Cros et al. BMC Genomics (2017) 18:839
DOI 10.1186/512864-017-4179-3

BMC Genomics

Genomic preselection with genotyping-by- ® e
sequencing increases performance of
commercial oil palm hybrid crosses

David Cros' @, Stéphanie Bocs'~, Virginie Riou', Enrique Ortega-Abboud'?, Sébastien Tisné', Xavier Argout’,
Virginie Pomiés', Leifi Nodichao®, Zulkifli Lubis®, Benoit Cochard® and Tristan Durand-Gasselin®

Abstract

Background: There is great potential for the genetic improvement of oil palm yield. Traditional progeny tests allow
accurate selection but limit the number of individuals evaluated. Genomic selection (GS) could overcome this constraint.
We estimated the accuracy of GS prediction of seven oil yield components using A x B hybrid progeny tests with almost
500 crosses for training and 200 crosses for independent validation. Genotyping-by-sequencing (GBS) yielded +5000
single nucleotide polymorphisms (SNPs) on the parents of the crosses. The genomic best linear unbiased prediction
method gave genomic predictions using the SNPs of the training and validation sets and the phenotypes of the training
crosses. The practical impact was illustrated by quantifying the additional bunch production of the crosses selected in the
validation experiment if genomic preselection had been applied in the parental populations before progeny tests.
Results: We found that prediction accuracies for cross values plateaued at 500 to 2000 SNPs, with high (0.73) or low (0.28)
values depending on traits. Similar results were obtained when parental breeding values were predicted. GS was able to
capture genetic differences within parental families, requiring at least 2000 SNPs with less than 5% missing data, imputed
using pedigrees. Genomic preselection could have increased the selected hybrids bunch production by more than 10%.

Conclusions: Finally, preselection for yield components using GBS is the first possible application of GS in oil palm. This

will increase selection intensity, thus improving the performance of commercial hybrids. Further research is required to
increase the benefits from GS, which should revolutionize oil palm breeding.
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Background

Genomic selection (GS) is an efficient method of
marker-assisted selection to improve quantitative traits
[1]. It uses a statistical approach that gives the genomic
estimated genetic value of the candidates for selection
usually without phenotypic data records but genotyped
at high marker density. The prediction model is cali-
brated with the phenotypic data records and the geno-
types of individuals that formed the “training set”. The
key factor that determines the way GS can be imple-
mented in practice is its accuracy, which is defined as
the correlation between the predicted and the true
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(unknown) genetic value of the candidates for selection.
The commercial cultivars of many plant species are hy-
brids [2]. Empirical estimates of GS accuracy for hybrids
have been obtained, particularly for major crops in-
cluding maize, rice, and wheat [3-7], showing the
good potential of GS for hybrid breeding (see Zhao
et al. [8] for a review).

Cultivated oil palm (Elaeis guineensis) is a hybrid crop
and is among the most economically important agricul-
tural plant species in the world. Palm oil production is
currently over 60 Mt. [9], making it the number one
vegetable oil worldwide. There is high potential for the
genetic improvement of yield in oil palm, as it has only
been the subject of a few generations of modern breed-
ing. Breeding of this diploid species relies on sexual
reproduction and reciprocal recurrent selection (RRS)
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between heterotic groups A (mostly from Asia) and B
(from Africa). The commercial cultivars are A x B hy-
brids [10, 11]. Candidates for selection are traditionally
evaluated in progeny tests to estimate their general com-
bining abilities (GCAs, i.e., half breeding values in hy-
brid crosses), upon which the selection is based. Progeny
tests are required as some yield components have a low
heritability [12], and because parental performances may
be poor indicators of the performance of the hybrid due
to gene-frequency differences between parental popula-
tions and non-additive effects [13, 14]. The progeny tests
enable highly accurate selection, but also have draw-
backs that constrain the rate of genetic gain. Indeed,
they lead to a selection phase that takes place years after
reproductive maturity, thereby increasing the generation
interval to around 20 years. In addition, the difficulty
and costs associated with these long term evaluations
limit the number of individuals evaluated, resulting in
low selection intensity. In this context, the potential
of GS for palm oil yield is high, and has been con-
firmed in the few previous studies dealing with GS in
this species [15-19].

Nevertheless, the empirical GS studies published in oil
palm so far [17-19] suffered from some limitations.
First, like in many studies in other crops, they used sin-
gle datasets which can bias accuracies upwards [20-22].
Also, using the common cross-validation approach to es-
timate GS accuracy with a single dataset, like in Cros
et al. [17], artificially reduces the size of the training set
compared to when the method is implemented in prac-
tice. Indeed, this approach requires that individuals be
left out of the training set so they can be used for valid-
ation, whereas in real life, the genomic model would be
trained using the whole dataset. In addition, Cros et al.
[17] and Marchal et al. [18] used low density genome
coverage with simple sequence repeat markers (SSR),
whereas a high throughput genotyping method would be
required for large scale genotyping of selection candi-
dates. Genotyping-by-sequencing (GBS) is an appropri-
ate and cost effective way to achieve this goal [23]. GBS
relies on the sequencing of the genome regions delim-
ited by the restriction site of enzymes used to reduce
genome complexity [24]. GBS enables multiplexed se-
quencing and can easily be applied to large populations,
scoring thousands of SNPs. In oil palm, the only study
using GBS indicated it was an efficient genotyping ap-
proach for quantitative trait loci (QTL) detection [25].
Finally, as in many GS papers, these empirical studies
only focused on GS accuracy and did not investigate the
additional gain that could result from the actual use of
GS in a breeding scheme.

The present study had two goals: (i) to obtain empir-
ical GS prediction accuracies for unobserved oil palm
hybrid crosses that are more relevant for the practical
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implementation of the method than the previous accur-
acies published for this species, and (ii) to quantify the
additional genetic gain that could have been obtained in
the hybrid crosses selected from the validation progeny
tests if the A and B parental populations had previously
undergone genomic preselection.

In detail, to reach our first goal, we trained the GS
model with the data of all the individuals progeny tested
in the most recent breeding cycle of the PalmElit com-
mercial breeding program, and validated it with an inde-
pendent dataset of progeny tests. The phenotypic data
were collected in field trials comprising A x B oil palm
hybrid crosses planted in two sites in Indonesia. The
almost 500 hybrid crosses planted in Site 1 were used to
train the GS model that predicted the genetic value of
around 200 crosses planted in Site 2, as well as the
GCAs of their 67 A and 42 B parents (validation sets).
The study considered seven traits that are key compo-
nents of palm oil yield. The A and B parents of the
crosses were genotyped by GBS, resulting in 5092 SNPs
in Group A individuals and 8311 SNPs in Group B. To
reach our second goal, we considered FFB (fresh fruit
bunches, or annual cumulative bunch production) and
used the empirical values estimated in Site 2 for this
trait, i.e. the prediction accuracies of genomic and
phenotypic selection and the genetic variances of paren-
tal populations. From these values, we ran a simulation
in which 5000 A and 5000 B individuals were subjected
to two breeding approaches: a conventional RRS mim-
icking the actual implementation of Site 2 progeny tests,
i.e. 125 individuals chosen per group (without preselec-
tion on FFB) and progeny tested, and an alternative gen-
omic approach in which the 125 progeny tested
individuals per group were preselected on their genomic
estimated GCA for FFB.

Methods

General overview

The empirical estimation of the GS prediction accuracies
took place in two steps: (i) computation of reference
cross values and reference parental GCAs from Site 2
using TBLUP, traditional (i.e. pedigree-based) best linear
unbiased predictor methodology, and (ii) prediction of
these reference values with the genomic BLUP (GBLUP)
GS mixed model, and with PBLUP, a pedigree-based
model used as control.

In the first step, reference cross values were obtained
from the observed cross values with adjustment to re-
move the effects of the experimental design (trial, block,
etc.). For this purpose, we used the phenotypic data from
Site 2 and a linear mixed model (TBLUP, see mixed
model analyses section below). The reference cross
values were defined as the sum of the GCA of their A
and B parents and the specific combining ability (SCA,
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corresponding here to the dominance effect) of the
crosses. Here, the goal was to obtain reference cross
values as close as possible to the observed values avoid-
ing any possible bias due to the experimental design. For
this reason, relationships between parents were not
taken into account (i.e. we assumed independence
among the parents of each group and among hybrid
crosses) to avoid shrinkage of the parental GCAs to-
wards family means. The reference parental GCAs were
obtained with the same model but using genealogical
coancestries (i.e. kinships) between parents, ie. in the
same way as the GCAs were obtained before the gen-
omic era [26]. The reference cross values and the refer-
ence parental GCAs were the values to be predicted
with GBLUP and PBLUP in the second step.

In the second step, GBLUP was used with the pheno-
typic data from Site 1 and molecular data from Sites 1
and 2 to predict the cross value of the hybrid crosses at
Site 2, as well as the GCAs of their A and B parents.
PBLUP was applied like GBLUP but using pedigree data
instead of molecular data when computing coancestries
between individuals. The goal of PBLUP was to assess
the usefulness of marker data, in particular their ability
to capture genetic differences within full-sib families of
parents (i.e. Mendelian segregation terms), which is ne-
cessary because the aim of oil palm breeding is to select
the best individuals in the best families [27]. As PBLUP
only used pedigrees to model genetic covariances be-
tween training and validation individuals, it cannot ac-
count for the Mendelian sampling term and predicted
identical GCAs to parental full-sibs in the test set. Thus,
PBLUP only differentiated parental families, not individ-
uals within families. PBLUP was therefore used as a con-
trol method to allow us to check whether GBLUP is able
to account for Mendelian sampling terms in addition to
family effects. The A and B parents of the training and
validation crosses formed two complex populations with
high relatedness but with some variation in this param-
eter, which reflects the way GS could be implemented in
oil palm to predict the cross value of hybrids obtained
by mating individuals that could be related to the train-
ing individuals to different degrees (full-sibs, half-sibs,
progeny, cousins, etc.).

Two types of GS prediction accuracies were computed:
(i) the prediction accuracy of cross values, defined as the
correlation between the reference value of the hybrid
crosses and their genomic estimated value, and (ii) the
prediction accuracy of GCAs in each parental group,
equal to the correlation between the reference GCAs
and the genomic estimated GCAs.

From these results, we simulated large A and B popu-
lations of selection candidates (with genetic variances
obtained from Site 2 data) and two breeding approaches
aiming at improving FFB in hybrid crosses. First, we
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simulated the conventional RRS methodology that was
used to set up Site 2 progeny tests, in which progeny
tested A and B individuals can be considered as random
samples of the populations of candidates in terms of FFB
(i.e. no preselection for this trait), and GCA selection ac-
curacies are high (with actual values obtained from
TBLUP analyses at Site 2). Second, we simulated RRS
with genomic preselection prior to progeny tests, using
the GS prediction accuracies obtained in the first part of
the study.

Breeding populations

Group A was mostly made up of Deli individuals. The
Deli breeding population originated from four ancestral
oil palms planted in 1848 in Indonesia. The population
was selected for yield at least in the early twentieth cen-
tury and inbreeding was commonly used, by selfing or
by mating related selected individuals [12]. Group A also
included individuals from the Angola population result-
ing from material collected before the 1950s. Group B
was made up of several breeding populations of African
origin. The La Mé population originated from Cote
d'Ivoire, Yangambi and Lisombe Kinshasa from Democratic
Republic of the Congo, Sibiti from Republic of the Congo
(although related to Yangambi). The African populations
also derived from a few founders collected during the first
half of the twentieth century. In particular, the La Mé popu-
lation originated from three individuals and the Yangambi
and Sibiti populations originated from about 10 individuals
[28]. African populations were also subject to inbreeding
and selection for yield. Additional file 1: Table S1 lists the
number of A and B individual progeny tested per parental
group in the two sites, as well as their status (genotyped or
not, present in only one site or in both). Regarding the
training crosses, the 150 Group A parents were from Deli
(139) and Angola (11) populations, and the 156 Group B
parents originated from La Mé (112), Yangambi (24),
Lisombe Kinshasa (8), La Mé x Yangambi / Sibiti (7) and
Nigeria x Yangambi (5). Regarding the validation crosses,
the 67 Group A parents were of Deli (60) and Angola x
Deli (7) origin, and the 42 Group B parents of La Mé (18),
Yangambi (15), Nigeria x Yangambi (4), La Mé x Yangambi
/ Sibiti (4) and Lisombe Kinshasa (1). The pedigrees were
known over several generations, and are shown in
Additional files 2 and 3: Figures S1 and S2, for groups A
and B, respectively (with training individuals in blue and
validation individuals in red). In Group A, the mean max-
imum genealogical coancestry [29] between each validation
individual and the training individual (f),,, v.1), ranged
from 0 to 0.75 (average 0.25), and 60% of the validation in-
dividuals had a f;,,., v.T of 0.25, i.e. had at least one full-sib
or a first generation parent in the training set. In Group B,
Sfrmax v ranged from 0 to 0.77 (average 0.49). The validation
sets were therefore closely related to the training set, which
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corresponds to the way GS would be applied in oil palm
breeding to predict the breeding value of individuals of the
same generation or of the following generation compared
to the progeny tested individuals (or the genetic values of
crosses between them).

Table 1 shows the distribution of crosses among
Group A x Group B populations.

Experimental design

Both sites are located in North Sumatra, on the SOC-
FINDO Aek Loba estate. Site 1 (Aek Loba Timur) is
located 2° 39" North — 99° 42" East and Site 2 (Aek
Kwasan division VI) 2° 38" North — 99° 37" East, at a
distance of around 9 km between the two sites. Both
sites are located around 50 m above sea level. They both
have deep well drained soils developed over reworked
Toba Tuffs (haplic arenosols and dystric cambisol types
in Site 1 and haplic acrisols type in Site 2). The same
standard cultural practices were used in both sites, and
the same protocol was used for recording data.

The crosses were A x B hybrids planted in fields from
1986 to 2003 (Site 1) and from 2005 to 2010 (Site 2), in
standard trials for the evaluation of oil palm crosses, i.e.
randomized complete block designs with five or six blocks,
or in balanced lattices of rank four or five. Additional file 1:
Table S1 summarizes the characteristics of the experimental
designs in the two sites. The data from Site 1 are also de-
scribed in detail in Cros et al. [17] and Marchal et al. [18].
The total number of crosses in Site 2 was 433 with data for
bunch production (393 for bunch quality) but only 199
(198) were used as the validation set, the others being ex-
cluded because they were also present in Site 1 (9 crosses)
or because their parents were not genotyped. All the data
used were collected on tenera (thin-shelled commercial
type) individuals. The crosses were produced by mating A
and B parents planted at SOCFINDO or at CRAPP (Pobe,
Bénin) using incomplete factorial mating designs. The plant
material belongs to the PalmElit (www.palmelit.com)
breeding program. PalmElit is a leading oil palm
breeding and seed production company.
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Phenotypic data

Phenotypic data on hybrid individuals were available for
three bunch production traits: annual cumulative bunch
production (FFB, in kg), annual cumulative bunch num-
ber (BN) and annual average bunch weight (ABW, in kg)
and for four bunch quality traits: fruit-to-bunch ratio
(FB, in %), pulp-to-fruit ratio (PF, in %), oil-to-pulp ratio
(OP, in %) and oil extraction rate (OER, in %). OER is
the percentage of oil in the bunch and is the product of
FB, PF and OP. FFB and BN data were collected at
10 day intervals. ABW is obtained by dividing FFB by
BN. Data from palms aged three to seven were used for
bunch production traits. Data from palms aged five and
six were used for bunch quality traits. The coefficients of
variation and skewness (asymmetry of the distribution)
of cross values adjusted for experimental design were
similar among sites for all traits (Table 2), indicating that
phenotypic variation was consistent across sites. Between-
site phenotypic correlations were estimated on the
nine crosses common to both sites. The correlations
were on average 0.78, ranging from 0.45 (FB) to 0.96
(BN), indicating that genotype-by-environment inter-
actions were negligible.

Molecular data

DNA extraction was performed by ADNid (www.adnid.fr)
on lyophilized tissue from the youngest opened leaf of
each individual, using a modified mixed alkyltrimethylam-
monium bromide (MATAB) protocol. GBS was con-
ducted on the DNA extracts by a company called
DArT (www.diversityarrays.com) using their DArTseq™
protocol [30], which combined complexity reduction
of the genome and next generation sequencing [24, 31].
DNA samples were processed in digestion/ligation reac-
tions mainly as per Kilian et al. [30] but using two adap-
tors corresponding to the Psfl and Hhal restriction
enzyme overhangs and moving the assay on the sequen-
cing platform as described by Sansaloni et al. [32]. The
Pstl-compatible adapter was designed to include the
lumina flowcell attachment sequence, the sequencing

Table 1 Distribution of crosses among Group A x Group B populations in both sites

Site 1 (training) Site 2 (validation)
Group A Group A
Angola Deli Angola x Deli Deli
Group B Lisombe Kinshasa 0 28 0 2
La Mé 34 (33) 294 (285) 17 88
La Mé x Yangambi / Sibiti 0 25 0 8
Nigeria 0 18 0 0
Nigeria X La Mé 0 0 0 9
Yangambi 0 98 10 65 (64)
TOTAL 497 (487) 199 (198)
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Table 2 Coefficient of variation (CV) and skewness in the two
sites and between-site correlations for the reference (adjusted
for experimental design) cross values of the seven traits studied.
Correlations were computed over the nine crosses common to
both sites

ABW BN FFB FB PF OoP OER

CV Site 1 90% 83% 58% 29% 38% 35% 64%
CV Site 2 90% 93% 50% 11% 1.7% 17% 27%
Skewness Site 1 144 —067 001 -034 -024 -026 -044
Skewness Site2 147 —024 -022 -007 =100 -034 -065
Correlation 085 09 081 045 076 094 063

primer sequence and the “staggered”, varying length bar-
code region, similar to the sequence reported by Elshire
et al. [24]. The reverse adapter contained the flowcell
attachment region and the Hhal-compatible overhang se-
quence. Only PstI-Hhal mixed fragments were effectively
amplified in 30 rounds of PCR using the following reac-
tion conditions: (1) 94 °C for 1 min, (2) 30 cycles at 94 °C
for 20 s, 58 °C for 30 s, 72 °C for 45 s and (3) 72 °C for
7 min. Next, PCR equimolar amounts of amplification
products from each sample in the 96-well microtiter plate
were bulked and applied to c-Bot (Illumina) bridge PCR
followed by sequencing on Illumina HiSeq2500. Single
read sequencing was run for 77 cycles.

The GBS analysis pipeline implemented in Tassel GBS
version 5.2.29 [33] was used to call SNPs according to
the parameters listed in Additional file 4: Table S2. From
the total number of good barcoded reads (152,020,019
out of 238,493,056), the pipeline found 476,589 tags,
aligned with Bowtie2 software. The tag mapping and the
polymorphism calling identified 109,201 polymorphic
sites. The data were further processed with VCFtools
[34]. Indels and SNPs that were not biallelic were dis-
carded. Data points with a sequencing depth of less than
five were set to missing. SNPs with more than 50% miss-
ing data were discarded. Using a custom R script [35],
the SNPs appearing as outliers in terms of mean depth
(i.e. higher than 500) were discarded, as it was assumed
this could indicate duplication in the genome. This re-
sulted in 19,432 SNPs. The molecular dataset was split
into two, one for Group A and the other for Group B.
The SNPs that mapped on the unassembled part of the
genome were discarded, as the imputation of sporadic
missing data required known positions. Mendelian seg-
regation between parents and offspring was checked and
the inconsistent data points were set to missing. The
SNP homozygotes or with more than 5% of Mendelian
inconsistencies in a parental group were discarded from
this group. This resulted in 5092 SNPs in Group A and
8311 in Group B.

The average distance between adjacent SNPs was
132,297 bp in Group A and 81,289 in Group B.
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Additional files 5 and 6: Figures S3 and S4 show the
physical map of the SNPs in the two groups. The depth
per data point was on average 69.8 in Group A (range
5-2588) and 78.9 in Group B (5-3177). The mean depth
per SNP was 65.4 (7-507) in Group A and 74.5 (6.9—
782.6) in Group B. The mean minor allele frequency
(MAF) was 0.15 (0.002-0.5) in Group A and 0.16
(0.003-0.5) in Group B. The percentage of missing data
was on average 13.2% (0%—90.4%) in Group A and 14%
(0%—96.3%) in Group B (see distributions in Fig. 1).
Missing SNP data was imputed with BEAGLE 4.0 36, 37],
with the following parameters: burn in-its = 6, impute-
its = 15, window = 300 and overlap = 10.

Molecular coancestries between genotyped individ-
uals were calculated according to Lynch [38] and Li
et al. [39]. For each validation individual, the max-
imum coancestry with the training individuals was
computed, and the mean value over all the validation
individuals was calculated.

Mixed model analyses
The different mixed models (TBLUP, GBLUP and PBLUP)
were of the form:

Y = XB +Zb + Zag, + Zpgg + Zpsap + € (1)

where Y is the vector of the phenotypes of the hybrid in-
dividuals, B and b are the vectors of fixed and random
effects due to the experimental design, respectively, X
and Z their associated incidence matrices, g4 and gg are
the vectors of GCA of parents A and B, respectively, syp
is the vector of SCA of crosses, Z,, Zg and Zp their in-
cidence matrices and e is the vector of residual effects.
The random genetic effects followed the model of Stuber
and Cockerham [40] for hybrid crosses, with g4 ~ N(0,
ojA x T4), g ~ N(O, U;B x I'g) and s ~ N(0, 02 x I'p),
where o7 and o are the additive variances of the A
and B parents in A x B hybrid crosses, respectively, 07 is
the variance of the dominance effects in the A x B popu-
lation, and Ty, I'g and I'p are the matrices of known
constants used to define the covariance among GCAs of
a given parental group and between SCAs (see below).
Fixed effects were overall mean, “trial”, “block” and,
for bunch production traits, “age”. Random effects asso-
ciated with the experimental design were “elementary
plots”, “individual” and, for bunch production traits,
interaction “age*cross” (“a*sap”) and, for lattice trials,
“incomplete block”. The “incomplete block” and “elem-
entary plot” effects were nested in “block” and “trial”.
The random experimental design effects followed a nor-
mal distribution N(0, ¢® x I), where I is the identity
matrix and ¢” the associated variance, with the exception
of a*s,p that followed N(O, ai* 2 X 1 ® I'p). The errors e

followed N(0, 0% x I), where o2 is the residual variance.
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Variance parameters were estimated by restricted max-
imum likelihood (REML) and solutions of the mixed
models were obtained by resolving Henderson’s mixed
model egs. [41], using R-ASReml version 3.0 [35, 42].

Computation of reference cross values and reference GCAs
for site 2 (TBLUP)

When TBLUP was used to estimate reference hybrid
cross values, I'y and I's were identity matrices (I'y = 1,
FB = I)

When TBLUP was used to estimate reference parental
GCAs, IT'y = 0.5A, and I'y = 0.5Ag, where A, and Ap
were the genealogical relationship matrices computed
from the pedigree of the group, with elements 2f,,
where f,, is the coefficient of coancestry between indi-
viduals x and y. With TBLUP, the Y vector contained the
phenotypic data of Site 2 and the I'y and I'y matrices in-
cluded only the individuals progeny tested in Site 2.

The dominance relationship matrix I'p was obtained
as I'p = T'x ® I'p, i.e. with elements I'p,p, .1 = {LauuTBos}
giving the coefficient of fraternity between two hybrid
crosses involving a and a4’ parents from Group A and b
and b’ parents from Group B (i.e. crosses a x b and
a’ x b’), as A and B individuals are not related [40, 43].

The reference cross value for cross a x b was ob-
tained from the solutions of the mixed model, as
8a() T 8B(b) T SAB(ab)-

The proportion of dominance variance between
crosses over the total genetic variance between crosses
was calculated for Site 2 from the TBLUP model includ-
ing genealogical information. It was obtained as the ratio
of SCA variance to the sum of SCA and GCA variances:

(Tr(Ep)/na)o%y/ ((Tr(Cp) /1a)o% + (Tr(Ta) /)% + (Tr(Ts)/ms) o) ,
with 7y, ng and np the order of the matrices I'y, I'y and
I'p, respectively.

Genomic prediction model (GBLUP) and control pedigree-
based model (PBLUP)

By contrast with TBLUP, the Y vector used in GBLUP
and PBLUP contained the phenotypic data from Site 1,
and the 'y and I'g matrices included the individuals
progeny tested in both Site 1 and Site 2.

For PBLUP, we used I'y = 0.5A4 and I'g = 0.5A3.

For GBLUP, the I'y and I'y matrices were obtained
from marker data but as some progeny tested individuals
were not genotyped, their pedigree coancestry had to be
combined with the molecular coancestry of the geno-
typed individuals. For parental Groups A and B, T.
inverse (with . denoting the parental group) was built as
follows [44, 45]:

0

.1 = (05A)" + )
( ) 0 G. - (0.5A.)7"

where G. is the genomic coancestry matrix and A.y the
genealogical relationship matrix of the genotyped indi-
viduals. The additive genomic relationship matrices G.
were computed according to the standard approach of
VanRaden [46] and Habier et al. [47].

The dominance relationship matrices I'p were ob-
tained as previously described (I'p = T'a ® I'p).

In order to investigate the usefulness of estimating the
dominance effects (SCAs), the predicted cross values
where obtained with or without SCA, i.e. for a cross a x b,
the predicted cross value was (i) 84(a) + 8B(n) + SAB(ab) OF

(ii) Baa) + BBb)-

Prediction accuracies

The validation crosses were initially divided into six random
sets of equal size, and for each validation set, the prediction
accuracy for cross values was obtained as the Pearson correl-
ation between the reference and the predicted cross values.
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GCA prediction accuracy was obtained as the Pearson
correlation between the reference and the predicted GCAs
on the 67 Group A individuals and 42 B available for
validation, with no replicates due to small population sizes.

Varying factors affecting prediction accuracies

In order to investigate the effect of taking pedigree infor-
mation into account when imputing the missing molecu-
lar data with BEAGLE 4.0, the imputation step was
carried out with and without the pedigrees. In order to
assess whether using the pedigree affected prediction ac-
curacy, a Student’s t-test with paired data was performed
for each trait on the six replicates of the cross value pre-
diction accuracies obtained with all SNPs.

To investigate the effect of marker density on predic-
tion accuracy, we varied the number of SNPs used to
construct the genomic matrices of GBLUP from 200
SNPs to 3000 (using the same number simultaneously in
both parental groups). For a given level of SNP density,
we made 26 replicates of random samples of SNPs, using
the same replicates for all the traits. To assess if GBLUP
and PBLUP led to significant differences in cross values
prediction accuracies, an analysis of variance (ANOVA)
was performed for each trait and SNP density with the
following factors: prediction method (GBLUP and
PBLUP), set of hybrid crosses (from one to six) and, for
GBLUP, replicates of the SNP subset (from 1 to 26).

In order to study whether filtering SNPs based on
their percentage of missing data affected prediction
accuracies, the variation in the number of SNPs was
also implemented using the SNPs with the lowest per-
centage of missing data, with three replicates of ran-
dom SNPs with same percentage of missing data for
each level of numbers of SNP. An ANOVA similar to
the one explained above was performed to assess
whether the effect of SNP filtering minimized the per-
centage of missing data on the prediction accuracies
of the cross values.

An overview of the method used to obtain the
empirical GS prediction accuracies is presented in
Additional file 7: Figure S5.

Quantifying the impact of genomic preselection on hybrid
performances for FFB

For each parental group, the true (g’), reference (gA' TBLUP)

and genomic estimated GCAs (g’ GeLup) of the 5000 indi-
viduals that comprised the populations of candidates were
jointly simulated from a multivariate normal distribu-
tion with the mvrnorm R function [48], with ' denot-
ing the fact that these parameters relate to the
populations of parents of the hybrid crosses planted
in Site 2, which was used to evaluate the impact of
genomic preselection. This simulation required the
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variance-covariance matrix between g’, g rpLup and

g GgeLup for the two groups and the mean FFB value
of the hybrid crosses planted in Site 2 over the 3-
7 vyear production period (pppg). The variance-
covariance matrices were:

Uz' Cov(g Tm.up:gv) Cov(gcm_whg)
Cov(g"g'TBLm,) a?’mup CDV(gA'GBLllP*gA'TBLuP)

> -~ -~ 2
Cav(g <,g'GBLup) Cov(g"lBLuPﬂg’GBLLll’) %
which were obtained as described below.

The variance of the reference GCAs of the individuals

tested in Site 2, 0% and 0% , were the variance
§ TBLUPA £ TBLUPB

of the 67 and 42 GCAs estimated by the previously de-
scribed TBLUP analysis of Site 2 for groups A and B
parents used for validation, respectively. The variances

of the genomic estimated GCAs, o% and 0% ,
& GBLUPA & GBLUPB

were obtained similarly from GBLUP with all SNPs.
From the TBLUP analysis, for groups A and B we com-

puted the selection accuracy r( gA'TBLUP, g’') associated
with the progeny tests, i.e. the correlation between the
true GCAs and their estimated values from progeny
tests (i.e. reference GCAs). This was obtained as the
mean selection accuracy of the 67 A and 42 B individuals,
computed from the prediction error variances as described
in Marchal et al. [18]. The variance of the true GCAs of the
individuals tested in Site 2, o}, and oy, , were obtained

using the formula [[49], appendix 1]: aév =o% /r
8 TBLUP

~ 2
(g'TBLUP,g'> . The A and B GS prediction accuracies

g GBLUP’ g rpLup) were taken from the GBLUP re-
sults with all SNPs, and were converted into selection
accuracies using the formula [[50], p. 618, [51], p. 94]:
(8 GeLue 8") = (8 GeLup: 8 tBLUP) / 7(8 TBLUP 8-

For RRS, the 125 A individuals and 125 B included in
the progeny tests were randomly chosen from the popu-
lations of candidates. For RRS with genomic preselec-
tion, the 125 A individuals and 125 B individuals
included in the progeny tests were those with the high-
est genomic estimated GCA among each population of
candidates. To investigate how the number of A and B
candidates subjected to genomic preselection affected
the performance of the selected hybrids, we first consid-
ered 125 candidates per parental population and then
increased the number from 250 to 5000, with a step of
250. For each level of number of candidates, 20,000 rep-
licates were made by generating random populations of
candidates for each replicate.

For both breeding schemes, we selected the 10 best A
parents and 10 best B parents on their GCA for FFB
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estimated from the progeny tests. We considered the
selected hybrids were the 100 possible A x B crosses be-
tween the selected A and B individuals, and their genetic
value was computed as the sum of the true GCA of their
A and B parents (after centering around zero) plus ggp.
The two approaches were compared based on the per-
formance of the hybrids selected using genomic pre-
selection pggrrrs-gp) minus the performance of the
hybrids selected without genomic preselection psgyrrs),
expressed in percentage of pgerrs), With the formula:
100 x (HSEL(RRS»GP) - HSEL(RRS)) / HUSEL(RRS)-

All analyses were conducted using R software version
3.3.1 [35].

Results

Empirical GS prediction accuracies of unobserved oil palm
hybrid crosses

Molecular coancestries between training and validation
individuals were similar in Group A and Group B, the
mean value of the maximum molecular coancestries
between validation individuals and training individuals
being 0.42 (range 0.38-0.48) in Group A and 0.44 (0.40—
0.47) in Group B.

Using the pedigrees when imputing the missing SNP
data increased the prediction accuracy of cross values
for two traits, OP (oil-to-pulp ratio) and FFB (fresh fruit
bunches), but did not affect the other traits (see Fig. 2,
showing the results with all SNPs). For OP, the predic-
tion accuracy increased by 4.0% (P = 0.007) and for FFB,

2 1.0 — Imputation:
3 without pedigree
g ® with pedigree
2 08— s
g > ns
= *% *%
o
& 0.6
8 ns
3
Q
®
0.4 —
S ns
3 ns
3
s 02—
o
-]
@
O 00—
=z m m TN Qa v
% o0 ™ (TH o o) w
< = O
trait
Fig. 2 Prediction accuracies of cross values of the genomic model
(GBLUP) according to the imputation method and trait concerned.
Imputation was made with BEAGLE 4.0 without (light grey) and
with- (dark grey) pedigrees. All SNPs were used for predictions.
Significance of paired Student's t test: ** P < 001, ns not significant.
Values are means over six sets of training crosses

Page 8 of 17

by 3.1% (P = 0.006). For the remainder of the study, we
consequently only used the molecular dataset imputed
with the pedigree. In this case, GBLUP prediction accur-
acy for cross values using all SNPs varied from high to
low depending on the trait, from 0.78 + 0.08 (SD over
the six sets of hybrid crosses) for BN (bunch number) to
0.27 + 0.1 for PF (pulp-to-fruit ratio).

The prediction accuracies of the cross values were the
same whether or not the predicted cross values included
the SCA (specific combining ability) term. This was the
case for all traits, marker densities and models (GBLUP
and PBLUP) (not shown). The proportion of SCA vari-
ance between crosses in total genetic variance between
crosses reached a maximum for FB (32.4%), followed by
OER (26.0%), PF (8.9%), OP (8.5%) and ABW, BN and
FFB (< 1% for the three of them). For the remainder of
the study, we only present the results obtained for cross
values prediction accuracies when the SCA term was
not used in the prediction.

Prediction accuracy increased with the number of SNP
and reached a plateau starting between 500 SNPs (ABW
and BN) and 2000 (FB), depending on the trait. When 200
SNPs were used, the prediction accuracy of the cross
values ranged from very low to intermediate (0.04 + 0.05
for FFB to 0.50 + 0.12 for ABW) (Fig. 3). For ABW, BN,
FFB and OP, with GBLUD, significantly higher prediction
accuracies were obtained than prediction accuracies with
PBLUP, using at least 2000 SNPs for ABW, 350 for BN
and FFB and 1000 for OP (for ABW, the non-significant
difference obtained with all SNPs was caused by the re-
duced power to detect significant differences in this case,
resulting from the smaller number of replicates compared
with when random subsets of SNPs were made, and from
the small magnitude of the difference). The trait for which
GBLUP outperformed PBLUP the most was FFB, with
GBLUP prediction accuracy of 0.66 when using all SNPs,
i.e. 80% higher than with PBLUP, followed by OP (0.65,
+19.3%), BN (0.78, +6.7%) and ABW (0.73, +2.3%) (Fig. 3).
For PF and OER, GBLUP and PBLUP gave the same pre-
diction accuracies. FB was the only trait where PBLUP
was significantly more accurate than GBLUP even when a
large number of SNPs was used, as GBLUP prediction ac-
curacy was 10.3% lower than PBLUP.

The variation in GS prediction accuracy for intermedi-
ate marker densities indicated that some SNP subsets en-
abled higher prediction accuracy than when all the
markers were used (not shown). Defining subsets of SNPs
with the lowest percentage of missing data increased
GBLUP prediction accuracy in one trait, PF (Fig. 4). For
this trait, using 500 to 3000 SNPs led to GBLUP predic-
tion accuracy higher than when the SNPs were randomly
sampled. With 1500 to 3000 SNPs, the increase reached
17.6% and was highly significant (P < 0.001). The accuracy
of GBLUP with SNP subsets minimizing the percentage of
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Fig. 3 Mean prediction accuracy over six replicates of hybrid crosses, when predicting cross values of Site 2 using a model calibrated on Site 1,
using GBLUP (solid line) and the control PBLUP (dashed black line). The last level of the number of SNPs (6702) is the mean number of SNPs in
Group A and Group B. Significance of ANOVA for prediction model: *** P < 0.001, ** 0.001 < P < 0.01, * 0.01 < P < 0.05, ns not significant. Values
are means over n = 26 random marker subsets (except when using all the markers, n = 1)

missing data was then also higher than PBLUP accuracy
(+13.2%), although the difference was not significant. In
the other traits, this method of SNP sampling led to pre-
diction accuracies with 1500 to 3000 SNPs similar to ran-
dom sampling. The method led to very low percentages of
missing data in both parental groups, ranging from 0% to
less than 2% when the number of SNPs varied from 200
to 3000 (Fig. 5). The best way to define SNPs for GS was
therefore to use at least 2000 SNPs with the lowest per-
centage of missing data. From Fig. 1, this could be
achieved by discarding the SNPs with more than 5% miss-
ing data.

The GCA prediction accuracies were higher in Group
A than in Group B, except for FB (Fig. 6). They ranged
from -0.05 to 0.85, depending on the trait, SNP density,
and the parental group. They started plateauing at 350
SNPs (OP in Group A, ABW and BN in Group B) to
3000 (ABW, BN and FB in Group A), depending on the
trait and parental group. Using all SNPs, they ranged
from 0.16 for OP in Group A to 0.85 for BN in Group
B. The prediction accuracies of the cross values were
usually closer to the GCA prediction accuracies obtained
in Group B than in Group A. In particular, the GCA
prediction accuracy in Group A for FFB and OP was
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Fig. 4 Mean prediction accuracy over six replicates of hybrid crosses,
when predicting cross values of Site 2 using a model calibrated on
Site 1 for the PF trait, using GBLUP with random subsets of SNPs
(solid black line), SNP subsets minimizing the percentage of missing
data (red line) and control PBLUP (dashed line). The last level in the
number of SNPs (6702) is the mean number of SNPs in Group A and
Group B. Significance of ANOVA for method of SNP sampling:
*** p < 0001, * 001 < P < 0.05, ns not significant. Values are means
over n = 26 replicates of random marker subsets, n = 3 when minimizing
percentage of missing data and n = 1 when using all the markers

much lower than in Group B or than the prediction
accuracy of the cross values. In Group A, the relative
performance of GBLUP and PBLUP in terms of GCAs
prediction accuracy was similar to that observed with
prediction accuracies of the cross values for most of the
traits, except for OP and FB. For OP, GBLUP with all
SNPs was much less accurate than PBLUP in predicting
GCAs (-52.1%) whereas it was more accurate for cross
values. For FB, GBLUP with all SNPs was 24% more
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accurate than PBLUP for GCAs but less accurate than
PBLUP for cross values. In Group B, the relative per-
formance of GBLUP and PBLUP in terms of the predic-
tion accuracy of GCAs was similar to that observed with
the prediction accuracies of cross values for all traits.

Impact of genomic preselection on hybrid performances
for FFB

The variances of the true GCAs of FFB of the 67 A and
42 B validation individuals, aé , were 21.6 in Group A

and 56.4 in Group B. For the same individuals, the selec-
tion accuracy of the GCAs estimated from the progeny

tests, r(gA' reLup > &), was on average 0.54 in Group A
and 0.76 in Group B. The A and B GS prediction accur-

acies (g gpLup> 8 TeLup) Obtained from the previously
described GS validation with all SNPs were 0.30 for
Group A and 0.77 for Group B. pppg was 120.9 kg per
palm (the other figures used in the variance-covariance
matrices are given in Additional file 8: Table S3).

The simulation based on these empirical results showed
that the FFB value of the selected hybrids could have been
over 10% higher if A and B candidates had been subjected
to genomic preselection for this trait prior to progeny
tests, compared to the actual method used, i.e. progeny
testing random individuals (Fig. 7). Indeed, the mean FFB
of the selected hybrids with conventional RRS was on
average 135.9 kg, while with genomic preselection it
reached 150.3 kg (+10.6%), when genomic preselection
was applied to 5000 A candidates and 5000 B candidates.
As expected, the magnitude of the increase was affected
by the number of A and B individuals subjected to pre-
selection, although the number of B candidates had a
greater effect than the number of A candidates. Thus, with
a fixed number of 1000 A candidates subjected to genomic
preselection, increasing the number of B candidates from
125 to 5000 increased the FFB from 2.4% to 9.4%, and this
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Fig. 5 Percentage of missing molecular data in group a (left panel) and group b (right panel) according to the method used to sample SNPs
(random sampling, solid black line, or selecting SNPs with the lowest percentage of missing data, red line). Values are means over n = 26 replicates of
random marker subsets, n = 3 when minimizing percentage of missing data and n = 1 when using all the markers. Vertical bars are standard deviations
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would have been even higher if a larger B population had
been used. By contrast, with 1000 B candidates for gen-
omic preselection, increasing the number of A candidates
from 125 to 5000 only increased the FEB from 4% to 7.7%.

Discussion

Toward the use of genomic selection

We found that a reciprocal recurrent genomic selection
(GS) breeding scheme can be implemented in oil palm,
applying a genomic preselection among parental popula-
tions to identify individuals with highest genetic value in
hybrid crosses, before progeny testing them to make the
final selection on all traits. Genomic preselection increases
the genetic gain compared to the current RRS breeding

scheme thanks to higher selection intensity. GS can be used
for several key components of palm oil yield, in particular
bunch production and the percentage of oil in the meso-
carp. This required at least 2000 SNPs, with best results
achieved when only SNPs with less than 5% missing data
were used, imputed taking into account pedigree informa-
tion. We illustrated the impact of genomic preselection on
the bunch production trait (FFB) and showed that a
preliminary genomic preselection could have further
increased (by >10%) the FFB performance of the hybrids
selected from Site 2, compared to the actual method with
no preselection for this trait.

The efficiency of the genomic preselection observed
for several traits resulted from two facts. First, the GS
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Fig. 7 Increase in production of fresh fruit bunches (FFB) in the crosses
selected in Site 2 progeny tests if preliminary genomic preselection
had been applied in the parental populations. The increase in FFB is
expressed as a percentage of the FFB performance of the hybrids selected
using the current method (with no genomic preselection). Axes show the
number of A and B selection candidates subjected to genomic preselection.
Values are means over 20000 replicates

prediction accuracies obtained here when predicting the
genetic values of unobserved hybrid crosses and their
parents could reach intermediate to high levels (> 0.6).
Second, the GS prediction accuracies could be signifi-
cantly higher than the prediction accuracies of the
pedigree-based control model (PBLUP), indicating that
GS was able to capture genetic differences within full-sib
families of parents (i.e. the Mendelian segregation terms)
in addition to genetic differences between parental fam-
ilies. In this case, GS enables identification of the best
individuals of the best families, as currently done among
the progeny tested individuals.

According to the results of the simulation, the extra gain
in FFB of selected hybrids obtained by using genomic pre-
selection reached, when for instance 1000 A candidates
and 2000 B candidates were genotyped, 10.5 kg palm
~! year™ over a 3—7 year period. With a planting density
of 143 individuals ha™' and applying a correction of 95%
standing palms, this extra gain would be 143 t ha™ year
~!. Assuming a mill OER (oil extraction rate) value of the
selected hybrids of 28%, based on the current performance
of similar material sold by PalmElit, this represents and
extra oil production of 400 kg ha™'. Finally, considering a
crude palm oil price of 640 US$ t™ (mean price in 2016,
www.indexmundi.com), we were able to estimate the eco-
nomic gain of genomic preselection for growers: in the
conditions of Site 2 experiment, genomic preselection on
FFB with the genotyping of 3000 individuals would have
increased incomes by 256 US$ ha™" year™ on average over
the 3-7 year production period in plantations with hy-
brids selected from this experiment, compared to the con-
ventional breeding approach that was actually applied.
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Considering that most oil palm breeding companies are
also large scale palm oil producers with tens of thousands
of hectares or more, and given the GBS price per sample,
the associated extra genotyping costs would be quickly re-
covered by the increase in annual income per hectare. The
question of the additional gain that would be obtained
with conventional RRS by using the extra cost of GS to
progeny test more A and B parents remains, but given the
much higher costs of progeny tests compared to the GBS
price, the increase in selection intensity would likely be
negligible compared to what can be achieved with GS.

This study allowed us to extend the promising empirical
results of Cros et al. [17] and Marchal et al. [18] in oil palm
by using independent validation, larger training sets, a high
throughput genotyping approach and more complex valid-
ation populations (in particular including progeny of the
training parents), and by predicting cross values in addition
to parental GCAs. The prediction accuracies obtained here
are therefore more relevant for the practical implementa-
tion of the method than the previous prediction accuracies,
and as a result, it was possible to use them to obtain a real-
istic first empirical estimate of the additional genetic gain
that could be obtained with GS in oil palm.

Research required to reach the full potential of GS

The additional gain obtained here thanks to genomic
preselection compared to the conventional method is
close to the values obtained in hybrid cereals by Marulanda
et al. [7] when they compared the standard phenotypic
scheme with an alternative scheme with genomic preselec-
tion. In their case, achieving more benefits from GS re-
quired adopting a genomic breeding scheme with fewer
stages of phenotypic selection in order to reduce the dur-
ation of the breeding cycle. Developing an efficient breeding
scheme with a reduced generation interval thanks to GS is
also desirable in oil palm. Indeed, the genomic preselection
suggested here is not the optimal use of the possibilities
offered by GS for this species, i.e. reducing the generation
interval by not implementing progeny tests in some genera-
tions [15, 16], as well as increasing selection intensity for all
traits. We conclude that for now, the use of GS should be
limited to preselection for some traits before progeny tests
because GS did not perform sufficiently well for all the
traits evaluated during the progeny tests. Indeed, the fact
that a control model using pedigrees instead of marker data
(PBLUP) gave prediction accuracies equal or even higher
than GS for some traits indicated that, for these traits, GS
was not able to take the Mendelian segregation into ac-
count. Hence, it does not enable selection within full-sib
families of parents, while this is the core of oil palm breed-
ing. Other studies are therefore required to increase GS
prediction accuracies for all yield components, which would
enable its optimal use. In particular, this could be done by
increasing the size of the training set. One efficient way to
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reach this goal would be to use a training set aggregating
data from multiple breeding cycles, as demonstrated empir-
ically in hybrid rye by Auinger et al. [52]. Also, because the
parents of the oil palm hybrid crosses are heterozygotes,
another tempting approach would be to genotype hybrid
individuals in addition to their parents, as suggested by
Cros et al. [16] and recently evaluated by Kwong et al. [19].
In addition to increasing the size of the training set,
optimizing its design is a further way to achieve
higher GS accuracy. Several approaches have been de-
veloped [53, 54, 55], in particular for hybrid crops [56],
which should now be investigated in detail in oil palm.

We noted that PBLUP prediction accuracy could be
higher for some traits (ABW and BN), as previously
observed in Cros et al. [17], leaving little room for im-
provement by GBLUP. This indicated that, for these
traits, the available dataset was not optimal for GS valid-
ation. Indeed, it is easier to show the GBLUP ability to
account for the Mendelian segregation term when the
phenotypic variability is not structured by differences
between families. With such a structure, the ability of
GBLUP to account for the Mendelian segregation term
would be better evaluated by measuring prediction ac-
curacy in large full-sib families of A and B parents. To
this end, suitable experiments should be conducted by
progeny testing a significant number of A or B individ-
uals of several full-sib families.

Here we considered rather similar environments, while
in real situations the marketing area of the best crosses
could possibly involve more contrasted environments. In
that case, particularly if genotype by environment inter-
actions exist, it would be necessary to use models com-
bining phenotypic data from various environments,
genomic data and environmental covariables (see for in-
stance Bustos-Korts et al. [57]). However, this is an area
that requires further methodological investigation, as
well as access to multi-environment oil palm data that
are currently not available.

Genomic information

The SNP density obtained with GBS was sufficiently
high to achieve maximum prediction accuracy with our
dataset. However, with a larger or more diverse training
set, it might be necessary to use a larger number of
SNPs than the number that corresponded to plateaus in
our study. This would likely not be a problem with GBS,
as it would yield more markers if applied to a larger or
more diverse population. This confirms the usefulness of
GBS for GS already noted in other species [23]. In oil
palm, GBS appears to be an efficient genotyping
approach for genetics studies in general, as it has
already been successfully used for mapping and QTL
detection [25].
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Marchal et al. [18] studied the effect of SSR density on
GCA accuracy for ABW and BN traits. In their study (like
in ours) accuracy plateaued at similar marker density for
the two traits, and Group A required more markers (160
SSRs or 3000 SNPs) than Group B (90 SSRs or 350 SNPs).
The higher number of SNPs compared to SSRs had two
origins. First, SNP markers were less informative due to
their biallelic nature, than SSRs. Indeed, the SSRs used by
Marchal et al. [18] had on average 3.1 alleles per SSR in
Group A and 6.3 in Group B, and were therefore more
polymorphic than SNPs. Second, Marchal et al. [18]
predicted the GCA of progeny tested individuals, while we
only considered individuals with no phenotypic data
record. As a consequence, in Marchal et al. [18], the
prediction of the GCAs used the genomic coancestries
between the individuals and the phenotypic data of their
hybrid progenies, while in our study, the phenotypic data
were those of the progenies of the training individuals,
which were comparatively less informative and therefore
required more markers.

We found that using the pedigrees when imputing the
missing SNP data enabled an increase in prediction accur-
acy. This indicated that without pedigree information,
BEAGLE 4.0 imputed genotypes could actually be incon-
sistent with the parental genotypes, and that the weight of
those erroneous genotypes was high enough to signifi-
cantly decrease GS accuracy in some traits.

The observed variation in GBLUP predictive ability
between SNP samples led us to apply several filtering strat-
egies, in addition to the method minimizing the percentage
of missing data presented here: most even genome cover-
age, lowest linkage disequilibrium (LD) between SNPs,
smallest departure from the Hardy-Weinberg equilibrium
[58] and highest MAF [59]. We do not present the results
here because these methods had inconsistent or detrimen-
tal effects on prediction accuracy. The fact that filtering
SNPs according to the percentage of missing data was able
to increase accuracy was also reported by Jarquin et al. [59].
However, these authors also found that the accuracy of GS
could be increased by filtering SNPs based on MAF, while
this was not the case in our study. One possible explanation
is that our population was more complex, with a more un-
balanced contribution of the population founders, which
could have led to the existence of low frequency alleles but
that were representative of some families or individuals,
and therefore that were useful to keep in the dataset. This
might also result from the highest mean depth per SNP in
our study (around 70 versus 11 in the study by Jarquin
et al.), making the minor alleles identified here less likely to
be sequencing errors, and therefore reducing the usefulness
of discarding the SNPs with low MAF. The fact that filter-
ing SNPs based on the percentage of missing data was only
efficient for PF suggested a problem with the imputation of
markers located in genome regions of importance for this
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trait and that had a high percentage of missing data.
An alternative solution to these imputation and filter-
ing problems would be to use a SNP array instead of
GBS, as the percentage of missing data in SNP arrays
is very low. This could be done with already available
arrays [19, 60, 61], or by developing a new array
more specific to the populations used here.

In addition to these SNP filtering strategies, we also used
several methods to compute the genomic coancestry matri-
ces G, to check whether they could improve GS accuracies:
applying corrections to G to account for the specificities of
GBS (heterogeneous sequencing depth, relatively high per-
centage of missing data) [58, 62], and computing G matri-
ces from SNPs weighted according to local LD levels [63,
64]. These results are not presented here as, with our data,
they did not improve prediction accuracies.

According to their pedigrees, the individuals used for
validation were more related to the training individuals
in Group B than in Group A, but the SNPs showed they
were actually related to the same degree. This likely re-
sulted from the fact that the pedigree of Group A did
not go back to the founders, whereas it did (or almost
did) for Group B, and because SNPs are able to capture
these relationships even when they do not appear in the
pedigrees due to their incompleteness. This was already
observed in our previous study [17] using SSR markers.

Variations among traits and parental groups

Our results show that the phenotypic distribution of the
traits affected GS accuracy. Muranty et al. [65] also ob-
served in apple that accuracy was strongly affected by
phenotypic distribution, with traits for which GS per-
formed poorly often having reduced phenotypic variation
and skewed distribution. Both studies therefore are partly
in agreement, because in our study, GS accuracy only ap-
peared to be related to phenotypic variation and not to
the skewness of the distribution. Indeed, the two traits
with the lowest GS cross value prediction accuracies, FB
and PF also had low phenotypic variation. Regarding
skewness, FB had the least skewed distribution, and ABW
had the most skewed distribution but high GS accuracy
for cross value. However, OP had a similarly low pheno-
typic variation as FB and PF, but had a prediction accuracy
of cross values >0.6. Therefore, other factors, such as the
genetic architecture of the traits (number of genes, distri-
bution of their effects, etc.), must affect accuracy, even if
they do not affect phenotypic distribution.

The smaller variance of true GCAs in Group A compared
to Group B was expected from their respective history. As a
consequence, the main driver of the prediction accuracy of
cross values was the prediction accuracy of GCA in Group
B. Likewise, increasing the number of B candidates was a
more efficient way to increase the FEB of hybrid crosses than
increasing the number of A candidates.
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Prediction of dominance effects

The fact that adding an SCA term to the parental GCAs
when calculating the prediction accuracies of cross values
did not improve the results was likely the consequence of
an insufficient proportion of dominance variance in total
genetic variance. Indeed, some traits e.g. ABW, BN and
FFB, had particularly low SCA variance, for which it was
almost null. This low dominance variance might seem in-
consistent with the use of RRS in oil palm breeding justi-
fied by heterosis in FFB [10], but this rather indicates that
this heterosis is a general phenomenon occurring in the
case of A x B crosses, with a magnitude that varies only
slightly between crosses. For the other traits, even if the
proportion of SCA variance in the total variance could be
much higher, it might still not be high enough to increase
prediction accuracy when SCA terms are predicted in
addition to GCAs. Indeed, Denis and Bouvet [66] showed
in simulations that including dominance effects in the GS
model was only advantageous when dominance effects
were preponderant (dominance to additive variance ratio
of 1). Similar results were obtained empirically in apple
[67] and rice [68], where dominance effects did not im-
prove prediction accuracies.

Conclusion
GS prediction accuracies reached intermediate to high
values for some key yield components (0.60—0.85), in par-
ticular for the production of fresh fruit bunches (FFB) and
the oil-to-pulp ratio, using at least 2000 SNPs with less
than 5% missing data, imputed using pedigrees. This en-
abled genomic preselection in the parental populations
prior to progeny tests, which increased selection intensity.
We show this for FFB, for which parental genomic pre-
selection could have increased the FFB performance
of the selected hybrids by more than 10%, compared
to the current method without preselection for this
trait. Preselection for key yield components using
GBS is the first possible application of GS in oil palm
for which empirical evidence of efficiency is available.
However, more benefits are expected from GS in this
species. Indeed, the genomic preselection suggested here
would not make it possible to increase selection intensity
for all traits, and progeny tests would still be required,
making it impossible to reduce the generation interval.
Further research is therefore needed to enhance GS pre-
diction accuracies for all yield components. In particular,
further studies are necessary to enlarge and optimize the
training set and to model genotype by environment in-
teractions. This would enable the optimal use of GS,
which would revolutionize oil palm breeding. GS clearly
has a major role to play in meeting the huge increase in
the demand for palm oil expected in the coming de-
cades, in a sustainable way, i.e. by maximizing the prod-
uctivity of the existing planted area.
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