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Abstract

Background: Accurate inference of genetic ancestry is of fundamental interest to many biomedical, forensic, and
anthropological research areas. Genetic ancestry memberships may relate to genetic disease risks. In a genome
association study, failing to account for differences in genetic ancestry between cases and controls may also lead to
false-positive results. Although a number of strategies for inferring and taking into account the confounding effects
of genetic ancestry are available, applying them to large studies (tens thousands samples) is challenging. The goal
of this study is to develop an approach for inferring genetic ancestry of samples with unknown ancestry among
closely related populations and to provide accurate estimates of ancestry for application to large-scale studies.

Methods: In this study we developed a novel distance-based approach, Ancestry Inference using Principal component
analysis and Spatial analysis (AIPS) that incorporates an Inverse Distance Weighted (IDW) interpolation method from
spatial analysis to assign individuals to population memberships.

Results: We demonstrate the benefits of AIPS in analyzing population substructure, specifically related to the four
most commonly used tools EIGENSTRAT, STRUCTURE, fastSTRUCTURE, and ADMIXTURE using genotype data from
various intra-European panels and European-Americans. While the aforementioned commonly used tools performed
poorly in inferring ancestry from a large number of subpopulations, AIPS accurately distinguished variations
between and within subpopulations.

Conclusions: Our results show that AIPS can be applied to large-scale data sets to discriminate the modest variability
among intra-continental populations as well as for characterizing inter-continental variation. The method we developed
will protect against spurious associations when mapping the genetic basis of a disease. Our approach is more accurate
and computationally efficient method for inferring genetic ancestry in the large-scale genetic studies.
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Background
During the last decade, genome-wide association studies
(GWAS) have helped identify a large number of allelic
variants for common complex traits and diseases.
Because many of the associations from these studies
show small to modest effects in nature with a very strict
alpha-level of statistical significance, robust conclusions
from them require careful analysis to exclude false-
positive results. Population stratification, the presence of
systematic allele frequency differences between popula-
tions or subpopulations, can cause spurious associations
and distortions in effect estimates between genetic vari-
ants and disease [1–5]. Closely related individuals may
have a more similar disease risk than distantly related
individuals. This risk homogeneity among individuals of
similar ancestries may result from lifestyle similarities or
the presence of one or more risk-conferring alleles [5].
However, several alleles may differ between ancestry
groups that do not confer risk. Thus, some level of cor-
relation with shared ancestry in GWAS can introduce
bias leading to excess false-positives unless a proper
correction of population stratification is performed [2].
To detect whether there is confounding due to popula-
tion stratification, genomic control and structured asso-
ciation applications are used. Several publications have
described the selection of ancestry informative markers
(AIMs), used to infer genetic ancestry [4, 6–13]. Basing
analysis on AIMs rather than all markers that might
have been analyzed in a GWAS allows a more parsi-
monious use of the data and the markers are typically
selected to avoid strong linkage disequilibrium among
the markers.
There are two commonly used types of analytical

approaches to describe genetic similarities: distance-
based and model-based approaches. The distance-based
approach adopts a pairwise distance matrix computed
among each pair of individuals and the model-based ap-
proach uses parametric models such as maximum-
likelihood or Bayesian methods.
Menozzi et al. constructed synthetic maps of human

gene frequencies in Europeans using genetic distance
among population pairs [14]. They used principal
component analysis (PCA) to generate a single geo-
graphic map from individual allele frequencies. The
most commonly used software packages for accurately
analyzing admixture population structures are EIGEN-
STRAT [15, 16], STRUCTURE [17] and fastStructure
[18]. Price et al. developed EIGENSTRAT to detect and
correct for population stratification using principal
component analysis (PCA) of genotyped data to extract
linear combinations of individuals that share the great-
est similarities. EIGENSTRAT calculates the pattern of
individual similarity in relation to markers. In the case
of data with very large numbers of individuals in
relation to markers, it is computationally demanding to
compute the eigenvectors. Also, this does not provide
any inference of ancestry membership. Pritchard intro-
duced STRUCTURE, a Bayesian model-based clustering
method, to estimate population structure and assign in-
dividuals into population membership groups based on
their genotypes under the assumption that the marker
loci are unlinked and at linkage equilibrium with one
another within populations [17]. With STRUCTURE, a
variational Bayesian inference method was applied to
compute approximate ancestry inference using the log-
marginal likelihood of the data by proposing a family of
tractable parametric posterior distributions over the
hidden variables in the model. Inferring population
structures in larger data sets with this method is com-
putationally challenging because it requires intensive
computation time and resources and may have conver-
gence problems in fitting Markov Chain Monte Carlo
based posterior samplings. In 2014, Raj proposed fas-
tSTRUCTURE to reduce the computational time and
complexity while attempting to achieve accuracy com-
parable to STRUCTURE [18]. ADMIXTURE is an add-
itional popular program and uses a likelihood-based
approach [19, 20].
A distance-based approach such as multidimensional

scaling could also be applied, but the groups identified
from evaluating a pairwise distance (similarity) matrix
may be heavily dependent on both the distance measure
and the graphical representation. A challenge in large-
scale genetic studies is to understand the underlying data
structure so as to identify whether individuals are from a
homogeneous population or from heterogeneous subpop-
ulations. When samples become larger and detected ef-
fects of genetic loci on disease phenotype become smaller,
confounding with ancestry may introduce a greater num-
ber of false-positive results. Guan et al. proposed a genetic
similarity score matching method (GSM) to correct popu-
lation stratification using individual-based matching [21].
GSM matches case-control subjects based on the average
proportion of alleles using identity-by-state (IBS) mea-
sures that indicate the degree of similarity over tens of
thousands of SNPs. A different approach was taken by Lee
et al. who developed a variation of genetic matching
(GEM) called Spectral-GEM that replaces the PCA used
in GEM with significant ancestry components derived
from the spectral graph theory [22].
More recently, Li et al. introduced an algorithmic ap-

proach, FastPop to infer the ancestry membership for
the intercontinental study [23]. It is a distance-based
method that reflects the clines of intermarriage among
continental groups using a triangle connecting the
known ancestry centroids. It could be easily applied to
three or four intercontinental origins using triangle or
tetrahedron shapes, respectively.
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In this study we introduce a novel distance-based infer-
ence of ancestry membership with commonly used ances-
try informative markers (AIMs). This novel approach can
accurately infer ancestry memberships from a pairwise
distance matrix calculated between individuals and cen-
troids of the known populations using HapMap or Human
Genome Diversity Project (HGDP) samples. The main
aim of this method is to identify the unrevealed sub-
structures and to infer the correct inference of ances-
try memberships for samples with unknown ethnicity.

Methods
Principal component analysis
Principal component analysis (PCA) is one of the most
useful statistical tools for analyzing multivariate data and
has been widely applied to high-dimensional genetics or
genomics data. PCA uses spectral (eigenvalue) decompos-
ition to transform a number of correlated variables into a
smaller number of uncorrelated variables, which are called
principal components (PCs) with a minimum loss of infor-
mation. The reduced numbers of top ranked PCs are cal-
culated by projecting samples onto spaces spanned by the
eigenvectors of the sample covariance matrix and select-
ing the eigenvectors that comprise the largest contribution
of sample variation [24]. To perform PCA, there are two
approaches using eigenvalue decomposition (P-mode) and
singular value decomposition (Q-mode). The eigenvalue
decomposition method uses the covariance relationships
between markers and the singular value decomposition
method uses covariance among individuals.
Initially genome wide association studies have a larger

number of SNPs (p) compared to the size of samples
(n), in which case principal components analysis is per-
formed in the Q-mode and can be obtained by calculat-
ing the eigenvectors and eigenvalues of a covariance
matrix whose rank is at most n-1. The axes of the eigen-
vectors with the largest eigenvalues are usually import-
ant in describing within-continent genetic variations and
can correct for the confounding effects of population
substructure. The eigenvectors so derived provide in-
sights into variability among individuals but are specific
to the specific population studied and cannot be applied
to future populations. As N increases, the computational
burden of computing the intraindividual correlation
matrix increases exponentially. EIGENSTRAT was de-
veloped for analysis when the number of samples is far
less than the number of markers, but more recent stud-
ies such as the Oncoarray [25] and the UK Biobank [26]
present scenarios with very large sample sizes for which
Q-mode analysis is not practical.
Eigenvectors between markers derived by P-mode in a

population can be used as the SNP-weights (loadings) that
enable researchers in a large consortium to compute the
new variance components (scores) in new data with the
nature of the similarity in the markers. The SNP-weights
so derived can help reduce the time to compute principal
components by omitting the computational step of deriv-
ing the correlation matrix in markers with a specified
AIMs. Because only a selected set of markers are inform-
ative about the population substructure, the number of
markers that need to be included in a P-mode analysis can
be limited to under ~25,000, which is computationally
feasible for deriving correlation structures (Additional file 1:
Supplementary Methods).

Spatial analysis; inverse distance weighted interpolation
approach
Spatial analysis is used to manipulate spatial information to
extract distance relationship information. Spatial interpolation
is the application of spatial analysis to estimate values at un-
known points with known values. As a common example, to
predict precipitation in a certain area when not given entire
weather information, spatial interpolation enables one
to estimate precipitation in locations without recorded
data using known weather information. In the Inverse
Distance Weighted (IDW) interpolation method, the
sample points are weighted during interpolation such
that the influence of one point relative to another de-
creases with distance from the unknown point.

Ancestry inference using PCA scores and spatial interpolation
IDW interpolation assumes that points that are close to
one another are more alike than those that are farther
apart. To infer ancestry membership proportion for an
unknown sample, IDW computes the distance metrics
from each centroid of each known population. Those es-
timated values closest to the centroid of a known popu-
lation will be assigned a higher proportion of ancestry
that diminishes with distance and will be weighted
greater than those populations that are farther away. To
identify centroids of known populations, we obtained
data from samples that had known European ancestry,
as further described in the results.
For admixture membership, we sorted all distances

among individuals by each population centroid, chose
the number of admixtures denoted by s, and then found
the first s closest population centroids to each individual.
We then computed the distances from the centroid of
the closest population to the centroids of other nearby
populations. Next, we compared the distance from
the second closest population centroid to each indi-
vidual in relation to the distance between the two
closest population centroids to each other. If the dis-
tance between the two closest population centroids
was longer than the distance between the individual
and the second closest population centroid, the sec-
ond closest population was considered in admixture
model, and so on as shown in Fig. 1.



Fig. 1 a Selection of Admixtures. In a model with 3 admixtures, L2 is the shortest distance between sample A and a centroid of known population
(Pop2). Then compare two other closest populations; Pop1 and Pop3 with the distances, S1 and S2, between the closest Pop2 and two other closer
ones; Pop1 and Pop3. If S1 and S2 are longer than L1 and L3, respectively, then keep Pop1 and Pop3 in the 3 admixture model. Pop4 has longer distance
than other three populations then the Pop4 is not included. b After selecting the closest population (Pop1) to sample B, compare two other closest
populations (Pop2 and Pop3). In this case, S1 and S2 are shorter than L2 and L3. Then Pop2 and Pop3 would not be included in the 3 admixture model
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Inverse distance weighted (IDW) interpolation in
spatial analysis was then used to infer individual genetic
ancestry. We applied two different spatial weights based
on the centroid distances: power-distance (PD) weights
and exponential-distance (ED) weights. Formally, let xik
be the kth score for the ith individual, xjk the kth cen-
troid in the jth subpopulation. The power-distance
weights function, ΔPD

pijk
is a negative power function of

distance given by,

ΔPD
pijk

¼ PD−α
ijk

P#:pop
j¼1 PD−α

ijk

and PDijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X#:Scores

k¼1
xik−xjk
� �2

:

r

The exponential-distance weights function, ΔED
pijk

with

the negative exponential function is given by,

ΔED
pijk

¼ e−α⋅EDijk

P#:pop
j¼1 e−α⋅EDijk

and EDijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X#:Scores

k¼1
xik−xjk
� �2

:

r

We developed a novel approach where eigenvalues con-
tribute additional weights. The size of eigenvalues reflects
the proportion of total variance explained by the eigen-
vector and larger eigenvalues should be upweighted to
allow for greater variance compared to smaller eigen-
values. Formally, an ancestry inference, ΔEVD

pijk
is computed

and normalized by the inverse distance weighted on each
eigenvalue:
ΔEVD
pijk

¼ EVD−α
ijk

P#:pop
j¼1 EVD−α

ijk

and

EVDijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X#:Scores

k¼1
xik−xjk
� �2⋅EVk=

X#:Scores

k¼1
EV k ;

r

where EVk is the eigenvalue of kth score and EVDijk is
the weighted distance from each centroid of the known
subpopulation to an individual. When we add eigen-
values as weights for inferring ancestry origin, the larger
eigenvalue that has more weight can reveal which cluster
may be closer and more appropriate to each individual
(Additional file 2: Figure S1).
To utilize this methodology, we created the R-package

AIPS that allows one to calculate SNP weights and
scores from PCA, predict scores from SNP weights com-
puted on the same pre-defined AIMs and infer genetic an-
cestry using pre-defined ancestry clustering information.
AIPS can be performed on samples larger than markers
and vice versa. After generating a matrix of SNP weights
from large enough samples of AIMs, AIPS predicts a score
matrix projected from the largest variance components.
For missing genotype values, it computes the mean SNP
value and replaces a missing genotype value with the
mean SNP value. The eigenvectors and eigenvalues
were calculated from correlation matrix based on
standardizing each SNP column with zero mean and
unit standard deviation.



Fig. 2 a Population structure within Europe using 22 diverse sets of European descendants. The scores were calculated by AIPS. The colored
points in grey and pink indicate all 4376 Europeans and 3424 individuals with unknown ancestry memberships in subpopulations, respectively.
952 known ancestry individuals in 22 subpopulations were overplotted on all 4376 Europeans. b European substructure analysis using scores from
Principal Component Analysis. Among 952 ancestry known individuals, 7 subgroups within Europe were defined; Northern European group, Southern
European group, Great Britain, Russian, Basque, Ashkenazi Jewish American, and Arab group. For Northern European group, Dutch American, Eastern
European American, German American, Hungarian American, Scandinavian American, and Swedish were assigned. Southern European group consisted of
Adygei, Greek American, Italian American, Sardinian, Spanish, and Tuscan. For Great Britain, CEPH Euro American, Irish, Orcadian, and United Kingdom
American were assigned. Bedouin, Druze and Palestinian were defined as Arab group
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Results
Application in European subpopulations and European AIMs
To demonstrate the application of AIPS, we performed
an intra-European analysis involving 4376 individuals of
European descent with a set of 25,732 pre-selected
known Intra-European AIMs. For European genetic sub-
structure studies presented in Fig. 2 (a) and Additional
file 2: Table S1, we used data from the Human Genome
Diversity Panel (HGDP), HapMap, Italian, Spanish,
Swedish, and European Americans along with subpopu-
lation unknown individuals from the New York Cancer
Project and the Children’s Hospital of Philadelphia from
the Illumina-control database (I-ControlDB). The ap-
proach to selecting subpopulations for characterizing
European ancestry has been previously presented [13].
Of the 4376 individuals, 3424 participants from the New
York Cancer Project and the Children’s Hospital of
Philadelphia were self-identified as Europeans and had
unknown subpopulation ancestry among intra-European
and closely related population clusters, while 952 individuals
from 22 ancestry-known subpopulations (Adygei, Ashkenazi
Jewish American, Basque, Bedouin, Druze, Palestine, CEPH
European American, Eastern European American, German
American, Greek American, Hungarian American, Irish,
Italian American, Tuscan, Netherland, Orcadian, Russian,
Sardinian, Scandinavian, Swedish, Spanish, United Kingdom
American) were chosen to compute centroids from each
European subpopulation as the known ancestry clusters



Table 1 Comparison among 7 subpopulations within Europe
using Hotelling’s T2 test

Population1 Population2 Statistic P-value P-value*

N. European S. European 334.97 < 1 × 10−16 < 1 × 10−4

N. European Great Britain 331.63 < 1 × 10−16 < 1 × 10−4

N. European Russian 148.56 < 1 × 10−16 < 1 × 10−4

N. European Arab 81.87 1.12 × 10−14 < 1 × 10−4

N. European Basque 181.06 < 1 × 10−16 < 1 × 10−4

N. European Jews 362.28 < 1 × 10−16 < 1 × 10−4

S. European Great Britain 680.60 < 1 × 10−16 < 1 × 10−4

S. European Russian 713.40 < 1 × 10−16 < 1 × 10−4

S. European Arab 334.90 < 1 × 10−16 < 1 × 10−4

S. European Basque 710.36 < 1 × 10−16 < 1 × 10−4

S. European Jews 1108.18 < 1 × 10−16 < 1 × 10−4

Great Britain Russian 865.25 < 1 × 10−16 < 1 × 10−4

Great Britain Arab 646.45 < 1 × 10−16 < 1 × 10−4

Great Britain Basque 1165.79 < 1 × 10−16 < 1 × 10−4

Great Britain Jews 73.14 7.77 × 10−15 < 1 × 10−4

Russian Arab 17.64 1.04 × 10−8 1 × 10−4

Russian Basque 4.96 0.0014 0.0014

Russian Jews 1436.50 < 1 × 10−16 < 1 × 10−4

Arab Basque 16.82 2.34 × 10−8 < 1 × 10−4

Arab Jews 1038.41 < 1 × 10−16 < 1 × 10−4

Basque Jews 1366.32 < 1 × 10−16 < 1 × 10−4

P-value* is computed using permutation test which estimates the non-parametric
P-value for the hypothesis test in Hotelling’s T2 test
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[20]. In addition, we also collapsed 22 subpopulations into 7
major ethnic groups of Europeans, Arab, and Jews
based on geographical and genetic differences (Fig.
2b). To clarify the genetic heterogeneity among 7
major ethnic groups consisting of Northern European,
Southern European, Great Britain, Russian, Basque,
Arab, and Jew, we performed Hotelling’s T2 tests
among 7 different centroids of subpopulations, as pre-
sented in Table 1.
We compared eigenvalues and principal components

between AIPS and EIGENSTRAT. The correlation rates
of eigenvalues and eigenvectors between AIPS and
EIGENSTRAT are close to 1 even though the PC scales
between the two approaches, scores projected from SNP
weights and eigenvectors as the pattern of individual
dissimilarity are different (Additional file 2: Figure S2). For
the initial assessment, 952 individuals in either 22 or 7 col-
lapsed Euro-subpopulations were selected to compare the
proportions of ancestry population memberships among
AIPS, STRUCTURE and fastSTRUCTURE. These samples
and AIMs have been analyzed in many population studies
[1, 4, 19, 20, 27]. Since the ancestry memberships for 952
samples are known, it is easy to identify the ethnic agree-
ment between each individual and subpopulation cluster.
STRUCTURE using Bayesian methods to differentiate
population structures is feasible for limited sample sizes
and small marker numbers [28]. Among 22 European and
near Eastern subpopulations, AIPS performed better in in-
ferring the proportions of ancestry memberships under
the option in which each individual can be a descendent
of between 2 and 4 populations (Additional file 2: Figure
S3), while STRUCTURE with and without population
labels and fastSTRUCTURE could not elucidate the het-
erogeneity and admixture among many of the populations
in 22 clusters presented in Additional file 2: Table S1
(Additional file 2: Figure S4). In fastSTRUCTURE, we ap-
plied two types of priors; simple and logistic. fastSTRUC-
TURE could not recognize the differences between
individuals of the 22 subpopulations. By default the num-
ber of eigenvalues in AIPS is five that are significant from
the plot of the eigenvalues. AIPS allows one to have ad-
mixtures from up to number of populations. For 7 sub-
population study, we can assume at most 7 admixtures
and AIPS computes 3 admixtures by default. AIPS using
the top five ranked eigenvalues and the different number
of admixtures displayed distinguishable population struc-
tures for inferring ethnic memberships whereas fas-
tSTRUCTURE was unable to discriminate the ethnic
heterogeneity among different population clusters.
We computed the pairwise difference of distances be-

tween centroids in two populations and ranked them
based on the closeness among 22 European subpopula-
tions (Additional file 2: Table S2 and S3). The ranks
based on the geogenetic distances between them provide
the clear interpretation between the geographical and
population structures. We reduced the number of
subpopulations using distance-based analysis and geo-
graphical relatedness. After grouping 22 subpopulations
into geographically closer clusters based on PCA and
distance-based analysis, we assigned 7 subpopulations:
Northern European, Southern European, Great Britain,
Russian, Arab, Basque, and Jews. To check whether 7
out of 22 subpopulations are substantially distinct from
each other, we performed Hotelling’s T2 test, which
compares the difference in two multivariate means. The
reassigned clusters were clearly distinguishable in terms
of genetic and geographical differences.
To assess the accuracy level of inferring ethnic member-

ship in a large number of populations, we reanalyzed 952
individuals with identified ethnicities using AIPS, STRUC-
TURE, fastSTRUCTURE, and ADMIXTURE among 7
collapsed subpopulations. As shown in Fig. 3 AIPS in the
different number of admixtures represented clear discrim-
ination in ancestry memberships among 7 different clusters
while STRUCTURE and fastSTRUCTURE performed very
poorly in calculating these ancestry inferences and distin-
guishing all seven clusters. The graphical figure from
STRUCTURE without pre-specified Population IDs seemed



Fig. 3 a AIPS assuming 3 admixtures using IDW; b AIPS assuming 3 admixtures using IDW with Eigenvalue Weight; c AIPS assuming 4 admixtures
using IDW; d AIPS assuming 4 admixtures using IDW with Eigenvalue Weight; e Structure not given POPID; f Structure given POPID; g fastSTRUCTURE
using option “simple”; h fastSTRUCTURE using option “logistic prior”; i ADMIXTURE without reference population information
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to find largely homogeneous population structures; {Great
Britain, Russian, Basque, and Northern European}; {Jews
and Southern European}; and {Arab}, as further described
in Table 2. To quantitate the average of accuracy in
assigned groups, the average proportion for correct infer-
ence of each assigned ethnic group is computed using

Avg%Correct ¼
Pp

j¼1

Pnp

i¼1
Avg%Correcti

np

p
;

where np is a number of individuals in each population
group, p a number of population group, and Avg%
Correcti the correct population proportion for each
individual. The average of Avg%Correct using AIPS is
0.81 among 7 population groups. As presented in
Table 2, AIPS has correct classification rates between
0.68–0.90 for inferring the correct ancestry memberships
whereas STRUCTURE without population information
identifies correct classification between 0.21–0.64 and
ADMIXTURE identifies correct classification between
0.37–0.92 among 7 European and closely related subpopu-
lation clusters. It is not easy to identify and match true an-
cestry clusters in results from STRUCTURE when there
are no distinct patterns between similarity and dissimilar-
ity. Although STRUCTURE with prior population assign-
ment identities has higher correct classification rates in
the range of 0.46–1.00 than STRUCTURE without prior
assignment in 0.21–0.64, STRUCTURE with prior assign-
ment assigns only three major clusters; each cluster con-
sists of 4, 2, and 1 subpopulations, respectively; the first
cluster includes Northern European (NE, 0.93), Great
Britain (GB, 1.00), Russian (1.00), and Basque (0.64); the
second one includes Southern European (SE, 0.46) and
Jew (1.00); the last one includes Arab (0.89). Europeans
are commonly considered as a largely homogeneous popu-
lation by STRUCTURE. AIPS can detect the distinction
among NE, GB, Russia, and Basque while STRUCTURE is
unable to distinguish among them. ADMIXTURE using
supervised learning mode requires an additional file, speci-
fying the ancestries of the reference (known) individuals.
ADMIXTURE assigns 100% ancestry membership to all
reference samples without further computation. We per-
formed further comparison including 3424 Europeans with
unknown subpopulation information between AIPS and
ADMIXTURE. AIPS enables one to identify the ethnic
heterogeneity whereas ADMIXTURE cannot recognize
genetic dissimilarity between SE and Basque. According to
Fig. 2 (b), there are a very small number of unknown sam-
ples of apparent Arab descent (in pink); AIPS assigned 2%
out of 3424 samples into Arab subpopulation, while AD-
MIXTURE with and without reference information in-
ferred 12 and 7% as Arab, respectively. In addition, we
compared the average of Avg%Correct with AIPS and AD-
MIXTURE among 22 European subpopulations. AIPS as-
suming 3 admixtures has correct classification rates
within 0.18–0.89 for inferring the correct ancestry
memberships whereas ADMIXTURE without refer-
ence information identifies within 0.09–0.56 among
22 European subpopulations (Additional file 2: Table
S4). AIPS identifies the genetic heterogeneity among
20 populations except CEU (0.34) and Italian (0.18)
while ADMIXTURE clusters 22 subpopulations into
10 subpopulations, presenting no distinction in small
genetic differences. Therefore, the assignment to



Table 2 The Average percent of correctly inferred proportions from AIPS, STRUCTURE, and ADMIXTURE

Given Pop Inferred Clusters Number of Individuals(np)

AIPS[3] NEa SEb GBc Russiad Arabe Basquef Jewg

NE 0.78 0.00 0.11 0.11 0.00 0.00 0.00 601

SE 0.00 0.68 0.04 0.00 0.08 0.12 0.08 100

GB 0.11 0.00 0.77 0.05 0.00 0.07 0.00 124

Russia 0.05 0.00 0.08 0.87 0.00 0.00 0.00 13

Arab 0.00 0.08 0.00 0.00 0.83 0.00 0.09 62

Basque 0.00 0.08 0.05 0.00 0.00 0.87 0.00 12

Jew 0.00 0.06 0.00 0.00 0.04 0.01 0.90 40

AIPS[4] NEa SEb GBc Russiad Arabe Basquef Jewg np

NE 0.74 0.00 0.10 0.11 0.00 0.05 0.00 601

SE 0.01 0.65 0.06 0.00 0.09 0.11 0.07 100

GB 0.11 0.00 0.76 0.05 0.00 0.09 0.00 124

Russia 0.05 0.00 0.08 0.83 0.00 0.04 0.00 13

Arab 0.00 0.07 0.00 0.00 0.80 0.05 0.08 62

Basque 0.04 0.08 0.05 0.00 0.00 0.83 0.00 12

Jew 0.00 0.05 0.00 0.00 0.04 0.04 0.87 40

STRUCTURE1 POP1 POP2 POP3 POP4 POP5 POP6 POP7 np

NE 0.07 0.13 0.21 0.10 0.14 0.09 0.26 601

SE 0.21 0.09 0.05 0.10 0.14 0.33 0.07 100

GB 0.07 0.28 0.11 0.09 0.13 0.11 0.22 124

Russia 0.10 0.04 0.06 0.10 0.34 0.04 0.33 13

Arab 0.64 0.04 0.03 0.09 0.07 0.11 0.01 62

Basque 0.08 0.22 0.03 0.10 0.05 0.35 0.16 12

Jew 0.25 0.04 0.03 0.54 0.05 0.07 0.02 40

STRUCTURE2 POP1 POP2 POP3 POP4 POP5 POP6 POP7 np

NE 0.93 0.03 0.03 0.00 0.00 0.00 0.00 601

SE 0.17 0.28 0.06 0.00 0.46 0.00 0.03 100

GB 1.00 0.00 0.00 0.00 0.00 0.00 0.00 124

Russia 1.00 0.00 0.00 0.00 0.00 0.00 0.00 13

Arab 0.00 0.89 0.00 0.00 0.11 0.00 0.00 62

Basque 0.64 0.27 0.09 0.00 0.00 0.00 0.00 12

Jew 0.00 0.00 0.00 0.00 1.00 0.00 0.00 40

ADMIXTURE1 POP1 POP2 POP3 POP4 POP5 POP6 POP7 np

NE 0.07 0.18 0.42 0.06 0.11 0.11 0.05 601

SE 0.11 0.07 0.05 0.37 0.12 0.12 0.15 100

GB 0.06 0.07 0.22 0.06 0.15 0.42 0.04 124

Russia 0.04 0.63 0.05 0.03 0.10 0.12 0.03 13

Arab 0.14 0.03 0.04 0.12 0.06 0.05 0.57 62

Basque 0.00 0.02 0.01 0.03 0.92 0.01 0.00 12

Jew 0.73 0.03 0.03 0.04 0.09 0.04 0.04 40

AIPS[3] NEa SEb GBc Russiad Arabe Basquef Jewg np

NE 0.82 0.00 0.09 0.08 0.00 0.01 0.00 601

SE 0.00 0.69 0.04 0.00 0.08 0.13 0.07 100

GB 0.12 0.00 0.79 0.02 0.00 0.07 0.00 124
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Table 2 The Average percent of correctly inferred proportions from AIPS, STRUCTURE, and ADMIXTURE (Continued)

Given Pop Inferred Clusters Number of Individuals(np)

Russia 0.07 0.00 0.05 0.88 0.00 0.00 0.00 13

Arab 0.00 0.07 0.00 0.00 0.87 0.00 0.07 62

Basque 0.02 0.05 0.06 0.00 0.00 0.86 0.00 12

Jew 0.00 0.05 0.00 0.00 0.04 0.00 0.91 40

Unknown 0.13 0.12 0.37 0.04 0.02 0.22 0.11 3424

ADMIXTURE1 POP1 POP2 POP3 POP4 POP5 POP6 POP7 np

NE 0.05 0.09 0.42 0.08 0.06 0.14 0.16 601

SE 0.05 0.08 0.06 0.41 0.21 0.11 0.08 100

GB 0.06 0.09 0.16 0.07 0.07 0.48 0.08 124

Russia 0.05 0.07 0.16 0.06 0.08 0.04 0.54 13

Arab 0.05 0.38 0.03 0.10 0.40 0.02 0.02 62

Basque 0.05 0.05 0.07 0.42 0.03 0.28 0.09 12

Jew 0.62 0.06 0.07 0.05 0.10 0.05 0.06 40

Unknown 0.12 0.08 0.16 0.14 0.12 0.26 0.12 3424

ADMIXTURE2 POP1 POP2 POP3 POP4 POP5 POP6 POP7 np

NE 0.00 0.00 0.00 0.00 0.00 1.00* 0.00 601

SE 1.00* 0.00 0.00 0.00 0.00 0.00 0.00 100

GB 0.00 0.00 0.00 0.00 1.00* 0.00 0.00 124

Russia 0.00 0.00 0.00 0.00 0.00 0.00 1.00* 13

Arab 0.00 0.00 0.00 1.00* 0.00 0.00 0.00 62

Basque 0.00 0.00 1.00* 0.00 0.00 0.00 0.00 12

Jew 0.00 1.00* 0.00 0.00 0.00 0.00 0.00 40

Unknown 0.14 0.13 0.08 0.07 0.31 0.18 0.09 3424

Note that superscripts a-g indicate the proportions inferred from each population centroid. Superscript1 and superscript2 are computed without and with population iden-
tities, respectively. The number in bracket presents the number of admixtures in AIPS. The italicized number presents the highest correct classification rates for each popula-
tion. *The ancestry inference with asterisk was obtained by supervised learning mode in ADMIXTURE, assigning 100% ancestry membership without further computation
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subpopulations by AIPS outperforms the commonly
used approaches, STRUCTURE and ADMIXTURE
with or without prior (reference) subpopulation
information.

Discussion
Population stratification in genome-wide association
studies can result in many false-positive discoveries and
mask the true associations [21]. Sometimes, genetic an-
cestry may not be available to the researchers and even
though available, it may not be accurate for the
underlying population genetic structure from self-
reported questionnaire. It is important to confirm if
self-reported ethnicity is correct and to infer the cor-
rect genetic ancestry of uncategorized individuals in
many scientific studies.
The most common tool for accounting for the con-

founding effects of population stratification is principal
component analysis (PCA). When the sample size is
small, applying PCA is simple. However, because gen-
omic high-throughput technologies are advancing, we
now have larger data sets that are more difficult to
analyze, especially related to inferring genetic ancestry.
The widely used tool for detecting and adjusting popula-
tion stratification is EIGENSOFT including two features;
EIGENSTRAT and smartpca. The downside to EIGEN-
SOFT is unable to provide correct ancestral origins
while AIPS enables one to predict ancestry memberships
with PCA scores as an input. The scores from PCA
explain the similar patterns between samples and the
eigenvectors called SNP weights (loadings) similarity be-
tween variables. Thus, the PCA scores can be used to
adjust for population structures and identify ethnic ori-
gins in GWAS.
There are two types of ancestry inference approaches;

distance-based and model-based approaches. STRUC-
TURE and fastSTRUCTURE are the typical example of
model-based approach. Model-based approach adapts
parametric model; Bayesian or maximum likelihood
method. For example, STRUCTURE uses the character-
istic set of allele frequencies, Hardy-Weinberg equilib-
rium and complete linkage equilibrium between loci
within populations to compute the ancestry inference in
MCMC algorithm. Alternative approaches based on
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distance (similarity) matrix are GSM, Spectral-GEM, and
FastPop. GSM and Spectral-GEM calculated the similar-
ity matrix based on IBS measures and distance between
two subjects that require computational intensity when
the sample size is very large. FastPop results in complex
computation and has not been established when infer-
ring genetic ancestry among more than 4 population
substructures. AIPS is a distance-based approach and
very straightforward to infer ancestry origins. It com-
bines two widely used statistical methods that are princi-
pal component analysis and spatial analysis. First, we
compute scores of individuals and the centroid of each
population in PCA and manipulate spatial information
to extract distance relationship information in spatial
analysis. The simplest spatial interpolation method, the
inverse distance weighted interpolation is applied. This
reveals the closeness between each centroid and score of
individual. The calculation is very simple and straightfor-
ward and consequently the computational speed is fas-
ter. AIPS is a similar method compared to other existing
population inference tools for estimating global ancestry
membership like fastSTRUCTURE, because the eigenvec-
tors from the covariance matrix are maximum likelihood
estimators [24, 29]. Nevertheless, AIPS is comparably
faster and achieves more accurate validation. For 952
samples using 25,732 ancestry informative markers, AIPS
finished the ancestry inferences in less than 5 min to get
principal components and less than 1 min to infer ances-
try memberships compared with 19–23 h required by
STRUCTURE, 3–4 h by fastSTRUCTURE for both 7 and
22 subpopulations, and about 20 min for 7 subpopulations
and 6.5 h for 22 subpopulations by ADMIXTURE. For
4376 samples, AIPS took about 1 h to compute principal
components and less than 2 min to make ancestry infer-
ences for both 7 and 22 subpopulations while ADMIX-
TURE required about 28 min with reference information
and about 5.5 h without reference information for 7 popu-
lations and 136.35 h without reference information for 22
populations. Furthermore, the heuristic ranks to closeness
among each centroid of subpopulation provide a reason-
ably geogenetic relationship map to assign the given large
subpopulations into the smaller clusters.
In this paper, we provide a distinct and reasonable

population inference framework that achieves better
accuracy comparable to STRUCTURE and fastSTRUC-
TURE with faster computational speed. While STRUC-
TURE and fastSTRUCTURE take quite long time to
infer individual’s ancestry membership, AIPS takes
about an hour to calculate the distance metrics of sub-
structures for ancestry inference among 4376 individ-
uals on 25,732 AIMs. In addition, AIPS allows one to
choose the number of admixtures and top ranked ei-
genvalues that reflect the proportion of total variance
explained by the eigenvectors. Plotting eigenvalues
indicates how many top ranked eigenvalues should be
included in the analysis.
If consortiums generate the large number of samples

and would like to perform consistent approach, comput-
ing and sharing SNP weights (loading) consisting of the
similarity in the markers (SNPs) on the specific set of
AIMs are recommended. SNP weights on specific AIMs
enable to predict the new variance components (scores)
in new data that improves the computational efficiency
and provide the consistent approach to perform multiple
independent analyses in the large consortia. We recom-
mend that the number of samples should be greater than
one of markers due to shrinkage issue. In the case of
analyzing genotyped data generated from same platform,
AIPS can predict scores of new samples projected from
SNP weights, which are eigenvectors, on the same
pre-defined AIMs. This is an efficient computational
framework to account for the confounding effects of
population stratification and infer individual genetic an-
cestry in large consortiums.
For illustration, we selected population substructures

in Europe. Europeans including European-Americans
are considered as a single ethnic group such as “White”
or “Caucasian” in many surveys [30]. In reality, Europeans
have historically diverse ancestry and their genetic struc-
ture is strongly correlated with their geographical location
[31]. We demonstrated intra-European analysis involving
4376 individuals on 25,732 intra-European AIMs. Among
them, 952 samples represented 22 ancestry-known sub-
populations. We presented the comparisons among AIPS,
STRUCTURE, and fastSTRUCTURE in graphical displays.
In addition, we reduced the number of subpopulations to
check the accuracy of ancestry classification. The reduced
7 clusters from 22 subpopulations within Europe are
clearly distinct as suggested by Hotelling’s T2 test. We
evaluated them with average of correctly inferred propor-
tions. AIPS improves the level of accuracy for inferring an-
cestry memberships.
Better implementation of AIPS benefits from the

choice of publicly available subpopulations. A pairwise
distance matrix obtained between each subject and cen-
troids of the known population substructures provides
more accurate and clearer interpretation of the under-
lying substructures.

Conclusions
Genome-wide association studies in the high-density
single-nucleotide polymorphism genotyping data have
identified thousands of common variants associated to
complex disease risks and traits. Because the frequency
difference in genetic population structure between cases
and controls due to systematic ancestry difference can
lead to false-positive results, an accurate inference of
genetic ethnic membership is extremely important in
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many biomedical research areas. Although a few applica-
tions for detecting stratification and estimating genetic
ancestry in population genetics have been developed, ap-
plying them to large genetic studies is challenging in
computational time and cost. Analyzing large genotyped
samples, which are becoming increasingly available, with
self-reported or unknown ancestry labels, AIPS can im-
prove accuracy in estimating ancestry memberships as
well as computation efficiency. The R-package AIPS will
be available for downloading at https://morgan.dart-
mouth.edu/~f000q4v/html/aips.html.

Additional files

Additional file 1: Supplementary Methods. Mathematical definition of
principal component analysis. (DOCX 20 kb)

Additional file 2: R-Supplementary Materials. The attached file includes
4 supplementary figures and 4 supplementary tables. Figure S1. CN.Euro
and CRus present centroid of known ancestry samples from Northern
Europeans and Russians, respectively. (a) With the first three scores from
PCA, individual A seems to be closer to Russian group on the proportion
of total variance explained by eigenvalues. (b) In the two dimensional
plot with the top two principal component scores, individual A seems to
be closer to N. European. Figure S2. Comparison of eigenvalues and top
3 principal components from AIPS and EIGENSTRAT. The options that
were set in EIGENSTRAT were numoutlieriter = 0;outliermode = 2(no
outlier removal) and in AIPS the option was method = eigen. Figure S3.
Graphical Comparison of Population Structure using AIPS among 22
European subpopulations. Only 952 known ancestry individuals were
used in 22 subpopulations within Europe. The scores from PCA were first
calculated then Inverse-Distance Weighted Interpolation without and
with eigenvalue weight were applied to infer the ancestry membership.
The number of admixture indicated the definition of admixture in AIPS.
Figure S4. Graphical Comparison of Population Structure using STRUCTURE
and fastSTRUCTURE among 22 European subpopulations. The inferences of
ancestry membership for 952 individuals were calculated by STRUCTURE
and fastSTRUCTURE. (a) The prior population information was not given to
compute inference of population membership using STRUCTURE. (b) To
infer the population membership within 22 Europe countries, the prior
population information was assigned in STRUCTURE. (c) fastSTRUCTURE was
applied to infer 22 European subpopulations with simple model. (d)
fastSTRUCTURE was used with logistic prior model. Table S1. Distance-based
clustering among 952 known and 3426 unknown ancestry Europeans on
25,732 AIMs. Table S2. Rank-based on Closeness among 22 European
subpopulations. Table S3. Distance between two centroids among
22 European subpopulations. Table S4. The Average Percent of Correctly
Inferred Proportions from AIPS and ADMIXTURE without Population Information.
(DOCX 922 kb)
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