED: transcription factor PIF4 [Glycine max]

PREDICTED: probable polyamine oxidase 2 isoform X1 [Glycine max]

PREDICTED: probable polygalacturonase [Glycine max]

serine--glyoxylate aminotransferase-like [Glycine max]

unknown protein

Cellulose synthase A catalytic subunit 1 [UDP-forming] [Glycine soja]

unknown protein

Pre-mRNA-splicing factor CWC22 like [Glycine soja]

and 36 h post inoculation

upsides and downsides, it is beneficial to implement dif-
ferent models to do association studies to increase confi-
dence in the overlapping loci, and to also increase the
possibility of identifying unique novel loci.

Examining LD and genes around the significant SNPs
Soybean has a relatively high LD genome-wide, and
LD increases extensively in the pericentromere re-
gions [28, 56, 57]. In our study, seven and ten signifi-
cant SNPs on chromosome 1 and 18 were found to be in
megabase-level LD blocks in pericentromeric regions,
where genes are sparsely distributed according to the soy-
bean reference genome. The size of the LD blocks could
also be affected by the density of the SNP markers. For ex-
ample, the closest marker next to the LD block from
35,045,463 bp to 36,783,951 bp on chromosome 1 was
1 Mb away, at 34050470 bp, so there were no SNPs indi-
cating where the LD block terminated in this 1 Mb region.
A higher density SNP map would help refine the large LD,
and perhaps narrow the region of interest.

Looking at the genes that are located in LD with the
SNPs, and combining soybean gene expression data after
S. sclerotiorum infection, can increase the confidence in
identifying candidate SSR defense-associated genes. Two
of the more promising genes in LD with the QTL identi-
fied on chromosome 1 based on gene expression were

Glyma.01G104100 and Glyma.01G106000. Likewise, the
most promising genes on chromosome 11 were three
that showed the strongest induction in response to S.
sclerotiorum  infection: ~ Glyma.11G084000,  Gly-
ma.11G084200, and Glyma.11G086600. The genes in
LD with the significant SNPs on chromosome 18,
were weakly differentially expressed, with the strongest
ones, like Glyma.18G113400 and Glyma.18G117400,
showing about a 2-fold induction.

Of the genes that are in LD with the significant SNPs
on chromosome 1, and whose expression were induced
by S. sclerotiorum infection, Glyma.01G106000 was one
of the most interesting as it was strongly induced over
all time points and samples, and also significantly in-
duced after Pseudomonas syringae infection on soybean
[58]. Glyma.01G106000 encodes a tau class glutathione
S- transferase (GST) protein, which may be involved in
the process of xenobiotic detoxification, reduction
of organic hydroperoxides, or oxidative protection
[59, 60]—all common needs during plant-pathogen
interactions. Overexpression of a rice tau-class GST in-
creased the tolerance to salinity and oxidative stress in
Arabidopsis thaliana and tobacco, which may be due to
the lower accumulation of reactive oxygen species [61, 62].
Another interesting defense-related gene near the QTL on
chromosome 1 is Glyma.01G104100 which encodes an
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isochorismate synthase, the key enzyme in the synthesis of
salicylic acid. This gene was not strongly induced by infec-
tion, and was actually reducing over time (Fig. 9). However,
salicylic acid is a very important regulatory signal in plant
microbe interactions [63, 64], especially for the host-
related cell-death pathways [65, 58]. Inducing cell death is
believed to be a beneficial strategy that necrotrophic patho-
gens utilize, and S. sclerotiorum has been shown to ma-
nipulate host cell death to its advantage [14]. That salicylic
acid is known to induce cell death, and that S. sclerotiorum
benefits from enhanced cell death, expression of this iso-
chorismate synthase might enhance susceptibility. Interest-
ingly, the allele present in both of the genotypes of the
microarray study is predicted to have a negative effect on
defense according to the GWAS results.

Looking at the genes within LD of the significant SNPs
on chromosome 11, most of the genes seem to be re-
lated to primary metabolism. Although not directly asso-
ciated with defense, primary metabolism may also affect
the outcome of plant pathogen interactions, so the in-
volvement of one of these genes on defense cannot be
dismissed. Gene Glyma.11G084200 was strongly induced
and putatively encodes a GRIP-like protein. GRIP pro-
teins was shown to target the golgi [66], but their poten-
tial function in plant-pathogen interactions is unknown.

The genes within LD of the significant SNPs on
chromosome 18 were more weakly differentially
expressed than some of those genes discussed on
chromosome 1 and 11. Two genes are associated with
cell wall modification, Glyma.18G116400 (a probable
polygalacturonase) and Glyma.18G117100 (a cellulose
synthase). Although their expression is not significantly
affected by S. sclerotiorum infection, plant cell wall de-
grading enzymes play an important role in SSR disease
[17]. Another gene of interest within this region on
chromosome 18 is Glyma.18G113400, which encodes a
putative Myb transcription factor, increased in expres-
sion after S. sclerotiorum infection along the time course,
from 12 to 36 h (Fig. 9). It was shown that Myb tran-
scription factors can be involved in various biological
processes in plants, including response to biotic stresses
[67, 59].

Conclusions

Using different genetic materials and inoculation
methods than the other recent SSR GWAS reports, we
succeeded to identify new QTL associated with soybean
resistance to SSR disease caused by S. sclerotiorum. The
study identified four or six SSR resistance QTL, depend-
ing on GWAS computational analysis performed. Three
of the QTL (on chromosomes 1, 11, and 18) were de-
tected by both methods, giving more confidence that
they are signicantly associated with soybean defense to
SSR disease. Looking at the genes within the LD blocks
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of the significant QTL allowed for prediction of candi-
date defense-associated genes responsible for the en-
hanced resistance. One of the most interesting genes in
these LD blocks was Glyma.01G104100, which encodes
an isochorismate synthase, and could play a role in regu-
lating host cell death pathways. Further experimentation
will be needed to verify the relevance of the identified
SNPs and putative gene functions in the soybean- S.
sclerotiorum interaction.
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