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Abstract

Background: High-throughput sequencing (HTS) technologies are increasingly applied to analyse complex
microbial ecosystems by mRNA sequencing of whole communities, also known as metatranscriptome sequencing.
This approach is at the moment largely limited to prokaryotic communities and communities of few eukaryotic
species with sequenced genomes. For eukaryotes the analysis is hindered mainly by a low and fragmented coverage
of the reference databases to infer the community composition, but also by lack of automated workflows for the task.

Results: From the databases of the National Center for Biotechnology Information and Marine Microbial Eukaryote
Transcriptome Sequencing Project, 142 references were selected in such a way that the taxa represent the main
lineages within each of the seven supergroups of eukaryotes and possess predominantly complete transcriptomes or
genomes. From these references, we created an annotated microeukaryotic reference database. We developed a tool

called TaxMapper for a reliably mapping of sequencing reads against this database and filtering of unreliable
assignments. For filtering, a classifier was trained and tested on each of the following: sequences of taxa in the
database, sequences of taxa related to those in the database, and random sequences. Additionally, TaxMapper is part
of a metatranscriptomic Snakemake workflow developed to perform quality assessment, functional and taxonomic
annotation and (multivariate) statistical analysis including environmental data. The workflow is provided and
described in detail to empower researchers to apply it for metatranscriptome analysis of any environmental sample.

Conclusions: TaxMapper shows superior performance compared to standard approaches, resulting in a higher
number of true positive taxonomic assignments. Both the TaxMapper tool and the workflow are available as
open-source code at Bitbucket under the MIT license: https://bitbucket.org/dbeisser/taxmapper and as a Bioconda
package: https://bioconda.github.io/recipes/taxmapper/README.html.
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Background

Motivation and goals

Metatranscriptome sequencing of diverse ecosystems is
becoming a common methodology in many research
institutions, and large scale sampling campaigns such
as the Marine Microbial Eukaryote Transcriptome
Sequencing Project (MMETSDP, [1]) and the Tara Oceans
expedition [2] have contributed to a growing amount of
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available environmental sequencing data. However, the
analysis of the resulting short read sequences is still far
from routine, especially for unicellular eukaryotic organ-
isms, due to what was termed by Escobar-Zepeda et al.
as “the neglected world of eukaryotes in metage-
nomics” [3]. This is particularly severe since micro-
scopic eukaryotes (protists) constitute a paraphyletic
taxon [4] spread over the whole eukaryotic tree of life and
represent the bulk of most major groups, whereas mul-
ticellular lineages are confined to small corners [5]. Pro-
tists occur at high abundance in almost all habitats,
e.g. in freshwaters, oceans, biofilms and soils [2, 5-9].
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They maintain ecosystem functions, as they are respon-
sible for most planktonic primary production [10], are
the most important feeders of bacteria [7, 11] and key
players in the regulation of element cycling, particularly
carbon [7, 12].

Perhaps surprisingly then, protists are poorly cov-
ered by genomic reference databases despite their
broad diversity, and if at all, only few model species
are present. Therefore, most recent metatranscrip-
tome approaches were designed for prokaryotes, which
offer more complete databases (e.g. NCBI) in con-
trast to eukaryotes. Here, efficient mapping approaches,
such as BWA or Bowtie, and methodologies allow-
ing few differences to the reference sequences (e.g. k-
mer indices) can be used. It is frequently possible to
obtain taxonomic assignments even down to species
level.

In contrast, few genome sequences from eukaryotes
exist, and those that do are not well balanced across the
main lineages of the eukaryotic tree of life, and there-
fore do not reflect the diversity within these lineages.
The main focus of publicly available genomes lies on
the Opisthokonta (Fungi/Metazoa group), including many
animals, in particular model organisms, and Viridiplantae
(green plants, containing Streptophyta and Chlorophyta)
with an emphasis on crop plants. For example, in the
NCBI database the available genomes in these two groups
already represent 96% of the available genomes for
eukaryotes, whereas eukaryotic genomes represent 43%
of all genomes from the three domains (bacteria: 54%,
archaea: 3%, NCBI June 2017).

The diversity of microbial eukaryotes is strongly under-
represented and database searches that aim at an assign-
ment of metatranscriptomic reads on species level will,
for the most part, be incorrect. This is caused by the fact
that neither the species nor a close relative are included
in the database and by the disproportional coverage of
taxonomic groups leading to misassignments of reads to
incorrect taxa by chance. In addition, available databases
are often too large to be used in their entirety to map or
search with millions of metatranscriptomic sequences on
the read level.

A possible way out (taken here) is to restrict the tax-
onomic assignment to broader taxonomic groups, using
appropriate reference organisms for each group. In turn,
this requires a different approach to the similarity search,
allowing to find more distantly related sequences. Since
such similarity search tools are more time consuming, a
reasonable search time can only be obtained by restricting
the analysis to smaller reference databases.

Many existing approaches base their taxonomic assign-
ments on selected sequenced marker genes. However,
for a joint taxonomic and functional analysis (which
taxonomic group performs which functions?), it is

Page 2 of 17

necessary to assign each single read to a taxonomic group
and to a protein family.

Our goal was therefore to design, test and provide a
comprehensive tool and workflow for eukaryotic meta-
transcriptome analysis, encompassing everything from
preprocessing to integration of environmental data. A
large impediment, as already mentioned, was a missing
reference for the taxonomic assignment of sequences,
which we constructed for all major taxonomic groups
based on 142 publicly available transcriptomes and
genomes. Our tool TaxMapper assigns taxonomic infor-
mation to each read by mapping to the database using a
reduced amino acid alphabet, and subsequently filtering
of unreliable assignments. It is part of an automated rule-
based Snakemake workflow developed to perform quality
assessment and both functional and taxonomic annota-
tion, as well as (multivariate) statistical analysis including
environmental data.

In this work, we (i) describe the microeukaryotic ref-
erence database, (ii) present the TaxMapper software for
taxonomic mapping and filtering of reads, and (iii) provide
a detailed step-wise instruction on how to analyse meta-
transcriptomes from eukaryotic microorganisms using a
modular workflow.

Related work

Many metagenomic or metatranscriptomic analysis
tools and workflows were conceived for the analy-
sis of bacterial communities, like Leimena et al. [13],
CLARK [14, 15], GOTTCHA [16], Genometa [17],
MetaPhyler [18] or COMAN [19]. Others use a
subset of the sequences for taxonomic profiling of
metagenomes, such as MG-RAST [20], MetaTrans [21]
and EBI metagenomics [22] that analyse rRNA and
mRNA in samples. MetaPhlAn2 [23] and mOTU [24]
use a subset of marker genes for taxonomic profil-
ing and QIIME [25] uses Operational Taxonomic
Units (OTUs) to assign a taxonomy. Recent k-mer
based approaches such as Kraken [26], LMAT [27] or
DUDes [28] need a user-specified library of genomes
of species that are known to be present in the samples.
The last category of tools searches the NCBI database
to assign reads to taxonomical level after a BLAST-
like search, including MEGAN [29], SAMSA [30] and
Taxator-tk [31] or after a mapping with Bowtie2, e.g.
Centrifuge [32].

Implementation

Reference database

To counter-balance the uneven diversity of eukaryotic
microorganisms present in public databases, we construct
the TaxMapper reference database such that it evenly
includes genomic and transcriptomic sequences from all
eukaryotic supergroups and taxonomic groups.
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References from the databases of NCBI [33] and the
Marine Microbial Eukaryote Transcriptome Sequencing
Project [1] were selected based on the following criteria:
(i) The taxa represent the main lineages within each of
the seven supergroups of eukaryotes (see Fig. 1). (ii) Their
genomes or transcriptomes are mostly complete; i.e., we
excluded obviously incomplete datasets that consisted of
only some hundred sequences. We thus selected 142 tran-
scriptomes and genomes; the selection is described under
“Results”

The protein sequences of all reference genomes or tran-
scriptomes were downloaded, redundant sequences were
discarded for each species and the amino acid sequences
were used to build a database index.

TaxMapper

TaxMapper is designed to search sequence reads against
remotely similar hits in the compiled database and to fil-
ter out hits of questionable certainty. It consists of five
modules (search, map, filter, count, plot) that can be run
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individually with user defined parameters or as a single
step with default settings.

The initial search in the indexed database is con-
ducted for a single read file or forward and reverse
reads in parallel using the protein similarity search tool
RAPSearch2 [34] (v2.24, fast mode, using a loose E-
value cutoff of 10°, but restricted to the best 20 hits).
RAPSearch2 performs a fast similarity search in a reduced
amino-acid search space. The best 20 hits are returned
for each query (read) sequence and mapped to the 7
taxonomic supergroups and 28 main lineages. Two hits
are kept subsequently, the best hit (BH) and the next
best hit, according to E-value, that falls into another lin-
eage (next lineage hit, NLH). (Hits that are better than
the NLH and agree with the taxonomic group of the
BH are skipped). Forward and reverse results can be
combined by choosing either the option “best” to use
the better of both searches or “concordant’, where for-
ward and reverse have to map to the same taxonomic
group.
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Fig. 1 Taxonomy of eukaryotes. Taxonomy of eukaryotes with the supergroups and groups used in the reference database. Two remaining groups
combining small lineages are not depicted. Coloured with darker background is the diversity of the supergroups and groups computed as the
maximum Bray-Curtis dissimilarity over 4-mer spectra from the proteins of the reference genomes, as defined in [61]. Additionally, the mean
Bray-Curtis dissimilarity is indicated as a dashed line. The taxonomy is based on Boenigk and Wodniok [53]
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The filter idea behind TaxMapper is to assign taxonomic
information only if the NLH is considerably worse than
the BH. This means that only if the differences between
BH and NLH in mapping properties such as the E-value,
identity, alignment score etc. are large, the assignment of
the BH is regarded trustworthy and is returned; otherwise
no taxonomic group is ascribed to reduce wrong assign-
ments. The details of the filter approach are discussed
below (Subsection Filtering). Figure 2 illustrates the dif-
ference of this approach to other approaches that use only
the best hit or the lowest common ancestor (LCA) of sev-
eral hits. While the best hit approach returns just the
best hit, regardless of further results that might be equally
good, the lowest common ancestor approach returns the
lowest level in the taxonomic tree that the hits have in
common, which might be close to the root if the hits are
too diverse.

Subsequently, count matrices can be generated over
samples, summarizing the reads for all taxonomic groups
to apply total count normalization and plot community
compositions.

TaxMapper is implemented as a stand-alone tool in the
Python language (v3.5). The statistical model for the filter-
ing step (described below) was estimated using the gen-
eralized linear model function in R, applying maximum
likelihood estimation (MLE). However, R is not required
for running the TaxMapper software. TaxMapper can be
run either stepwise with user-defined settings or for eas-
ier handling in one analysis step with default parameters.
In the second case, just a folder of raw data in FASTQ
or FASTA format has to be provided and all results are
generated automatically. The analysis can be parallelized
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by declaring the number of threads to use and it is sug-
gested to run it on a multicore machine, compute cluster
or server for large datasets. In principle, it also runs on a
recent desktop computer or laptop with a quad-core CPU
and 16 GB RAM, but it is highly recommended to use
more cores and resources for faster analysis. To provide
an estimate on the processing time we report the times on
the holdout dataset using our setting with 20 threads. For
this dataset with 200 000 read pairs, all steps of TaxMap-
per take 32:49 minutes (wall clock time) on a server with
AMD Opteron processors (6176, 2.3 GHz) and 500 GB
of RAM. This corresponds to a user time (single thread)
of 182:18 minutes, whereof the search step takes longest
with 180:23 minutes. The 500 GB of available RAM were
not fully used. As mentioned above, 16 GB of RAM are
sufficient to run TaxMapper using 4 threads. It is recom-
mended to have enough storage available, if intermediate
results should be kept, since the mapping files contain up
to 20 hits per reads in the worst case increasing the file
size by a factor of up to 20. Running times and maximum
RAM usage are additionally reported in dependence of
the number of threads for the silver test dataset compris-
ing 6 samples of 100000 read pairs each, provided with
TaxMapper, see Fig. 3. The analyses were performed on
the same server as stated above. All threads were passed
to RAPSearch running in multi-threaded mode, samples
were analysed consecutively. In the provided workflow the
user can decide how to split up the threads, whether to
run several samples in parallel or provide the threads to
RAPSearch. For samples run in parallel the database needs
to be loaded repeatedly, which will increase the RAM
usage.

TaxMapper

higher tax.
groups

species

Best hit

A E-value, identity

Fig. 2 Differences between TaxMapper, LCA and best hit. Given the green leaves as possible hits, with the best hit circled in green, TaxMapper
compares the best hits on a higher taxonomic level (blue circle) and uses the better hit (blue node) if the differences between the hits are large
enough, while LCA is a bottom-up method that possibly returns the root of the taxonomy (red node) if the hits are too diverse
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Fig. 3 Performance curve on silver test dataset. (a) Processing time in minutes in dependence of used threads, from 2 to 30. (b) Maximum RAM

Filtering

The filtering step based on the best hit (BH) and the
nearest lineage hit (NLH) is a distinguishing feature of
TaxMapper. Since we found it impossible to separate cor-
rect from incorrect taxonomic assignments based on BH
and NLH E-values alone, we estimated a logistic regres-
sion model based on five BH/NLH properties:

percent identity of the BH,

ratio of percent identity between BH and NLH,
log;, E-value of BH,

difference in log;, E-values of BH and NLH,

the total size (in basepairs) of the BH’s taxonomic
group in the database

SR .

The taxonomic group size was added as an independent
variable in addition to the alignment statistics (E-value
and identity) to include the different number of sequences
per taxonomic group, which can bias hits toward more
abundant taxa in the reference database.

In general, the binary logistic model is used to estimate
the probability of a binary response y € {0, 1}, based on
one or more independent variables (x1,...,%,):

Py =1[x1,...,%) = 1/(1 4 e~ Porlu s (1)

Here the x; are the five hit properties described above,
and y = 1 corresponds to the event that the BH is a correct
assignment, whereas y = 0 means that the BH is an incor-
rect assignment. The goal is to search for values of the
coefficients § such that the probability P(y = 1| x) is large
when the hit properties x indicate that BH and NLH are

sufficiently different such that the taxonomic assignment
based on the BH is correct.

For estimating and testing the classifier, reads were cho-
sen from 18 species that are included in the reference
database and 17 species that are not included in the
database, but where the taxonomic lineage is known and
present in the database. Not all of the 28 groups could
be used, since for some groups all available species were
included in the database and further species for testing
were not obtainable.

We obtained raw transcriptomic reads, listed with
accession number in the Additional file 1. These were
paired-end sequenced on an Illumina sequencer with
a read length between 50 and 101 bp. Since for these
reads, we know the correct taxonomic origin, we sorted
them into two classes based on TaxMapper’s best hit
(BH) alone: correctly classified or misclassified. We ran-
domly chose 500000 correctly classified (true positive,
TP) and 500000 misclassified (false positive, FP) reads
as training data for estimating the model (see Fig. 4).
This dataset of one million reads was split into 20% hold-
out data and 80% training and test data. The training
and test data was again randomly split into 80% train-
ing and 20% test data 100 times to train and evaluate
the classifier using 100-fold Monte Carlo cross-validation.
In addition, in each cross validation round, the hold-
out data and randomly created reads were used to eval-
uate the classifier. Performance on the random reads
(which by definition have no relation to any database
sequence) allows us to estimate how well we are able to
reject sequences that are from none of the eukaryotic lin-
eages contained in the database. Results are given in the
“Results” section.
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Fig. 4 Classification scheme. One million reads from different taxonomic groups with 50% false positive and 50% true positive best hit assignments
were used. This dataset was split in 20% holdout data and 80% training and test data, of which again 80% were used to train and 20% to test the
classifier applying 100-fold Monte Carlo cross-validation. In addition, in each fold the holdout data and randomly simulated (nonsense) reads were

Workflow

A comprehensive workflow for metatranscriptome anal-
ysis was developed and made available in an executable
Snakemake-based workflow. Snakemake is a workflow
description language and execution environment devel-
oped by Koster et al. [35]. The workflow steps are defined
in terms of rules with input, output and Shell, Python
or R code. Dependencies between rules are automatically
resolved and rules are automatically parallelized where
possible. It features an easy to read, self-documenting syn-
tax which also serves for version and parameter tracking.
For the described workflow Snakemake version 3.9.1 was
used.

The workflow covers both taxonomic assignment of
each read (using TaxMapper) and functional assignment
(using RAPSearch2 on the UniProt database). Steps and
parameters can be adjusted using a provided configura-
tion file (config.yaml). The execution of each analysis
step can be “turned on/off” by stating the output of the
rules as input in rule all. Currently all outputs are added
to the rule all to run a complete analysis.

In the following, the most important rules and steps of
the workflow are explained. An overview is given in Fig. 5.

The steps of the bioinformatic workflow are specified
in the workflow management system Snakemake. Snake-
make rules describe how to create output files from
input files by executing commands on the input files.
The commands can also be run on single files in the

terminal, Python or R, but for automation, parallelization
and reproducibility of the workflow, Snakemake is used.
We briefly explain the Snakemake syntax here on a short
example Snakemake file:
rule all:
input:
“plots/dataset1.pdf”,
“plots/dataset2.pdf”

rule create_plots:

input:
“raw/{dataset}.csv”

output:
13 )

plots/{dataset}.pdf

shell:

“command {input} {output}”

The desired final outputs of the workflow are
described in the rule all, these are “plots/datasetl.pdf”
and “plots/dataset2.pdf” To create the plot,
a shell command in the rule create_plots on the
input “raw/{dataset}.csv’ to create the output
“plots/{dataset}.pdf” Snakemake determines the rule
dependencies by matching file names and automatically
fills the wildcard dataset with the correct names:
dataset]l and dataset2, that are expected as the input of
rule all.

we run
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merge
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Fig. 5 Snakemake workflow. Rules of the Snakemake workflow processing the FASTQ input files to the final output all

Preprocessing

The quality of raw sequencing reads is analysed using
the quality control tool FastQC [36]. It computes
various quality measures such as the base quality,
overrepresented sequences, read length et cetera. The
compressed FASTQ files are used as input and the
snakemake rule runs FastQC as a shell command on
the input. The wildcards sample and pair repre-
sent the sample name and forward and reverse read
respectively.

rule fastqc:
input:
“raw/{sample}_{pair}.fastq.gz”
output:
“results/fastqc/{sample}_{pair}_fastqc.zip”
shell:
“fastqc {input} —outdir=fastqc”
Identified low quality bases and sequencing adapters
can be removed with trimming tools such as cutadapt
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(v1.12, [37]). From the forward and reverse read, given as
input, the adapter beginning with ‘GATCGGAAGAGCA
and bases with a quality value below 20 are trimmed. If
the remaining read length is below 50, the whole read
will be discarded. All output files are saved in the folder
results/cleaned.

rule cutadapt:

input:
rl = “raw/{sample}_R1.fastq.gz”
r2 = “raw/{sample}_R2.fastq.gz”

output:
rl = “results/cleaned/{sample}_R1.fastq.gz”
r2 = “results/cleaned/{sample}_R2.fastq.gz”

shell:
“cutadapt -a ‘GATCGGAAGAGCA’ -q 20 -m 50 -o {output.rl} -p

{output.r2} {input.rl} {input.r2}”

Taxa identification

TaxMapper is used for the assignment and filtering of
taxonomic information. For brevity, the one-step ver-
sion is shown below, since it just needs an input
folder with all FASTQ files and parallelization is per-
formed within TaxMapper (here 20 threads are used via
option -t). We have to get the input folder from the
input files and provide an output file from TaxMapper as
output for snakemake. The expand command is used to
get a list of all input files by filling in the wildcards for
sample and pair, which are lists of all filenames and
forward and reverse reads provided in the configuration
file. The database index is created within the subwork-
flow taxonomy which is given as the input database. To
let Snakemake handle parallelization and provide user-
defined parameters, the workflow can also be run in five
successive steps: search, map, filter, count and plot (see
Fig. 5 TaxMapper box).

rule taxmapper:
input:
fastq = expand(‘‘results/cleaned/{sample}_{pair}.fastq.gz”,
sample=config[*‘samples”], pair=config[*‘pair”])
database = taxonomy(‘‘meta_database.db”)

output:
plot = “‘results/taxmapper/taxa_freq_norm_level2.svg”

run:
indir = os.path.dirname(input.fastq[0])
outdir = os.path.dirname(output.plot)
shell(“taxmapper run -d {input.database} -m 100 -f {indir} -t 20 -o

{outdir}”)
Functional annotation

RAPSearch (v2.24, [34]), a fast protein similarity search
tool, is used to search the read sequences in the Uniprot
database (release 2016_06) [38]. The Uniprot database
is downloaded and indexed as part of the workflow (in
a subworkflow termed uniprot). The similarity search is
performed with default parameters and the best hit is
returned. Via a Uniprot identifier mapping file, obtained
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from the Uniprot database, KEGG (Kyoto Encyclopedia of
Genes and Genomes, [39]) Orthology identifiers can be
assigned to the query sequence.

Additional rules are used to shorten the output and
combine the forward and reverse read mapping (see
Fig. 5 Uniprot box). The input FASTQ files have to be
first extracted from the gz archive to use them as input
for RAPSearch2, then they are searched against Uniprot
returning the alignments of the best hit or no result for
each read.

rule search_uniprot:
input:
uniprotdb = uniprot(‘“‘uniprot_sprot.db”),
reads = ‘“cleaned/{sample}_{end}.fastq.gz”

output:
align = “results/uniprot/{sample}_{end}_aligned.aln”
threads: 10
run:
out = os.path.splitext(output.align)|[0]
shell(“zcat {input.reads} | rapsearch -q stdin -d {input.uniprotdb}
-0 {out} -z {threads} -b1-v0-p T-t q”)

Statistics and downstream analysis

Subsequent statistical analyses depend on the type of
study and question. Since it is not always possible or
intended to perform e.g. differential expression analysis,
we included several possible rules in the workflow. All of
the rules execute R code that is longer than a couple of
lines and therefore not depicted here.

Existing rules include a differential expression analysis
given different conditions using the Bioconductor package
edgeR (v3.14.0, [40]), ordination analyses such as principal
component analysis and redundancy analysis using the R
package vegan (v2.3-4, [41]) and KEGG pathway analyses
with the R packages GAGE (v2.21.1, [42]) and pathview
(v1.9.0, [43]).

Results

Reference database

According to our criteria, 142 reference sequences were
selected for the TaxMapper reference database (for details
see Additional file 2). These references belong to the seven
supergroups of eukaryotes, including 28 main lineages. In
accordance with the taxonomy published by Boenigk and
Wodniok [44] and with the tree of life project [45], we
chose different levels of each lineage to cover their molec-
ular and functional diversity. Figure 1 and Table 1 give an
overview.

The supergroup Amorphea consists of two main lin-
eages, the Opisthokonta (Holomycota and Holozoa) and
Amoebozoa. Additionally, the small phylum Apusozoa is
considered as a likely paraphyletic sistergroup of the Opis-
tokonta [46, 47]. In the database the Amorphea are repre-
sented by 27 reference taxa. 19 taxa are affiliated with the
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Table 1 Number of taxa in used taxonomic groups

Supergroup Group Number of taxa
Alveolata 26
Apicomplexa 4
Chromerida 2
Ciliophora 8
Dinophyceae 11
Perkinsea 1
Amorphea 27
Amoebozoa 7
Apusozoa 1
Choanoflagellida 2
Fungi 6
Metazoa 9
Opisthokonta Rest 2
Archaeplastida 22
Chlorophyta 12
Glaucocystophyceae 2
Rhodophyta 3
Streptophyta 5
Excavata 9
Euglenozoa 4
Fornicata 2
Heterolobosea 2
Parabasalia 1
Hacrobia 11
Cryptophyta 4
Haptophyta 7
Rhizaria 7
Cercozoa 3
Foraminifera 4
Stramenopile 40
Bacillariophyta 15
Bigyra 4
Chrysophyceae 6
Pseudofungi 3
Stramenopile Rest 12

Bold numbers: number of taxa used for each supergroup; non-bold: number of taxa
used for each taxonomic group in the reference database

Opisthokonta, including fungi representing the Holomy-
cota, and Eumetazoa, Choanoflagellida (Choanomonada)
and basal Opisthokonta, e.g. Filastera and Ichthyosporea
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here called Opisthokonta Rest, as representatives for the
Holozoa. The Amoebozoa contain 7 reference taxa includ-
ing lobose Amoebae, Archamoebae and Mycetozoa (slime
moulds). One reference taxa is included for the phylum
Apusozoa.

The supergroup Excavata is a very diverse group that
can be summarized into two main groups, the Discoba
including the lineages Euglenozoa, Heterolobosea and
Jakobida as well as the Metamonada including the lin-
eages Parabasalia and Fornicata. Many species of this
supergroup are parasites [5] but some taxa e.g. most
Euglenida are free-living and often occur in freshwater
[48]. In the database the Excavata are represented by 9
reference taxa affiliated with Euglenozoa, Heterolobosea,
Parabasalia and Fornicata. Due to few available tran-
scriptomes of this supergroup in public databases and
the focus on free-living taxa, only few references could
be added.

The supergroup Archaeplastida includes three main
lineages, the species-poor Glaucophyta (Glaucocysto-
phyceae), the mostly marine Rhodophyta and the species-
rich Viridiplantae (Chlorophyta, Streptophyta). Particu-
larly the Chlorophyta are important primary produc-
ers in freshwater habitats [49]. Therefore, Archaeplas-
tida are represented by 22 reference taxa affiliated with
Chlorophyta, Streptophyta, Rhodophyta and Glauco-
cystophyceae.

The supergroup Rhizaria is a diverse group and consists
of two main lineages, Cercozoa and Retaria (Foraminifera
and Radiolaria). Cercozoa are very abundant in soil but
can also occur in freshwaters and marine habitats [50].
In the database Rhizaria are represented by only 7 taxa
belonging to Cercozoa and Foraminifera as there are only
a few sequenced species available in public databases,
particularly from Cercozoa.

The supergroup Alveolata is a very diverse group. It
consists of three main lineages, Ciliophora, Apicomplexa
and Dinophyta. Further, the smaller lineages Chromerida,
Colpodellids and Perkinsea are affiliated with the Alve-
olata. Ciliophora and Dinophyceae can occur in high
abundances and are important predators of other pro-
tists [51, 52]. Due to their importance and diversity they
are covered by a high number of reference taxa (26)
in the database: Ciliophora, Apicomplexa, Dinophyceae,
Chromerida and Perkinsea.

The supergroup Stramenopiles is a very diverse group
including many lineages which can be summarized into
three groups, the Pseudofungi, the heterotrophic Bigyra
and the plastid bearing Ochrophyta [53]. Some of these
lineages, e.g. Bacillariophyta and Chrysophyceae, are very
abundant in freshwater habitats [49, 51]. They are impor-
tant primary producers and predators of bacteria. There-
fore, we covered this group by a high number of 40
reference taxa. Pseudofungi were included as well as
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Bigyra summarizing the three lineages Bicosoecida,
Blastocystis and Labyrinthulida. The Ochrophyta are
represented by the two abundant freshwater groups
Bacillariophyta and Chrysophyceae and a collection of
other reference taxa affiliated with several Stramenopile
lineages called Stramenopiles Rest.

An additional “group” in the eukaryotic tree of life
are the incertae sedis Eukaryota which include amongst
others the Hacrobia (Cryptophyta, Haptophyta) [5]. The
evolutionary position of theses taxa is still uncertain as
the phylogenetic position differs depending on the studied
organism and genes. In the database Hacrobia are repre-
sented by 11 reference taxa, affiliated with Cryptophyta
and Haptophyta.

The database is available as a FASTA file in a sep-
arate Bitbucket repository at https://bitbucket.org/
dbeisser/taxmapper_supplement/src/master/databases/
taxonomyy/.

Evaluation of the filtering step

After training the classifier to reject assignments of train-
ing reads whose best hit misses the correct taxonomic
group, we evaluated the performance on the test, random
and holdout dataset.

The results are depicted as receiver operating charac-
teristic (ROC) curves in Fig. 6 A and compared based
on the area under the curve (AUC) and accuracy (ACC)
in Table 2. Shown are true positive rate (TPR) and false
positive rate (FPR) of TaxMapper results varying over the
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cutoff for the probability P(y = 1|x1,...,5). Results are
also given when no logistic model, but a simple E-value
cutoff for the best hit, is used.

TaxMapper vyields superior results, especially in the
desired area with low false positive rates, and an AUC of
0.90-0.91 in contrast to 0.84 for the simple E-value cutoff
method. The highest accuracy of 0.84 was obtained for a
probability cutoff of 0.38 and 0.40 for TaxMapper (test and
holdout data, respectively). The best accuracy (0.79) for a
simple E-value cutoff lay below —0.92 (log;, E-value).

A false positive rate below 0.1 could be obtained with
a probability cutoff of 0.58 or log;, E-value below 1.66.
Obviously, in the random dataset only the number of false
positives can be reduced, resulting in the best accuracy of
1.0 for a probability cutoff of 1.0, filtering out all reads. But
as shown in Fig. 6 b and c, the accuracy increases rapidly
and a low false positive rate below 0.1 is already obtained
with an average probability cutoff of 0.29 (see Fig. 6 and
Table 2).

Evaluation of TaxMapper against other tools

The processing time and results of TaxMapper were com-
pared to the tools Taxator-tk [31] and Centrifuge [32], to
our knowledge the only tools that can be run on a server
and assign sequences to a taxonomy on read-level (see
Fig. 7). Both tools were run with default parameters and as
described in the manual. The non-redundant NCBI index
was used as a reference for Centrifuge as provided by the
authors. For Taxator-tk the provided refpacks could not
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Table 2 Evaluation of TaxMapper. Comparison of area under the ROC curve (AUC) and accuracy (ACC) for the E-value cutoff (test data)
and TaxMapper on test, holdout and random data. The cutoffs leading to the best results in ACC and a false positive rate below 0.1 are

shown below

Method Simple £-value cutoff TaxMapper test TaxMapper holdout TaxMapper random
AUC 0.84 091 0.90 NA

ACC 0.79 0.84 0.84 1.00

Cutoff for best ACC -0.92 038 0.40 1.00

Cutoff for FPR < 0.1 1.66 0.58 0.58 0.29

be used, since they focus on prokaryotic taxa, therefore
a refpack using the NCBI nr database was built accord-
ing to the instructions on the website. The search step of
Taxator-tk utilises a blastn or LAST [54] search against
the NCBI non-redundant nucleotide database. Due to the
long running time, only the holdout data with 200000
reads was tested. Overall, Taxator-tk using the Megan
algorithm [29] takes 3980:13 minutes, Centrifuge takes
15:07 minutes and TaxMapper 32:49 minutes (wall clock
time) on a server with AMD Opteron processors (6176,
2.3 GHz) using 20 threads. This corresponds to a user time
of 182:18 minutes for TaxMapper, of which the search

step takes longest with 180:23 minutes. Centrifuge uses
the fast mapping algorithm Bowtie2 [55] to map the reads
against the NCBI database. The drawback is that Bowtie2
allows few mismatches and therefore reads map only to
very similar sequences. If the organism or a close rela-
tive is not contained in the database, a taxonomy cannot
be assigned, leading to many unclassified reads for this
method. The Megan algorithm of Taxator-tk uses BLAST,
therefore only few reads are unclassified, but the majority
map to the root node of the taxonomy, due to the low-
est common ancestor approach described in Fig. 2. The
original algorithm developed for Taxator-tk is optimized
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Fig. 7 Comparison to other tools. Shown are the results obtained on the holdout dataset using the tool Centrifuge, TaxMapper and Taxator-tk with
the Megan algorithm and the required wall clock time in brackets (run with 20 threads in parallel). Depicted are the number of reads resulting in a
true positive (TP) assignment, false positive (FP) assignment, unclassified taxonomy, reads mapping to the root of the taxonomic tree and filtered
(removed) reads by TaxMapper
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for longer reads, starting with 500 bp, and was not used
here. TaxMapper results in the highest number of true
positive assignments and the lowest number of false posi-
tives. Results where the taxonomic assignment of the best
hit was unresolvable, due to a low certainty and high sim-
ilarity to another taxonomic group, were removed in the
filter step.

Example application: silver dataset

To showcase an application, the metatransciptome work-
flow was run on a subset of sequencing data from a study
published in 2014 by Boenigk et al. [53]. In brief, a short-
term silver exposure experiment was conducted on nine
20 L plastic tanks containing water from a natural plank-
ton community from an eutrophic pond at the campus
Essen of the University Duisburg-Essen. The nine tanks
were divided into three experimental groups (control, sil-
ver nitrate and silver nanoparticle exposure) with three
replicate tanks each. The subsample used here contains
the control samples and the silver nitrate samples. The
metatranscriptomic workflow was applied to analyse the
functional and taxonomic differences between the treat-
ments. Figure 8 A depicts the community compositions
with the largest changes visible in the groups Bacillario-
phyta and Chlorophyta. The taxonomic changes are also
depicted in the PCA in Fig. 8 B, separating on the second
principal component the control samples from the sam-
ples treated with a sublethal silver concentration of 5 pg/L.
On the functional level a test for differential expression
reveals 34 KEGG orthologous genes that differ signifi-
cantly (FDR <0.1) between the two groups and show an
enrichment of photosynthesis pathways. It is known that
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silver ions affect the primary metabolism in particular
photosynthesis by direct interference [53, 56]. On the
other hand, it has been shown that for low concentra-
tions of silver green algae grows is increased as observed
in Fig. 8 A [57].

A subset of this study with the first 100000 reads
per FASTQ file is provided with the workflow as test
dataset.

Discussion

Related work

Metatranscriptome workflows

Existing metatranscriptome workflows often focus on
bacterial composition: Leimena et al. [13] describe in
detail an analysis pipeline for prokaryotic datasets.
SAMSA [30] is also a metatranscriptome analysis pipeline
which is mostly suited for prokaryotes because of its use
of the NCBI RefSeq database. COMAN [19] maps meta-
transcriptome reads to bacterial reference genomes, and
MetaTrans [21] assigns a taxonomy based on prokaryotic
16S rRNA.

Other studies construct pipelines for subparts of
the analysis, including Goncalves et al. [58] who con-
structed an R-based pipeline for pre-processing, quality
assessment and expression estimation of RNA sequence
datasets, and Marchetti et al. [59] who provide an R pack-
age for differential expression analysis of metatranscrip-
tome sequences starting from a count matrix of genes
and a phylogenetic annotation. For our purposes, these
approaches have two disadvantages: (i) they provide no
complete executable workflow, or (ii) the available work-
flow parts cannot be easily adapted to eukaryotic data.
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Metatranscriptome analysis tools

Similarly, many metagenomic or metatranscriptomic
analysis tools were conceived for the analysis of bac-
terial communities. For example, CLARK [14, 15] is a
tool for the taxonomic classification of metagenomic
reads using known bacterial genomes. GOTTCHA [16]
is a taxonomic profiler that uses non-redundant sig-
nature databases for prokaryotic and viral genomes.
Genometa [17] is a Java program to identify bacterial
species and gene content from high-throughput datasets.
MetaPhyler [18] estimates bacterial composition from
metagenomic samples.

Others use a subset of the sequences for taxonomic pro-
filing of metagenomes. Web-based solutions are provided
by MG-RAST [20] and EBI metagenomics [22] that auto-
matically analyse rRNA and mRNA in submitted samples.
MetaPhlAn2 [23] and mOTU [24] use a subset of marker
genes for taxonomic profiling. QIIME [25] uses Opera-
tional Taxonomic Units (OTUs) to assign a taxonomy.

A user-specified library of genomes of species that are
present in the samples has to be provided for recent pro-
grams utilizing k-mers such as Kraken [26], LMAT [27] or
DUDes [28]. For environmental data, this is not possible,
the programs are better suited for laboratory experiments
with low-complexity communities of known species or
strains or for the detection of specific organisms in a
sample, e.g. related to a disease.

Another category of tools searches the NCBI database
to assign reads to a taxonomic level after a BLAST search,
including MEGAN [29] and Taxator-tk [31] or after a
mapping with Bowtie2, e.g. Centrifuge [32].

For our purposes, we found that each existing tool
exhibited a shortcoming that rendered it unsuitable for the
read-level assignment of taxonomic and functional infor-
mation to microeukaryotic sequences. We summarize our
requirements versus the properties of existing tools in
Table 3.

The tools Taxator-tk and Centrifuge were selected for
a comparison since they seemed to be the most suit-
able for our purposes. They directly work with mRNA
reads and search the complete NCBI database, which in
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principle includes eukaryotic sequences. Additionally, two
search strategies are represented by using them, BLAST
and Bowtie2. We found that on the holdout dataset, their
performance was low. Searches with Bowtie2 allow few
mismatches, and therefore reads map only to sequences
of closely related species which are rare for microeukary-
otes in NCBI. The drawback of the Megan algorithm of
Taxator-tk is a high assignment to the root node of the tax-
onomy, due to the lowest common ancestor approach and
unspecific hits to sequences contained in NCBI. The orig-
inal algorithm developed for Taxator-tk is optimized for
longer reads, starting with 500 bp, and could not be used
for Illumina reads.

Limitations and recommendations

Other datatypes

The intended use-case for our tool and workflow are
metatranscriptomic high thoughput sequencing studies
for microeukaryotes. This implies that eukaryotic mRNA
was obtained by RNA extraction and polyA selection. As
a result, rRNA, prokaryotic mRNA and other small RNA
should be removed or strongly reduced in the library.
For low-complexity communities with known species,
rRNA degradation could also be an option to remove
rRNA from the samples and keep prokaryotic sequences,
but from our experience this may lead to a high abun-
dance of prokaryotic sequences with few eukaryotic reads.
To use TaxMapper on such samples, we recommend to
first filter out prokaryotic reads and then use TaxMap-
per on the remaining reads. Without splitting the dataset,
the analysis will be more time-demanding and may lead
to false assignments of prokaryotic reads to eukaryotic
reference sequences. We assessed the performance with
default parameters on prokaryotic metatranscriptome
samples by using 200000 reads from a simulated com-
munity containing bacteria, fungi and viruses by Jeremy
Cox et al. [60]. 86% of the transcripts were removed and
2% assigned to micro-fungi; therefore without a strict
cut-off we would have around 12% false assignments
of prokaryotic sequences to eukaryotic references in
this dataset.

Table 3 Issues with properties of existing approaches. Properties of existing approaches versus requirements for microeukaryotic

environmental sequence analysis

Property Existing approaches Requirements
Organisms Prokaryotic Eukaryotic
Taxonomic assignment from Marker genes All reads

Taxonomic assignment on Species level
Type of tool
Similarity to reference High
Search method

Database size Large

GUI, webservice

Mapping with BWA, Bowtie2

Higher taxonomic level
Stand-alone, workflow

Low

Variant-tolerant local alignment

Small = midsize
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Likewise, our tool was not intended for metagenome
analyses. It is expected to perform well on protein cod-
ing regions, but due to the protein reference sequences,
the taxonomic and functional assignment will fail for non-
coding and intronic regions. Since it is out of the scope
of this paper, we did not test the performance using
metagenomic samples.

We also did not test the metatranscriptome analy-
sis using long read data. Currently, we consider the
sequence output of nanopore technologies as too low
for metatranscriptome studies. In the future, this will
likely change, and in principle, TaxMapper has no restric-
tions on the length of the reads. It is already possible to
search with longer sequences and provide FASTA files as
input.

Functional assignment

In contrast to the evaluation of the taxonomic assign-
ment method, we did not rigorously test the other steps
of the workflow, e.g. the functional assigment and statis-
tical methods. Since the workflow combines well-known
and commonly used methods, we refer to the original
publications of the methods for an evaluation (see sub-
section Workflow in the Methodology). Concerning run-
ning time, the functional assignment takes about 20%
of the time of the taxonomic assignment. If parts of
the analysis workflow are not required, they may be
“turned off” (see subsection Workflow in the Method-
ology) to save time. The functional analysis is currently
limited to a search in the Uniprot database. Uniprot IDs,
gene symbols and KEGG Orthology IDs are reported
if these are available. The direct assignment of reads
to KEGG pathways is only possible if a KEGG license
is available. The create_kegg_mapping subworkflow cre-
ates a KEGG mapping if the path to a local KEGG
database is provided, otherwise this part will be skipped.
Please note, that the KEGG pathways analysis is based
on the R packages gage and pathview, which retrieve
necessary information from the KEGG database. A warn-
ing is issued upon execution that non-academic users
may require a KEGG license agreement. Overall, with
standard RAPSearch parameters we obtain for the sil-
ver dataset on average an assignment of 27.9% of the
reads to Uniprot IDs, 23.7% to gene symbols and 16.6%
to KO IDs. A higher coverage would also be desirable
here, this will hopefully increase in the future with a
rising number of sequenced and annotated eukaryotic
genomes.

Database

When new sequences become available which further
complete the diversity of the eukaryotic supergroups,
an update of the database will be released. In par-
ticular, the Excavata and Rhizaria should be extended
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in future versions, for which at the moment only few
appropriate genomes or transcriptomes are present. This
might lead to a higher number of unassigned reads to
these taxonomic groups. Missing lineages include rep-
resentative taxa of the Jakobida (Excavata; Discoba),
Radiolaria (Rhizaria; Retaria) and Colpodellids (Alveo-
lata). Additionally, some lineages of the Eukaryotes incer-
tae sedis e.g. Katablepharids and some small groups
that have only few genera e.g. Nucleariids (Amor-
phea) are also not yet contained in the reference
database.

Conclusions

Despite the large number of tools developed for tax-
onomic analyses, the majority of them aims at differ-
ent sequencing data (e.g. rRNA, contigs) or organismic
groups (prokaryotes) and does not allow a combined
functional and taxonomic analysis of metatranscrip-
tomic data. We therefore developed the presented
tool TaxMapper to work in conjunction with a con-
structed microeukaryotic reference database for taxo-
nomic assignment, and included the taxonomic analysis
in a complete workflow for metatranscriptomic sequence
analysis.

The smaller, but more appropriate reference for protists,
allows a faster search than a comparable search against
whole NCBI.

False positive assignments can be filtered using a
probability cutoff on a logistic regression model based
on features of the best hit and next lineage hit,
which vyielded better results than a simple E-value
cutoff.

TaxMapper can be run straightforwardly on a folder of
sequencing data or as part of the Snakemake workflow.
The workflow performs quality assessment, functional
and taxonomic annotation and (multivariate) statistical
analyses using available environmental factors or different
sample groups. The provided workflow ensures a repro-
ducible analysis which can be easily extended to new
samples.

Availability and requirements

The data and software are available at Bitbucket https://
bitbucket.org/dbeisser/taxmapper, https://bitbucket.org
/dbeisser/taxmapper_supplement and as a Bioconda
package: https://bioconda.github.io/recipes/taxmapper/
README .html.

Project name: TaxMapper

Project home page:
https://bitbucket.org/dbeisser/taxmapper
Operating system(s): Linux
Programming language: Python
License: MIT
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Additional files

Additional file 1: Validation taxa. Information on taxa used for evaluating
the logistic regression model. (CSV 3 kb)

Additional file 2: Taxa contained in reference database. Information on
taxa contained in reference database, including taxonomic affiliation,
accession number and database. (CSV 14 kb)
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