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Transcriptome assembly in Suaeda ® e
aralocaspica to reveal the distinct temporal
gene/miRNA alterations between the

dimorphic seeds during germination
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Abstract

Background: Dimorphic seeds from Suaeda aralocaspica exhibit different germination behaviors that are thought
to be a bet-hedging strategy advantageous in harsh and unpredictable environments. To understand the molecular
mechanisms of Suaeda aralocaspica dimorphic seed germination, we applied RNA sequencing and small RNA
sequencing for samples collected at three germination stages.

Results: A total of 79,414 transcripts were assembled using Trinity, of which 57.67% were functionally annotated.
KEGG enrichment unveiled that photosynthesis and flavonol biosynthesis pathways were activated earlier in brown
seed compared with black seed. Gene expression analysis revealed that nine candidate unigenes in gibberellic acid
and abscisic acid signal transduction and 23 unigenes in circadian rhythm-plant pathway showed distinct
expression profiles to promote dimorphic seed germination. 194 conserved miRNAs comprising 40 families and 21
novel miRNAs belonging to 20 families in Suaeda aralocaspica were identified using miRDeep-P and Mfold. The
expression of MiRNAs in black seed was suppressed at imbibition stage. Among the identified miRNAs, 59
conserved and 13 novel miRNAs differentially expressed during seed germination. Of which, 43 conserved and nine
novel miRNAs showed distinct expression patterns between black and brown seed. Using TAPIR, 208 unigenes were
predicted as putative targets of 35 conserved miRNA families and 17 novel miRNA families. Among functionally
annotated targets, genes participated in transcription regulation constituted the dominant category, followed by
genes involved in signaling and stress response. Seven of the predicted targets were validated using 5' rapid
amplification of cDNA ends or real-time quantitative reverse transcription-PCR.

Conclusions: Our results indicate that specific genes and miRNAs are regulated differently between black and
brown seed during germination, which may contribute to the different germination behaviors of Suaeda
aralocaspica dimorphic seeds in unpredictable variable environments. Our results lay a solid foundation for further
studying the roles of candidate genes and miRNAs in Suaeda aralocaspica dimorphic seed germination.
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Background

Suaeda aralocaspica is a monoecious annual central
Asian halophyte, which is commonly found in saline-
alkaline sandy soils of Gobi desert. In China, S. aralocas-
pica is restricted to the inland cold desert of the Junggar
Basin, Xinjiang. Desert annuals are known to have well-
developed seed dispersal and germination mechanisms
to survive the harsh environment [1, 2]. S. aralocaspica
produces two distinct types of seeds that differ in
morphology, dormancy and germination characteristics
[3]. Oblate brown seeds covered with a soft seed coat
are highly permeable to water and exhibit non-dormant
behavior. Brown seeds can germinate rapidly to high
percentages over a wide range of temperature regimes in
both white light and darkness. In contrast, elliptical
black seeds are covered with a rigid seed coat. Although
this type of seeds also take up water, they germinate
slowly to low percentages in various viability testing
conditions [3]. An imbibed viable seed being not able to
germinate under favorable conditions is dormancy [4-7].
We, thereafter, call the black seeds the non-deep dor-
mant seeds [4]. S. aralocaspica developing a unique
combination of dispersal and germination strategies via
producing dimorphic seeds is thought to be a bet-
hedging strategy advantageous in harsh and unpredict-
able environments [3, 8—10].

Germination is a critical phase in the plant life cycle.
Generally this process starts with the uptake of water by
the dry mature seed. Upon imbibition of water, the dry
mature seed swell and enzymes and food supplies be-
come hydrated. Hydration re-initiates the metabolic ac-
tivities in seed to produce energy for growth process.
Genome-wide expression studies in Arabidopsis thaliana
have been previously applied to gain insight into tem-
poral and spatial changes during Arabidopsis germin-
ation and provide important new information about
mechanisms controlling germination [11-15]. Neverthe-
less, a detailed knowledge of the temporal alterations in
gene/miRNA in halophyte seed is far missing. In order
to understand the control of the timing of germination
as well as the underlying molecular processes contrib-
uted by the bet-hedging germination, we analyzed S.
aralocaspica transcriptome by sampling three points
along the germination time course. Our high throughput
data set will shed light on the temporal alterations occur
during dimorphic seed germination of S. aralocaspica
and provide a comprehensive list of candidate genes and
miRNAs showing potential regulatory mechanisms dur-
ing this process.

Results

Morphology of S. aralocaspica seed germination

In S. aralocaspica, seed germination is a process of spiral
embryos uncoiling. Black (Bl) dry seeds (DS) had thinly
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leathery testae, brown (Br) DSs were covered with mem-
branous seed coat (Additional file 1: Figure S1A). At im-
bibed seed (IS) stage, brown seed absorbed water initially
via seed coat and black seed via testae. Along with the im-
bibition of water, DSs swelled, the seed coat of BrDS
stretched while the testa of BIDS cracked (Additional file
1: Figure S1B). At seedling (S) stage, both embryos were
uncoiled, the one of brown seed untwisted faster than that
of black seed (Additional file 1: Figure S1C).

RNA sequence (RNA-seq) and filter

A total of 225,861,504 raw reads of 100 bp were generated
from BIDS, BIIS, BIS, BrDS, BrIS, and BrS ¢cDNA libraries.
After removal of low-quality reads, a total of 201,609,259
high-quality reads were identified, which contained
17,011,844,081 nucleotides. The average length of the
reads is 84 base pairs and the percentage of Q20 bases
(base quality more than 20 and an error rate of less than
0.01) is 97.43% (Additional file 2: Table S1 and S2).

De novo transcriptome assembly

Previous studies have documented that Trinity was a
special short-read assembly method for the efficient de
novo reconstruction of the transcriptome, and 25-mer
was the optimal parameter [16-18]. In this study, the
clean reads were assembled de novo using Trinity with a
25-mer parameter and generated 106,171 transcripts.
Then, Bowtie 2 [19] was introduced to remove the false
positive transcripts, the total transcripts were reduced by
9831. Mapping coverage for this assembly was 83.15%.
To reduce the assembly redundancy, we ran the cluster-
ing methods using CD-HIT [20] on the assembly. At
last, we obtained 79,414 non-redundant transcripts with
a total of 51,415,356 nucleotides. The average length and
N50 length of these transcripts were 647 bp and 963 bp,
respectively (Additional file 2: Table S2). The sequencing
coverage depth range from 0.9907- to 392,592.2545-fold
and the median fold is 16.9680. Of 79,414 high-quality
transcripts, 32,381 (40.77%) are longer than 500 bp,
15,192 (19.13%) are longer than 1000 bp, and 3151
(3.97%) are longer than 2000 bp.

Functional annotation and coding region sequences (CDS)
prediction

The sequences of S. aralocaspica transcripts were searched
against the non-redundant (Nr), clusters of orthologous
groups (COG), Swiss-Prot and Kyoto Encyclopedia of
Genes and Genome (KEGG) protein databases, a total of
44,327 transcripts (55.82%) were annotated in these four
databases (Additional file 2: Table S3). B. vulgaris is the only
species that has been sequenced in the family of Chenopo-
diaceae. Populus euphratica is a halophyte poplar species
growing in saline semi-arid areas. There were 44,041 tran-
scripts of S. aralocaspica realigned to the B. vulgaris
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genome; and 36,050 transcripts realigned to P. euphratica
genome (Additional file 2: Table S3). In total, 45,796 tran-
scripts (57.67%) were aligned to homologous sequences in
public databases, B. vulgaris genome, P. euphratica gen-
ome. A large proportion had no significant sequence align-
ment or hits in any of the databases, which suggested that
they might contain novel sequences or a high number of
special genes in to S. aralocaspica.

Using BLAST2GO [21] program, we obtained gene
ontology (GO) functional annotations of the S. aralocas-
pica transcripts with Nr annotations. A total of 13,563
transcripts were identified with significant enrichment (p-
value <0.05) (Additional file 3: Figure S2). In the biological
process category, “metabolic process”, “oxidation reduc-
tion”, “regulation of transcription, DNA-dependent” were
the three dominant subcategories. In the other two main
categories, the most prominent subcategories were “ATP
binding” and “integral to membrane”, respectively.

Based on the four public protein databases, we obtained
a total of 36,531 CDSs (26,017 CDSs predicted by the
BLAST search and 10,514 by ESTScan). As shown in
Additional file 4: Figure S3, 39,496 transcripts less than
400 bp were not well annotated. The transcripts not pre-
dicted with a CDS were likely either too short to meet the
criterion of CDS prediction or were non-coding RNAs.

Identification of differentially expressed genes (DEGs)
during seed germination

To acquire counts data for differential expression ana-
lysis, clean reads generated from different stages (DS, IS,
S) were mapped to the newly generated reference tran-
scriptome using Bowtie 2 [19]. The reads per kilobase of
transcript per million mapped reads (RPKM) value and
number of transcripts for each gene were summarized in
Additional file 5: Table S4.

Calculated read number was directly used for compar-
ing the differences in gene counts between any two ger-
mination stages using EdgeR [22]. As shown in Fig. 1A,
more DEGs were identified in black seed (21,327 DEGs)
than brown seed (15,827 DEGs) during S. aralocaspica
germination (Additional file 6: Table S5). Among them,
8100 DEGs were developmentally regulated in both seed,
these DEGs were possibly involved in the common bio-
logical processes for both seed during S. aralocaspica
germination. The number of up-regulated and down-
regulated genes in IS vs. DS, S vs. IS, and S vs. DS was
displayed in Fig. 1B. Notably, in the comparison between
DS and IS stages, the number of DEGs in brown seed
was smaller than that of black seed, however, in the
comparison between IS and S stages, the number of
DEGs in brown seed was dramatically increased and
similar to the number of DEGs in black seed. The heat-
map of DEGs illustrated that the expression profiles of
BrDS and BrIS were more similar when comparing to
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the expression profiles of BIDS and BIIS, whereas BIS
and BrS formed a tight cluster with a distinct pattern of
gene expression (Fig. 1C). These findings indicated that
a larger number of DEGs participated in black seed ger-
mination comparing to brown seed, and the difference
in the number of DEGs between black and brown seed
was most likely attributed to the dormancy breaking
required for black seed germination.

KEGG enrichment was performed to identify pathways
that were related to S. aralocaspica seed germination.
Enrichment analysis identified 29 pathways in black seed
and 32 pathways in brown seed that were significantly
overrepresented (p-value <0.05, Fig. 2A, Additional file 7:
Table S6). There were 18 enriched pathways were over-
represented in both black and brown seed, indicating
these 18 KEGG pathways were possibly common bio-
logical processes for S. aralocaspica seed germination.

Identification of DEGs between black and brown dry seed
To gain an insight into the different biological processes
occurred inside the black and brown dry seed, the gene
expression levels between BIDS and BrDS were analyzed
(Additional file 8: Table S7). In comparison with BrDS,
there were 2420 genes up-regulated and 1846 genes
down-regulated in BIDS (p-value <0.01, |log, fold change
(FC)| 21). KEGG enrichment analysis identified 16 signifi-
cantly overrepresented pathways for up-regulated genes
and 17 pathways for down-regulated genes (p-value <0.05,
Fig. 2B, Additional file 9: Table S8).

The genes involved in gibberellic acid (GA) and abscisic
acid (ABA) signal transduction

The balance of GA: ABA levels and sensitivity have
shown to be important factors in the regulation of seed
germination [23-25]. In this study, 41 GA or ABA signal
genes (57 transcripts) were identified. Among them, 26
unigenes showed differential expression patterns at least
in one type of seed germination (Additional file 10: Table
S9). Most GA or ABA signal DEGs exhibited similar
temporal changes in the expression levels in both seed,
indicating these signal DEGs may exert the same func-
tions in black and brown seed germination. However,
transcript levels of nine GA or ABA signal genes showed
distinct expression patterns between black and brown
seed during germination (Fig. 3). The transcript level of
PYL2 (Unigene40508) was drastically increased at S
stage in black seed, whereas slightly enhanced in brown
seed. The level of PYL12 (Unigene2681) was raised rap-
idly then reduced markedly in black seed, while continu-
ously dropped to a low level in brown seed. The
expressions of PP2CA (Unigene3190) and SLY1 (Uni-
gene49059) in black and brown seed were changed in
the opposite directions. The transcript level of OST1
(Unigene28427) was continuously enhanced in black
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(See figure on previous page.)

Fig. 1 Comparative mRNA and miRNA transcriptome of Suaeda aralocaspica between black and brown seed during germination. a Venn diagram

of the number of differentially expressed unigenes (left) and miRNAs (right) in black (green) and brown (yellow) seed germination. b The number

of differentially expressed unigenes (upper) and miRNAs (lower) in black (left) and brown (right) seeds. Aquamarine color bars refer to up-regulated
unigenes/miRNAs, salmon color bars refer to down-regulated unigenes/miRNAs. ¢ Expression of the differentially expressed unigenes (left) and miRNAs
(right) identified in Suaeda aralocaspica seed germination. BIDS represents black dry seed, BIIS represents black imbibed seed, BIS represents seedlings
germinated from black seed, BrDS represents brown dry seed, BrlS represents brown imbibed seed, BrS represents seedlings germinated from

brown seed
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Fig. 2 The significantly overrepresented KEGG pathways identified by enrichment analysis for differentially expressed unigenes. a Differentially
expressed unigenes during Suaeda aralocaspica dimorphic seed germination. b Differentially expressed unigenes in the comparison between
black and brown dry seed. X-axis represents the base 10 logarithm of the enrichment p-value, y-axis represents the term of enriched KEGG
pathways. The number of differentially expressed unigenes in each pathway is indicated at the end of each bar. Up means up-regulated
unigenes in black dry seed, Down means down-regulated unigenes in black dry seed
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transcript levels in black seed, green lines represent the transcript levels in brown seed. The transcript levels were determined by reads per
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seed, whereas was increased at first, then decreased in
brown seed. The expression of SNRK2.3 (Unigenel14586)
was only detected at S stage in brown seed. AREB3 (Uni-
gene38625 and Unigene40984) showed no significant
change in expression levels in black seed, but exhibited a
dramatic rising at S stage in brown seed. The level of
GID1C (Unigene20723) was slightly decreased then
markedly increased in black seed, but gradually
enhanced in brown seed.

DEGs involved in plant circadian clock

Circadian regulation of hormone levels and hormonal sig-
naling modulates many features of plant development, in-
cluding seed dormancy and germination [26—-28]. In this
study, KEGG enrichment revealed that 23 DEGs (28 tran-
scripts) were involved in circadian rhythm-plant pathway
during black seed germination (Additional file 7: Table S6,
Additional file 11: Table S10). As shown in Fig. 4, gene
COP1 (Unigene33753, Unigene33751), CHS (Uni-
gene61566, Unigene5107, Unigene48137, Unigenel9255),

TOCI (Unigene45052), and PIF7 (Unigene40139) dis-
played similar expression patterns in black seed, their ex-
pressions were kept at low levels at DS and IS stage, and
increased markedly at S stage. On the contrary, gene SPA2
(Unigene31560), GI (Unigene26154, Unigene26153), SPA1
(Unigene22833, Unigene22832), ZTL (Unigene30382),
PHYA (Unigene25752), PRRY (Unigene25684), and FKFI
(Unigene22119, Unigene22120) were dramatically down-
regulated at IS stage comparing to DS stage, and their
expression were maintained at low levels at IS and S
stage. The low expression levels of most of the clock
genes at IS stage was possibly related to the
dormancy-breaking and germination requirements of
black seed. By contrast, in brown seed, only six out
of 23 clock genes were developmentally regulated.
Gene PIF7 (Unigene40139) and CHS (Unigene5107,
Unigene48137) were significantly up-regulated, FKFI
(Unigene22120, Unigene22119) and CHS (Uni-
gene8262) were markedly down-regulated at S stage
when comparing to the other two stages. No
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statistically significant difference in the expression of
clock genes was observed between DS and IS stage in
brown seed.

Small RNA sequence (sRNA-seq) analysis

Although black seed and brown seed share the same set of
genes, they are different in many ways, including morph-
ology, dormancy and germination characteristics [3]. These
differences may be attributable to the genetic and epigen-
etic regulations, and in this study we focused on the devel-
opmental role of miRNA in S. aralocaspica germination.
sRNA-seq generated 5,469,210 to 6,882,624 raw reads, after
removing sequences shorter than 18 nt and greater than
30 nt in length, reliable clean reads ranging from 2,483,312
to 3,787,572 were collected for further analysis (Additional

file 2: Table S11). The redundant clean reads were mapped
to S. aralocaspica mRNA transcriptome database, 43.05%
to 56.32% redundant sRNAs perfectly matched the S. aralo-
caspica transcript sequences. The high matching rate may
be attributed to insufficient small RNAs. The majority of
total SRNA reads ranged from 20 to 24 nt in length (Fig. 5),
which are the typical size range of sRNAs generated by
Dicer [29]. The major size of SRNA was 24 nt in all six li-
braries, the second most abundant class was 20 nt in the
three libraries of black seed and BrS library, and 23 nt in
the libraries of BrDS and BrlIS.

Identification of conserved and novel miRNA
A total of 194 conserved miRNAs were identified com-
prising 40 miRNA families (Additional file 12: Table

Percentage of sequence frequency

Length (nt)

Fig. 5 Length distribution of small RNA sequences in dry seed, imbibed seed, and seedling three libraries. BIDS represents black dry seed, BIIS
represents black imbibed seed, BIS represents seedlings germinated from black seed, BrDS represents brown dry seed, BrlS represents brown
imbibed seed, BrS represents seedlings germinated from brown seed. nt means nucleotides
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$12), 21 nt and 20 nt were the two major size classes of
conserved miRNAs. Among the identified conserved
miRNA families, sar-miR156 and sar-miR159 were the
two largest families that contained 26 and 28 members,
respectively. Whereas, there were 19 miRNA families
possessed only one member. The number of members
for each family was summarized in Fig. 6. For precursor
prediction, the transcript sequences of S. aralocaspica
were used to determine hairpin structures. Four
conserved miRNA precursors with lengths ranging from
87 nt to 171 nt were identified. Their minimal folding
free energy indices (MFEIs) varied from 0.88 to 1.28
with an average of 1.09, which was consistent with that
revealed in other plant miRNAs [30]. The total counts of
conserved miRNAs were lowest in BIIS library and were
rapidly increased in BIS library. In contrast, the total
counts of conserved miRNAs were slightly increased in
BrIS library compared to BrDS and reached the highest
in BrS library (Additional file 12: Table S12). This find-
ing indicated that the expression of conserved miRNAs
in black seed was suppressed at IS stage.

We identified 22 putative novel miRNAs belonging to
20 families in S. aralocaspica and named them as sar-
miR1 to sar-miR20 (Additional file 13: Table S13).
Among the identified novel miRNAs, sar-miR13 was
found to be homologous to sar-miR159 family members
with one mismatch, therefore sar-miR13 was classified
as a member of miR159 family. Sar-miRla and sar-
miR1b shared similar mature sequence, and sar-miR6a
and sar-miR6b were homologous with each other, there-
after sar-miRla and sar-miR1b were classified into sar-
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miR1 family, and sar-miR6a and sar-miR6b were classi-
fied into sar-miR6 family. The length of mature se-
quences of the novel miRNAs varied from 18 nt to
24 nt, and 21 nt was the major size class. By counting
reads mapped to the different novel miRNAs in each
sample, we found most novel miRNAs had relatively low
expression levels, which was consistent with the feature
of species-specific miRNAs. The length of novel miRNA
precursors ranged from 61 nt to 170 nt, and MFEIs var-
ied from 0.52 to 1.77 with an average value of 1.03. The
total counts of novel miRNAs displayed a change trend
similar to that of conserved miRNAs (Additional file 13:
Table S13), suggesting that the expression of novel miR-
NAs in black seed was also suppressed at IS stage.

The precursor sequences and secondary hairpin struc-
tures of S. aralocaspica conserved and novel miRNAs pre-
dicted by Mfold [31] were represented in Additional file 14:
Table S14 and Additional file 15: Figure S4.

miRNA expression profiles

There were 49 miRNAs in black seed and 48 miRNAs in
brown seed differentially expressed (DE) during di-
morphic seed germination (p-value <0.01 and |log,FC]|
>1) (Fig. 1A, Additional file 16: Table S15). In the com-
parison of miRNA expression profiles between the three
consecutive stages, we found that the numbers of DE
miRNAs were dramatically increased in both seed at the
phase transition from IS to S comparing to those at the
phase transition from DS to IS, and the number of up-
regulated miRNAs at the phase transition from IS to S
in brown seed was much larger than that in black seed
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Fig. 6 The number of members in each conserved miRNA family in Suaeda aralocaspica
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(Fig. 1B). Hierarchical cluster analysis illustrated that the
expression profiles of DE miRNAs at DS and IS stages
were similar for both seeds, DE miRNAs at S stage dis-
played a distinct expression pattern (Fig. 1C). These
findings suggested that DE miRNAs majorly functioned
in the phase transition from IS to S, and a larger number
of miRNAs in brown seed took part in this transition
process than black seed.

Based on their expression patterns, DE miRNAs were
divided into four categories (Table 1). The first category
contained miRNAs that were up-regulated during seed
germination. The second category comprised miRNAs
that were down-regulated during seed germination. The
third category was composed of miRNAs that had rela-
tive low levels in dry seed, were up-regulated in imbibed
seed then down-regulated in seedling. The last category
contained miRNAs that were down-regulated in IS vs.
DS, then up-regulated in S vs. IS. Among DE miRNAs,
43 conserved and nine novel miRNAs showed distinct
expression patterns between black and brown seed dur-
ing germination.

Target prediction of conserved and novel miRNAs

The 79,414 assembled transcripts from S. aralocaspica
mRNA transcriptome database were used as a custom
target database, 194 conserved and 22 novel mature
miRNAs were used as a custom miRNA database. Using
TAPIR [32], a total of 170 unigenes were predicted as
potential targets of 35 conserved miRNA families (Add-
itional file 17: Table S16). Thirty-three unigenes
(19.41%) were homologous to the previously confirmed
or predicted targets of the same miRNA families in Ara-
bidopsis thaliana, Oryza sativa or Solanum lycopersicum
(Table 2). Most of these conserved targets (23 out of 33)
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encoded essential transcription factors, and the rest of
targets were homologs of Dicer protein, F-box protein,
copper/zinc superoxide dismutase, inorganic phosphate
transporter, plantacyanin, laccase, and CC-NBS-LRR
protein. There were 137 putative targets of conserved
miRNAs were not conserved in other plant species. Of
these target genes, 76 (44.7%) targets presented no func-
tion annotation. The annotated 94 unigenes were classi-
fied into 16 categorizes according to their molecular and
biological functions (Fig. 7A). Genes involved in tran-
scription regulation (31, 33%; including 26 transcription
factors) comprised the most dominant category, followed
by unigenes involved in the other two main categories,
signaling (15, 16%) and stress response (12, 13%). In the
same way, 42 unigenes were identified as putative targets
of 17 novel miRNA families and one miR159 family
member (Additional file 18: Table S17). Most of these
target genes (28, 66.67%) were not functionally anno-
tated. The rest annotated targets were involved in eight
categories (Fig. 7B). Unigenes involved in stress response
(3, 22%), signaling (2, 14%), transcription regulation (2,
14%), energy (2, 14%), and RNA processing (2, 14%)
accounted for the major proportions.

Due to insufficient S. aralocaspica mRNA sequences,
we were not able to predict the targets for five conserved
miRNA families and two novel miRNA families.

Validation of miRNA targets by 5' rapid amplification of
cDNA ends (RACE)

To validate the results of in silicon analysis, we amplified
the predicted target genes through 5° RACE-PCR. The
cleavage sites in four predicted target genes of S. aralocas-
pica were successfully detected (Fig. 8). Unigene24713,
Unigene44608, Unigene47858, and Unigenel9904 were

Table 1 Differentially expressed Suaeda aralocaspica miRNAs during seed germination

Black seed

Brown seed

Up-regulated

sar-miR156t-5p, sar-miR159k, sar-miR160a, sar-miR164b, sar-miR166g,
sar-miR168d, sar-miR169a, sar-miR169i, sar-miR171¢, sar-miR172a,
sar-miR172h, sar-miR393b, sar-miR396a, sar-miR396d, sar-miR396e,
sar-miR396j, sar-miR396k, sar-miR3960, sar-miR6300a, sar-miR6b,
sar-miR10

Down-regulated

sar-miR157a, sar-miR319d, sar-miR319h, sar-miR166b-3p, sar-miR166d,
sar-miR166l, sar-miR166r, sar-miR167b, sar-miR167c, sar-miR167d,
sar-miR167e, sar-miR167f, sar-miR167h, sar-miR167i, sar-miR167j,
sar-miR1771e-3p, sar-miR172b, sar-miR172¢, sar-miR172e, sar-miR398c,
sar-miR894a, sar-miR2, sar-miR7, sar-miR11, sar-miR12, sar-miR14,
sar-miR16

Up-regulated then down-regulated
sar-miR5

Down-regulated then up-regulated

sar-miR319d, sar-miR160a, sar-miR164a, sar-miR164b, sar-miR166g,
sar-miR167e, sar-miR169a, sar-miR171a, sar-miR171c¢, sar-miR172a,
sar-miR172h, sar-miR390b, sar-miR396a, sar-miR396d, sar-miR396e,
sar-miR396f, sar-miR396h, sar-miR396i, sar-miR396j, sar-miR396k,
sar-miR396m, sar-miR3960, sar-miR398c, sar-miR6a, sar-miR10

sar-miR156n, sar-miR162b, sar-miR169d, sar-miR171h, sar-miR172b,
sar-miR172¢, sar-miR5139a, sar-miR5368a, sar-miR6173a, sar-miR6478a,
sar-miR8155a, sar-miR8175a, sar-miR894a, sar-miR7, sar-miR11, sar-miR14,
sar-miR17, sar-miR18, sar-miR19

sar-miR159a, sar-miR159

sar-miR6300a, sar-miR5




Wang et al. BMIC Genomics (2017) 18:806

Page 10 of 21

Table 2 Conserved® miRNA targets identified in Suaeda aralocaspica

miRNA family Target Annotation
miR156/157 Unigene25708 squamosa promoter-binding-like protein 6 isoform X2
Unigene30985 squamosa promoter-binding-like protein 2
miR159 Unigene5343 MYB protein, DUO POLLEN 1
miR160 Unigene37068 auxin response factor 10
Unigene36784 auxin response factor 16
Unigene39132 auxin response factor 17
miR162 Unigene29941 SUSPENSOR 1, Dicer-like 1
miR164 Unigene38871 NAC domain containing protein 100
miR165/166 Unigene32963 member of HD-ZIP III family, INCURVATA 4
Unigene47107 member of HD-ZIP Ill family, REVOLUTA
miR169 Unigene44960 CCAAT binding factor-HAP2-like protein, nuclear factor Y subunit Al
Unigene26545 CCAAT binding factor-HAP2-like protein, nuclear factor Y subunit A9
Unigene25577 nuclear factor Y subunit A-3
miR170/171 Unigene34442 HAIRY MERISTEM 3, SCL6-IV
Unigene44608 HAIRY MERISTEM 4, SCL15
miR172 Unigene26235 TARGET OF EARLY ACTIVATION TAGGED 1
Unigene13804 AP2-like ethylene-responsive transcription factor TOE3
miR319 Unigene42701 TEOSINTE BRANCHED 1, cycloidea and PCF transcription factor 2
Unigene46584 TEOSINTE BRANCHED 1, cycloidea and PCF transcription factor 3
miR393 Unigene37071 F-box protein, TRANSPORT INHIBITOR RESPONSE 1
Unigene37070 F-box protein, TRANSPORT INHIBITOR RESPONSE 1
Unigene47621 Auxin signaling F-box 3
miR394 Unigene26101 a putative F-box protein, LEAF CURLING RESPONSIVENESS
miR396 Unigene44576 growth-regulating factor 2
Unigene20645 growth-regulating factor 3
Unigene24713 growth-regulating factor 4
Unigene44047 growth-regulating factor 5
Unigene20255 growth-regulating factor 7
miR398 Unigene2632 copper/zinc superoxide dismutase 1
miR399 Unigene40813 a ubiquitin-conjugating E2 enzyme, UBIQUITIN-CONJUGATING ENZYME 24
miR408 Unigene47976 plantacyanin
Unigene39882 laccase 3
miR482 Unigene39969 disease resistance protein, CC-NBS-LRR class

@Conserved with Arabidopsis thaliana, Oryza sativa, or Solanum lycopersicum

confirmed to be targets of sar-miR396d, sar-miR170/171,
sar-miR169i, and sar-miR5, respectively. Sequencing of the
sar-miR169i-cleaved 5° RACE product of Unigene47858
identified a precise slice between the nucleotides 10 and 11
in the complementary region of the miRNA: mRNA pair
(Fig. 8). Unigene47858 encodes a protein homologous to
the Arabidopsis late embryogenesis abundant (LEA) protein
family protein. Unigene44608 and Unigene19904 were vali-
dated to be targets of sar-miR170/171 and sar-miR5, re-
spectively, with multiple cleavage sites. Unigene44608 is
homologous to an Arabidopsis protein coded by GRAS

family transcription factor, and Unigene19904 is homolo-
gous to an Arabidopsis protein coded by protein kinase
superfamily protein. Unigene24713, the putative target of
sar-miR396d, was also evaluated for its cleavage site. Uni-
gene24713 encodes a protein homologous to the Arabidop-
sis transcription factor growth-regulating factor 4. A
shorter or longer cleaved sequence was observed for the
four putative targets after 5° RACE analysis, which could
be attributed to secondary siRNA in the 21-nucleotide
register with the cleavage site for miRNAs as previously
documented [33-35].
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Fig. 7 Functional classifications of predicted targets of conserved (a) and novel (b) miRNAs in Suaeda aralocaspica. Only the functionally
annotated target genes are shown. The number of targets in each category is shown under the iterm

Validation of the expression profiles of unigenes and
miRNAs by real-time quantitative reverse transcription
(qRT)-PCR

To validate the expression of identified unigenes and miR-
NAs from transcriptome analysis, six GA or ABA signal
genes (Unigene20723, Unigene49059, Unigene2681, Uni-
gene3190, Unigene28427, and Unigene38625), five con-
served miRNAs (sar-miR166l, sar-miR166r, sar-miR169i,
sar-miR394a and sar-miR396e) and their potential targets
(Unigene32963, Unigene47858, Unigene26101, Uni-
gene44047), and three novel miRNAs (sar-miR5, sar-miR7
and sar-miR17) were selected and subjected to the qRT-
PCR analysis. For calculating the relative expression of
each unigene or miRNA, the Ct value at DS stage was
used as a reference. Analysis of transcript levels by qRT-
PCR showed that the ten unigenes (R? = 0459, P < 0.01)
and eight miRNAs (R* = 0402, P < 0.01) all displayed
positive  correlation between the RNA/sRNA-seq

quantitative measurement and qRT-PCR method (Add-
itional file 19: Figure S5, Additional file 20: Table S18),
suggesting that most of the tested unigenes and miRNAs
showed similar developmental alterations in the two
methods and our high-throughput data were reliable.
Further, we assessed the expression patterns of five
miRNAs and their putative targets using real-time qRT-
PCR. As shown in Additional file 21: Figure S6, the ex-
pression of sar-miR166l and sar-miR166r was suppressed
while the level of Unigene32963 was increased during
black seed germination. The level of sar-miR169i was
enhanced while the expression of Unigene47858 was
inhibited at BrS stage. The expression of sar-miR394a
was decreased, whereas, the level of Unigene26101 was
elevated at BIS stage. The level of sar-miR396e was in-
creased while the expression of Unigene44047 was re-
pressed at both BIS and BrS. The putative target genes
exhibited opposite expression patterns to their
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sar-miR169i 3 CUAUCGGUUCCUCUGACGG &

112 112
1083
Unigene19904  ...GCTCATGGAGCTAATAGCCGGCTTTAT...
sar-miR5 3 GGUGACUCGAUUAUCGGG 5

\

4110
637
Unigene24713  ..GAAATTCCACAGGCTTTCTTGAACGATTGCGGCCACGGTGCATGTGGCGCTCGCAATACTTGTGACCAGCTACCACATC..
sarmiR396d 3 AAAGGGUGU-CGAAAGAACUUG 5
410 3110
8151 922 1076
Unigene44608 ..AACACGAC...CCACCTGATATTGTCGCGGCTCAATCAACGGCT..CAAACCAT...
sar-miR170a 3 UAUAACUGUGCCGAGUU &
sar-miR171a 3 UAUAACCGUGCUGAGUU &
sar-miR171b/e-3p/f 3 UAUAACCGUGCCGAGUU &
sarmiR171g 3 UAUAACCGCGCCGAGUU &
1112 1112 112 1112
923 |
Unigened7858 ... GAGAAAGTCAAGGAGACGGCCAAGGGAGCGTGGGAAACGACTAAGAACGCTACACAAAAGC TTAAAGAAACAGTG...

Fig. 8 Validation of miRNA-guided target unigene cleavage. Partial sequences from target genes were aligned with the corresponding miRNAs.
Each top strand (blue) represents a miRNA-homologous site in the target gene and each bottom strand (red) represents the aligned sequence of
miRNA. Red arrows indicate the observed miRNA cleavage sites following 5" RACE analysis, with the frequency of clones shown

corresponding miRNAs at certain time points of germin-
ation, suggesting that these targets may be regulated
post-transcriptionally by the action of miRNAs.

Discussion

This study provided an overview of the genes and miR-
NAs presented in a non-model euhalophyte species and
identified the candidates associated with the germination
process of dimorphic seed under the control of a bet-
hedging strategy.

The metabolic processes activated earlier in brown seed
than in black seed during S. aralocaspica seed
germination

It is documented that mature seeds possess photo-
synthetically active chloroplasts, which maintain photosyn-
thetic activity during the period of reserve accumulation,
contributing oxygen supply and coupled biosynthetic fluxes
[36—38]. Morphologically, the membranous seed coat of S.
aralocaspica brown seed (Additional file 1: Figure S1A)
would allow the embryo gain more amount of light than
the black seed embryo, which is regarded as a critical factor
for seed photosynthesis. In order to comprehensively under-
stand the initial important metabolic processes activated at
the transition from dry seed to germination, we combined
the KEGG enrichment results of DEGs in dry seeds and
during seed germination. We found that some KEGG path-
ways were activated in both seed germination, but they were
activated earlier in brown seed compared with black seed.
For instance, “Photosynthesis-antenna proteins”, “Photosyn-
thesis”, and “Flavone and flavonol biosynthesis” pathways

were activated at DS stage in brown seed (Fig. 2B, Add-
itional file 9: Table S8), but activated at IS and S stages in
black seed (Fig. 2A, Additional file 7: Table S6). Among 12
antenna proteins and 17 photosynthesis proteins that were
up-regulated at DS stage in brown seed compared with
black seed, 12 antenna proteins and 15 photosynthesis pro-
teins were up-regulated at the late stages of germination in
black seed (Fig. 2, Additional file 22: Table S19, Add-
itional file 23: Table S20). This finding provided strong evi-
dence that photosynthesis process was activated earlier in
brown seed than black seed during S. aralocaspica germin-
ation. Flavonols have been shown to negatively regulate
auxin transport and dependent physiological processes [39—
43]. Auxin gradient is crucial for de novo induction and
maintenance of root meristematic activity [44—46]. Flavonol
biosynthesis is induced by auxin [42], and the expression of
genes involved in this pathway is light dependent [47, 48].
In S. aralocaspica, the activation of flavonol biosynthesis
at DS stage in brown seed demonstrated that seedling es-
tablishment could be initiated earlier in brown seed than
in black seed. Additionally, miR393 targets F-box genes
that encode auxin receptors [49-51], and TRANSPORT
INHIBITOR RESPONSE 1 (TIR1) acts as an auxin recep-
tor mediating transcriptional responses to auxin [52]. In
this study, Unigene37070 and Unigene37071, encoding
proteins homologous to TIR1, were predicted as targets of
sar-miR393b (Table 2, Additional file 17: Table S16). sar-
miR393b was up-regulated at S stage comparing to the
other two stages in black seed (Table 1, Additional file 16:
Table S15), while maintained at a high level in brown seed.
Unigene37070 and Unigene37071 showed opposite
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expression patterns to sar-miR393b (Additional file 5:
Table S4) during germination. These findings suggested
that the distinct expression patterns of miR393 and its tar-
gets between black and brown seed maybe associated with
the early activation of flavonol biosynthesis in brown seed.

Candidate ABA and GA genes that may contribute to the
diversity in seed germination behaviors in S. aralocaspica
Protein phosphatase 2CA (PP2CA) is generally up-
regulated in response to ABA in Thellungiella salsuginea
[53] and salt treatment in Suaeda fruticosa [54]. In S. aralo-
caspica, the expression of PP2CA (Unigene3190) was grad-
ually increased in black seed but continuously decreased in
brown seed (Fig. 3, Additional file 10: Table S9), suggesting
that PP2CA may play a role in stress response during black
seed germination. In Arabidopsis, three subclass III SNF1-
related kinase 2 s (SnRK2s), SRK2D/SnRK2.2, SRK2E/
SnRK2.6/0OST1 and SRK2I/SnRK2.3 (SRK2D/E/I), are
strongly activated by ABA and osmotic stresses [55, 56]. At
present study, one homologous of OST1 (Unigene28427)
was up-regulated in black seed but maintained at a relative
high level in brown seed (Fig. 3, Additional file 10: Table
S9), implying that OST1 may be activated earlier in brown
seed than black seed, and it could be involved in ABA and
osmotic stress response in both seed during S. aralocaspica
germination process. One homologous of SnRK2.3 (Uni-
genel4586) was only detected at S stage in brown seed (Fig.
3, Additional file 10: Table S9), suggesting this gene may
play a role in stress tolerance in brown seed during post-
germination growth. GA promotes seed germination by en-
hancing the proteasomal destruction of ral guanine nucleo-
tide dissociation stimulator-like 2 (RGL2) [57], and F-box
protein SLEEPY1 (SLY1) is required for this process [58].
In this study, SLY1 showed different expression trend be-
tween black and brown seed (Fig. 3, Additional file 10:
Table S9), indicating that GA signaling maybe regulated dif-
ferently during dormant and non-dormant seed germin-
ation. Further, there were several receptors and
downstream transcription factors of ABA or GA signaling,
including PYL2 (Unigene40508), PYL12 (Unigene2681),
AREB3 (Unigene38625 and Unigene40984), and GID1C
(Unigene20723), showed distinct expression patterns be-
tween black and brown seed during germination (Fig. 3,
Additional file 10: Table S9). This difference may contribute
to the different germination behaviors of S. aralocaspica di-
morphic seeds in order to cope with the harsh and unpre-
dictable environment. Further investigation on the
molecular mechanisms underlying the dimorphic seed ger-
mination controlled by GA and ABA signaling is needed.

Candidate clock genes that may contribute to dormancy
breaking during black seed germination

Using real-time RT-PCR, Arabidopsis circadian clock
has been demonstrated to act as an important signal
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integrator regulating dormancy release [26]. In current
study, the high throughput data allowed us to compre-
hensively compare the dynamic expression changes oc-
curred in dormant seed and non-dormant seed during
germination in the same species. KEGG enrichment
identified 23 clock genes participated in the circadian
rhythm pathway in S. aralocaspica black seed (Add-
itional file 11: Table S10). These 23 genes exhibited the
well-characterized transcriptional circadian rhythms of
dormancy breaking. The transcript levels of SPA, GI,
ZTL, PHYA, PRRY, and FKF1 were high and the tran-
script levels of COP1, CHS, TOCI, and PIF7 were rela-
tively low in non-deep dormant dry seed (Fig. 4). At IS
stage, seed imbibition and testa rupture had a general
suppression effect on the gene expressions of GI, CHS,
SPA, ZTL, PHYA, PRRY, and FKFI, indicating the clock
components in imbibed black seeds may be responding
to the environmental and endogenous signals for
dormancy-breaking requirement. At S stage, uncoiled
embryo rupture promoted the expressions of GI,
COPI, CHS, TOCI, and PIF7, which possibly initiated
the seedling establishment of circadian oscillations in
black seed. In contrast, brown seed exhibited a differ-
ent transcriptional profile of these 23 clock genes and
the circadian rhythms seemed to persist during the
whole germination process, which was consist with its
genotype that seedling establishment-related biological
process initiated early at dry seed stage (Fig. 2B,
Additional file 9: Table S8).

The transcriptional suppression of miRNAs at IS stage in
black seed

Similar to the transcriptional suppression of clock genes
at BIIS stage, we found the total counts of conserved
and novel miRNAs were lowest at IS stage in black seed
comparing to the other two stages (Additional file 13:
Table S13, Additional file 14: Table S14), implying that
the expression levels of miRNAs could be suppressed by
dormancy breaking either. We speculated that transcrip-
tional suppression maybe one crucial success factor for
non-deep dormant seed to break dormancy. In plants,
DICER-LIKE 1 (DCL1) is the main processor in miRNA
biogenesis [59] and subject to negative feedback regula-
tion through miR162 [60]. At present study, we pre-
dicted that sar-miR162b targeted one DCL1 protein
(Table 2, Additional file 17: Table S16). In black seed,
the expression of sar-miR162b was kept at the same
level at DS and IS, then was decreased at S stage (Table
1, Additional file 16: Table S15). In brown seed, the ex-
pression level of sar-miR162b was relatively high at DS,
then decreased at IS and further decreased at S. This
finding indicated that miR162 could play an important
role in transcriptional suppression of miRNAs and dor-
mancy breaking through its target DCL1.
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miRNAs with distinct expression patterns between the
dimorphic seeds and their roles in S. aralocaspica seed
germination

The germination process is a coordinated action of mul-
tiple environmental responsive genes, which also cross-
talk with other components of the elaborate hormone
signaling networks. miRNAs play critical roles in the
regulation of these biological processes [61, 62]. Arabi-
dopsis miR156 is essential for vegetative leaf develop-
ment from the cotyledon-stage seedlings by down-
regulating its target SPL [63, 64]. Maize miR156 is differ-
entially down-regulated at imbibition step during seed
germination [65]. In this study, sar-miR156t-5p was up-
regulated in black seed during germination (Table 1,
Additional file 16: Table S15), whereas, no significant
sar-miR156t-5p expression difference was identified be-
tween the germination stages in brown seed. Two SPL
proteins were predicted as the targets of sar-miR156t-5p
(Table 2, Additional file 17: Table S16), implying miR156
could play important roles in vegetative leaf develop-
ment from black seed seedling by regulating SPL, while
brown seed may depend less on this mechanism in vege-
tative leaf development after germination. miR159 is in-
duced by ABA, suppresses MYB33 and MYB101
transcript levels and renders plants hyposensitive to
ABA during germination [66]. miR159 was also induced
under drought conditions suggesting it maybe a signal
factor in sensing the environment surrounding a seed to
ensure plant survival after germination [62, 66]. At
present study, sar-miR159k was up-regulated in black
seed, while sar-miR159j were up-regulated in IS vs. DS
but down-regulated in S vs. IS in brown seed during ger-
mination (Table 1, Additional file 16: Table S15). One
MYB protein was predicted to be the target of sar-
miR159j and sar-miR159k (Table 2, Additional file 17:
Table S16), indicating that miR159-mediated regulatory
module may be linked with ABA responses and homeo-
stasis during S. aralocaspica seed germination, and
desensitize hormone signaling to tolerate adverse envi-
ronments in black seed during post-germination growth.
SUPPRESSOR OF MAX2 1 (SMAX1) is an important
component of karrikins (KAR) / strigolactone (SL) sig-
naling, regulating germination and hypocotyl elongation
[67]. In this study, we predicted that sar-miR167e tar-
geted a homolog of SMAX1 (Additional file 17: Table
S16). sar-miR167e was down-regulated in black seed but
up-regulated in brown seed during germination (Table 1,
Additional file 16: Table S15), suggesting miR167 may
regulate germination and hypocotyl elongation in differ-
ent ways between black and brown seed. miR171-
targeted scarecrow-like (SCL) 6/22/27 proteins mediate
GA-DELLA signaling in the coordinate regulation of
chlorophyll biosynthesis under light conditions [68].
SCL15 plays an essential role in repressing embryonic
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traits in Arabidopsis seedlings [69]. At present study,
sar-miR171e-3p was down-regulated in black seed in IS
vs. DS, and sar-miR17la was up-regulated and sar-
miR171h was down-regulated in brown seed during ger-
mination (Table 1, Additional file 16: Table S15). A
homolog of SCL6-IV was predicted as the target of sar-
miR171a/e-3p/h, and a homolog of protein of SCL15
was predicted to be the target of sar-miR171a/e-3p
(Table 2, Additional file 17: Table S16), implying that
miR171-SCL module may fine-tune the GA-regulated
chlorophyll biosynthesis and participate in the regulation
of embryo-to-seedling phase transition during S. aralo-
caspica seed germination.

miRNAs also play an important role in various stress
responses. miR169 is induced by drought [70] and high
salinity [71] in rice, but repressed by salt in Thellungiella
salsuginea [72]. miR169 targeted NF-YA encodes a sub-
unit of the NF-Y complex transcription factor which is
involved in root development, nitrogen-starvation re-
sponses, and plant responses to drought and salt stresses
[71, 73, 74]. LEA proteins have crucial roles in cellular
dehydration tolerance [75]. At present study, sar-
miR169i was up-regulated in black seed, while sar-
miR169d was down-regulated in brown seed during ger-
mination (Table 1, Additional file 16: Table S15). We
predicted that sar-miR169d targeted one NF-YA tran-
scription factor and sar-miR169i targeted one LEA pro-
tein (Table 2, Additional file 17: Table S16), indicating
that miR169 may exert diverse roles in response to
drought and salt stresses during S. aralocaspica germin-
ation. Phosphatase 2C (PP2C) family proteins are key
players in ABA signal transduction during seed germin-
ation [24, 76]. Highly ABA-induced PP2C gene 2 (HAI2)
is a member of the PP2C family and recently found to
be also involved in ABA-independent drought-associated
signaling [77]. One FK506-Binding Protein (FKBP) fam-
ily protein, ROF1, is reported to play an important role
in salt stress responses during Arabidopsis seed germin-
ation [78]. In this study, sar-miR172e was down-
regulated in black seed during germination (Table 1,
Additional file 16: Table S15), whereas, no significant
difference in sar-miR172e expression was identified be-
tween the germination stages in brown seed. A homolog
of HAI2 and one FKBP protein were predicted to be the
targets of sar-miR172e (Additional file 17: Table S16), in-
dicating that miR172 may participate in ABA-dependent
and ABA-independent stress signaling during black seed
germination through its targets. miR398 expression is in-
duced by salt treatment in Populus [79] and T. salsugi-
nea [72], but is repressed by oxidative stresses in
Arabidopsis [80] and high levels of copper and cadmium
in Medicago truncatula [81]. The targets of miR398 are
Cu/Zn superoxide dismutase (CSD) that can detoxify
superoxide molecules. When copper supply is limited,
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the accumulation of miR398 reduces the allocation of
copper into CSDs and saves copper for other essential
processes [82, 83]. In S. aralocaspica, sar-miR398c was
down-regulated in black seed while up-regulated in
brown seed at S stage when comparing with the other
two stages (Table 1, Additional file 16: Table S15). Al-
though no unigene was predicted as the target of sar-
miR398c¢ in this study, we assumed that miR398 may
play an important role in mediating the copper homeo-
stasis that is required for photosynthetic and respiratory
electron transport, oxidative stress protection, cell wall
metabolism [84] during black and brown seed germin-
ation. Kinases and phosphatases have been documented
to be involved in the regulation of proteins involved in
osmolyte synthesis and detoxification by oxidants [54,
85]. They may play a role in salinity tolerance. In this
study, a protein kinase superfamily protein was the can-
didate target of sar-miR5 (Additional file 18: Table S17).
sar-miR5 was up-regulated in IS vs. DS and down-
regulated in S vs. IS in black seed, but was down-
regulated in IS vs. DS and up-regulated in S vs. IS in
brown seed (Table 1, Additional file 16: Table S15), sug-
gesting sar-miR5 may regulate salt tolerance through its
target in diverse pathways in black and brown seed dur-
ing S. aralocaspica germination. Wall associated kinase-
like (WAKL) 1 and putative indole-3-acetic acid (IAA)-
amido synthetase GH3.9 were predicted to be the targets
of sar-miR18 (Additional file 18: Table S17). WAKL
members respond to environmental stresses and are de-
velopmentally regulated and tissue specific [86]. In Ara-
bidopsis, WAKL1 has highest expression level in roots
[86]. GH3.9 functions as IAA-amido synthetase to con-
jugate amino acids to the plant hormone auxin. gh3.9-1
mutants had greater primary root length, and increased
sensitivity to IAA-mediated root growth inhibition [87].
At present study, sar-miR18 was down-regulated at S
stage comparing to DS stage in brown seed (Table 1,
Additional file 16: Table S15), while no significant sar-
miR18 expression difference was identified between the
germination stages in black seed, implying sar-miR18
maybe involved in environmental stresses response and
root growth during germination and early seedling
growth of brown seed by regulating WAKLI and GH3.9
genes.

Candidate miRNAs that may be related to the cautious
germination strategy of black seed

In plants, stem cells positioned in shoot apical meristem
(SAM) and root apical meristem (RAM) constitute a
pool of undifferentiated cells that continually provides
new cells for post-embryonic growth [88]. miR166/165
have a conserved role in the maintenance of shoot and
root apical meristems activity by negatively regulating its
target, CLASS III HOMEODOMAIN-LEUCINE ZIPPER
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(HD-ZIP III) [89-91]. In S. aralocaspica, sar-miR166b-
3p/d/l/r were down-regulated in black seed at S stage
comparing to the other two stages (Table 1, Add-
itional file 16: Table S15), while maintained at a high
level in brown seed. Three HD-ZIP III transcription fac-
tors were predicted as the targets of sar-miR166b-3p/l/r,
and one HD-ZIP III transcription factor was predicted
to be the target of sar-miR166d (Table 2, Add-
itional file 17: Table S16). This finding indicated that
black seed may have a lower meristem activity than
brown seed at seedling stage. The down-regulation of
sar-miR166b-3p/d/l/r at S stage could be a cautious ger-
mination strategy for black seed to respond quickly and
proactively to the precarious environment with low risk
to seedling survival.

Conclusions

In this study, we performed a systematic analysis of
genes and miRNAs in S. aralocaspica. Our data revealed
that specific genes and miRNAs were regulated differ-
ently between black and brown seed during germination.
These candidate genes/miRNAs may contribute to the
different germination behaviors of S. aralocaspica di-
morphic seeds under the control of a bet-hedging strat-
egy. This study elucidated the molecular mechanisms
underlying the control of the timing of S. aralocaspica
germination, stress tolerance during dimorphic seed ger-
mination, and the cautious germination strategy of black
seed. The findings of this study provided a solid founda-
tion for further understanding of the heteromorphic
seed germination of halophytes in desert regions.

Methods

Plant materials

Freshly matured fruits of Suaeda aralocaspica were col-
lected from plants in a natural population (44°14’ N;
87°44’ E; 445 m as.l) growing at the Fukang Desert Eco-
system Observation and Experimental Station in
Xinjiang Province, China in early October 2013. The
specimens used in this study were not deposited in a
herbarium. Fruits were dried naturally for ten days
under ambient room conditions. After that, seeds were
separated from the dried plant material and sorted into
black and brown seeds. S. aralocaspica black and brown
dry seeds were sown on two layers of Whatman paper
soaked with distilled water and incubated in a cabinet at
25 °C with continuous light. Imbibed brown seed were
harvested 1 h after sowing, seedlings from brown seeds
were harvested 24 h after sowing. Imbibed black seed
were harvested 24 h after sowing, seedlings from black
seeds were harvested within 10 d after sowing. Collected
samples were frozen in liquid nitrogen and stored at
-80 °C for further analysis.
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cDNA library preparation and RNA-seq

Total RNA was extracted by using TRIzol® reagent (Invi-
trogen, Carlsbad, CA, USA) according to the manufac-
turer’s instructions, and RQl DNase (Promega,
Madison, WI, USA) was used to remove contaminating
genomic DNA. The quality and quantity of the purified
RNA was monitored at the ratios of A260/A280 and
A260/230 on SmartSpec Plus Spectrophotometer
(BioRad, Philadelphia, PA, USA). RNA integrity was fur-
ther verified by 1.5% agarose gel electrophoresis and
assessed by Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA).

Equal amounts of RNA isolated from the samples col-
lected at the same stages (DS, IS, S) were mixed together
to prepare the cDNA library. mRNAs were purified and
concentrated with Magnetic Beads Oligo (dT) (Invitro-
gen, Carlsbad, CA, USA). Purified mRNAs were iron
fragmented at 95 °C followed by end repair and 5’
adaptor ligation. Then, reverse transcription was per-
formed with RT primer harboring 3" adaptor sequence
and randomized hexamer. Six cDNA libraries with insert
sizes from 300 to 500 bp were prepared for Illumina
HiSeq 2000 system 101 nt pair-end sequencing.

RNA-seq data filter

We removed the low-quality reads with these criteria: 1)
raw reads containing more than 2-N bases were re-
moved, 2) the reads were processed by clipping adaptor,
3) low quality bases were removed, 4) too short reads
(less than 16 nt) were removed. FASTX-Toolkit [92]
(Version 0.0.13) was used to filter the raw reads. All
RNA sequencing reads were deposited to NCBI under
BioProject accession number PRINA325861.

Assembly and statistics

We used Trinity [16] with a 25-mer parameter for de
novo assembly of the clean reads to generate a non-
redundant set of transcripts, other default parameters in-
cluding: group_pairs_distance = 500, path_reinforce-
ment_distance = 70, min_kmer_cov = 1. Afterwards, we
realigned all clean reads onto the transcripts using Bow-
tie 2 [19] (Version 2.2.9), allowing up to four-base mis-
matches. We calculated the read coverage of each
transcript. A transcript was defined not to be false posi-
tive, if the read coverage (the depth at least one read)
was over 90% of the transcript.

After Trinity assembly, we used CD-HITv4.6.4—2015-
0603 [20] for obtaining distinct sequences (transcripts).
The following parameters were used to ensure quality of
assembly: 1) sequence identity threshold: 0.95, 2) align-
ment coverage for the shorter sequence: 0.9, 3) max-
imum unmatched percentage (excluding leading and
tailing gaps) for the shorter sequence must not be more
than 10% of the sequence.
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Annotation and predicted CDS

All assembled transcripts were searched against Nr,
COQG, and Swiss-Prot protein database with BLASTX
althorithm [93], and KEGG by BLAST2GO [21]. The E-
value cut-off was set to 10™°. Genes were identified ac-
cording to best hits against known sequence functions,
prediction of GO terms were also performed. The CDS
were selected from transcript sequences based on the
above alignment results, and transcripts not uncovered
in the results were predicted by ESTScan [94]. The
shortest CDS were at least 100 bp.

In the meanwhile, transcripts were annotated by B.
vulgaris genome [95] and P. euphratica genome [96] and
their whole proteome using BLAT [97] and BLASTX
[93] (E-value <107°), respectively.

Differential expression analysis of unigenes

All clean reads were realigned onto the assembled tran-
scripts using Bowtie 2 [19], allowing up to four-base
mismatches. Trinity is able to report all alternatively
spliced isoforms and transcripts derived from paralogous
genes [16]. In order to calculate the read number and
RPKM value for each gene, the alternative isoforms or
paralogous transcripts were merged as one gene, the
reads aligned with more than one gene were discarded
due to their ambiguous location. Uniquely localized
reads were used to calculate read number and RPKM
value for each gene. To determine the differentially
expressed unigenes between any two germination stages
of S. aralocaspica, gene expression level analysis was
performed using EdgeR package [22]. For each gene, the
p-value and FDR were obtained based on the model of
negative binomial distribution. The fold change (FC) of
expression was also calculated within EdgeR. |log,FC]|
>1 and p-value <0.01 were set as the threshold to define
DEGs. Identified DEGs were further annotated using
BLASTX [93] against Nr and Arabidopsis Information
Resource (TAIR) database with a cut-off E-value of 107°.

sRNA library construction

Five to six samples collected at each germination stage
were mixed together, total RNA was extracted from the
mixture. Three pg of each RNA sample was used for
SRNA cDNA library preparation with Balancer NGS Li-
brary Preparation Kit (GnomeGen, San Diego, CA,
USA) based on manufacturer’s instruction. Whole library
was applied to 10% native PAGE gel electrophoresis and
bands corresponding to miRNA insertion were cut and
eluted. After ethanol precipitation and washing, the
purified small RNA libraries were quantified with Qubit
Fluorometer (Invitrogen, Carlsbad, CA, USA) and used
for cluster generation and applied to Illumina GAIIx
(Illumina, San Diego, CA, USA) 73 nt and Illumina
HiSeq 2000 100 nt single-end sequencing.
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Bioinformatic analysis of the sRNA transcriptome
All sequencing data was processed by FASTX-Toolkit
[92], adaptor sequences and low quality tags were fil-
tered. Based on the length of the mature miRNA and
adaptor length, sequences shorter than 18 nt and greater
than 30 nt in length were removed. At this step, the data
were screened for redundant sequences. The remaining
sequences were mapped to Rfam database (version 11.0
[98]) and S. aralocaspica mRNA transcriptome database
for perfect matches, using custom-written PERL script.
The matches to rRNAs, tRNAs or mRNAs were ex-
cluded. To identify conserved miRNAs, the retained
unique sequences were aligned against miRBase (version
21), which contains 8582 miRNAs across 75 plant spe-
cies [99], and the newly identified 241 miRNAs in Sali-
cornia europaea [33), using Bowtie 2 [19] (one mismatch
allowed). Only the perfectly matched sRNA sequences
were considered to be conserved miRNAs. To reveal
conserved and novel miRNA precursors, the unique se-
quences that have 10 or more counts were aligned to
the S. aralocaspica mRNA transcriptome database using
miRDeep-P with default parameters [100]. BLASTX [93]
was used to match the sequences to Nr database, the pu-
tative precursors conserved in other plant species were
removed. Mfold [31] was used to predict the secondary
structures of the putative precursors utilizing default pa-
rameters. The miRNA precursors should met the follow-
ing criteria: 1) forming an appropriate stem-loop
structure, with a mature miRNA sitting in one arm of
the hairpin structure; 2) mature miRNAs had no more
than 6 mismatches with the opposite miRNA sequences;
3) the minimal folding free energy (MFE) of the hairpin
structure was less than —15 kcal/mol; 4) MFE index were
more than 0.5; 5) A + U content was between 30 and
70% [33, 101].

All small RNA sequencing reads were deposited to
NCBI under BioProject accession number PRINA325861.

Differential expression analysis of miRNAs

All clean reads from sRNA libraries were aligned against
the mature sequences of identified miRNAs (only one
mismatch allowed), the mapped reads were normalized
to tags per million (TPM). Differentially expressed miR-
NAs between the three stages, DS, IS, S, were analyzed
using Fisher Exact Test [102], and the mapped reads
were pre-normalized by the locally weighted scatter plot
smoothing method. p-value <0.01 and |log,FC| >1 were
set as the threshold to define DE miRNAs.

miRNA target prediction and validation

The potential miRNA targets were identified using
TAPIR [32] with default settings. All predicted target
transcripts were evaluated by scoring system and consid-
ered to be miRNA targets if TAPIR score was less than
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3.5 and miRNA-transcript duplex free energy ratio
(mfe_ratio) was more than 0.7.

Two pg total RNA from equally mixed six RNA ex-
tractions of DS, IS, and S was used to synthesize 5'-
RACE-ready ¢cDNAs with the 5'-Full RACE Kit (Takara
Bio Inc., Otsu, Shiga, Japan) according to the manufac-
turer’s instructions. The final PCR product was extracted
and purified from a 2% agarose gel, cloned into pEASY-
T1 Vector (Beijing TransGen Biotech Co., Ltd., Beijing,
China), and plasmid DNA from ten to twelve different
colonies was sequenced. The outer and inner gene spe-
cific primers were listed in Additional file 24: Table S21.

qRT-PCR

One microgram of total RNA was reverse transcribed
using M-MLV Reverse Transcriptase according to the
manufacturer’s protocol (Promega, Madison, WI, USA).
We selected 18 s rRNA and U6 snRNA as the endogen-
ous controls. The primers for examined unigenes were
designed by us from the S. aralocaspica transcriptome
sequences and optimized for PCR (Additional file 24:
Table S21), and bulge-loop qRT-PCR primers for mature
miRNAs and U6 were designed and provided by RIBO-
BIO (Guangzhou RIBOBIO Co., Ltd., Guangzhou,
China). Real-time monitoring of PCR was performed
with ABI3700 (Applied Biosystems, Grand Island, NY,
USA) and TransStart Top Green qPCR SuperMix
(TransGen Biotech, Beijing, China). Reaction was per-
formed at 95 °C for 10 min, and then cycled at 95 °C for
15 s, 60 °C for 60 s for 40 cycles. Each assay was per-
formed in triplicate, real-time qRT-PCR data were ana-
lyzed based on 2*4“* method [103].
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