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Abstract

Background: Epigenetic alterations are strongly associated with the development of cancer. The aim of this study
was to identify epigenetic pattern in squamous cell lung cancer (LUSC) on a genome-wide scale.

Results: Here we performed DNA methylation profiling on 24 LUSC and paired non-tumor lung (NTL) tissues by
[llumina Human Methylation 450 K BeadArrays, and identified 5214 differentially methylated probes. By integrating
DNA methylation and mRNA expression data, 449 aberrantly methylated genes accompanied with altered expression
were identified. Ingenuity Pathway analysis highlighted these genes which were closely related to the carcinogenesis
of LUSC, such as ERK family, NFKB signaling pathway, Hedgehog signaling pathway, providing new clues for
understanding the molecular mechanisms of LUSC pathogenesis. To verify the results of high-throughput
screening, we used 56 paired independent tissues for clinical validation by pyrosequencing. Subsequently,
another 343 tumor tissues from the Cancer Genome Atlas (TCGA) database were utilized for further validation.
Then, we identified a panel of DNA methylation biomarkers (CLDN1, TP63, TBX5, TCF21, ADHFET and HNF1B)
in LUSC. Furthermore, we performed receiver operating characteristics (ROC) analysis to assess the performance of
biomarkers individually, suggesting that they could be suitable as potential diagnostic biomarkers for LUSC. Moreover,
hierarchical clustering analysis of the DNA methylation data identified two tumor subgroups, one of which showed

increased DNA methylation.

Conclusions: Collectively, these results suggest that DNA methylation plays critical roles in lung tumorigenesis and

may potentially be proposed as a diagnostic biomarker.

Trial registration: ChiCTR-RCC-12002830 Date of registration: 2012-12-17.

Keywords: Lung cancer, DNA methylation, Biomarker, Diagnosis, Epigenetics

Background

Lung cancer is the leading cause of cancer-related mor-
tality throughout the world [1]. There are two main
histological types of lung cancer, non-small cell lung
cancer (NSCLC) and small cell lung cancer. NSCLC
comprises three major histological subtypes: squamous
cell carcinoma (LUSC), adenocarcinoma and large cell
carcinoma [2]. Early diagnosis of cancer is one of the
most important factors contributing to the successful
and effective treatment. However, many patients are
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diagnosed with advanced lung cancer due to the asymp-
tomatic nature of early stages and lack of effective
screening modalities, resulting in a very low five-year
survival rates for them. Therefore, it is essential to iden-
tify tumor specific molecular biomarkers for risk assess-
ment and effective early screening.

Tumorigenesis involves a multi-step process, which is
the result of the interactions of genetic, epigenetic and
environmental factors. The change of these factors re-
sults in dysregulation of key oncogenes and tumor sup-
pressor genes. Epigenetic mechanisms are heritable and
reversible, including DNA methylation, histone modifi-
cations and chromatin organization. DNA methylation is
a major epigenetic modification which leads to gene
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silencing at the transcriptional level. It is involved in
some crucial biological processes, including prolifera-
tion, apoptosis, cell cycle, DNA repair, tumor invasion
and metastasis [3]. Thus, identification of DNA methyla-
tion biomarkers has emerged as one of the most promis-
ing approaches to improve cancer diagnosis, it presents
several advantages compared with other markers [4, 5].
Firstly, methylation changes in lung cancer appear to be
early events and thus could be used to improve early de-
tection of malignant tumors [6]. Additionally, the DNA
methylation represents a very stable sign that can be de-
tected in many different types of samples, including
tumor tissues, cancer cells in body fluids [7, 8]. Most im-
portantly, DNA methylation can be detected by a wide
range of sensitive and cost efficient techniques even in
samples with low tumor purity.

In previous studies, a variety of epigenetic biomarkers
has been evaluated in lung cancer for early detection
and prognosis prediction, however, most of them fo-
cused on a single gene. For example, P16, HOXA11
(Homeobox A11) and SOX17 (SRY-box 17) showed ab-
normal hypermethylation at their promoters, they were
considered as biomarkers for lung cancer detection and
prognosis prediction [9-11]. In recent years, many epi-
genetic biomarkers have been identified by using micro-
array [12]. However, they have either lacked clinical
validation via large sample size or focused on a mix of
lung cancer histologies, and thereby limited the ability to
identify subtypes. Of note, LUSC and adenocarcinoma
shows distinct differences in DNA methylation, expres-
sion profiles and lesion location, although they are
similarly treated in clinical practice due to the largely
unknown underlying molecular mechanisms [13].
Homogeneous treatment strategies have been tradition-
ally implemented for the two fundamentally different
subtypes in clinical practice, resulting in poor response
to treatment. Therefore, a better understanding of their
biological pattern is critical for finding subtype-specific
diagnosis and treatment strategies [14]. The aim of this
study is to identify epigenetic pattern in LUSC on a
genome-wide scale.

Methods
All data analysis were performed using R (http://www.r-
project.org/, version 2.15.0) and Bioconductor [15].

Patients and tissue collection

The study was approved by the Ethics Committee of
Xiangya School of Medicine, Central South University.
All the patients provided written informed consents in
compliance with the code of ethics of the World Medical
Association (Declaration of Helsinki) at the time of sur-
gery for the donation of their tissue for this research.
We also obtained the clinical research admission on the
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Chinese Clinical Trial Registry and the registration num-
ber is ChiCTR-RCC-12002830 [16]. All fresh tissues
were frozen in liquid nitrogen immediately after resec-
tion and stored at —80 °C. Their basic clinical character-
istics were summarized in Table 1. In the current study,
current smoker and current reformed smoker for
<15 years were identified as smoker, whereas current re-
formed smoker for >15 years and never-smoker were de-
fined as non-smoker.

Global methylation analysis

Genome-scale DNA methylation were analyzed by the
[lumina Human Methylation 450 K BeadArrays according
to manufacturer’s instructions in the laboratory of Ca-
pitalBio Corporation (Beijing, China), which quantifies
methylation levels (B-value) of 485,577 CpG-sites. Raw
fluorescence intensity values were normalized by Illumina
Genome Studio software. Normalized intensities were
used to calculate [B-values, which were calculated from
mean methylated (M) and unmethylated (U) signal inten-
sities for each locus of each sample using the formula
(B =MM)/(U + M + 100)). All methylation data analysis
was carried out by using R software (v2.1.5). First, we per-
formed data quality control as following steps: 14,511 sites
containing missing values were removed, 89,808 sites con-
taining SNPs were removed, 10,245 sites on the X or Y
chromosome were removed, 14 sites with P value greater

Table 1 Clinicopathological characteristics of patients for discovery
and clinical validation cohorts

Clinical and pathological Discovery cohort Validation cohort

variables (N =24) (N = 56)
Age (years)

< 60 13 29

=60 1 27
Gender

Male 22 54

Female 2 2
Smoking status

Smoker 19 48

Non-smoker 5 8
Clinical stage

Il 14 28

-V 10 28
Differentiation

Well 0 8

Moderate 16 27

Poor 8 21
Lymph node metastasis

Yes 11 21

No 13 35
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than 0.05 in at least 75% samples were removed, and
finally 371,000 sites were retained from the original
485,577 sites. Secondly, site-level differential methylation
analysis was performed: locus-by-locus analyses was con-
ducted using the nonparametric Wilcoxon rank-sum test,
and multiple comparisons correction was performed using
Benjamini-Hochberg (BH) FDR from the package in R.
Probes with FDR P-value <0.05 and {3 difference > 0.2
were used to identify significantly differential DNA methy-
lation, 5214 sites (1771 genes) were differentially methyl-
ated (Additional file 1: Figure S1).

Global gene expression analysis

Genome-scale mRNA expression profiles were detected
by the Human 4 x 180 K expression microarray (Agilent
Technologies, Santa Clara, California, USA). After strict
data preprocessing and quality control, 32,205 sites were
retained from the original sites. We analyzed differential
expression using paired t-tests and Benjamini-Hochberg
(BH) multiple comparisons correction. Corrected P-value
<0.05 and absolute fold change >2 were used to identify
significantly differential expressed mRNAs, and 3635
genes were differentially expressed.

Select the validation genes

In order to select the target genes, we designed our
study into three steps. Firstly, to identify genes with the
greatest changes, we further set up a fourfold cutoff to
the average change in gene expression, the results show
that 44 genes were coordinately hypermethylated and
downregulated in tumors, and 26 genes were coordi-
nately hypomethylated and up-regulated (Additional file 2:
Table S3). Secondly, we looked at the literature one by
one, looking for genes that were involved in the develop-
ment of lung cancer and were not reported/reported less
from the 70 negatively correlated genes. Finally, we se-
lected several genes for clinical validation, and six genes
(CLDN1, TP63, TBX5, TCF21, ADHFE1 and HNFI1B)
were identified.

Pyrosequencing analysis

Genomic DNA was extracted from samples by using
QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany),
following the manufacturer’s instructions. The genomic
DNA was bisulfite-modified using an EpiTect Bisulfite
Kit (QIAGEN, Hilden, Germany), according to the
manufacturer’s instruction. Primer design was carried
out using the PyroMark Assay Design 2.0 software; one
of the primers was biotinylated to enable capture by
Streptavidin Sepharose (Additional file 2: Table S1).
Bisulfite-treated DNA was amplified, followed by
pyrosequencing using the Gold Q96 CDT Reagents
(QIAGEN, Hilden, Germany).
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Quantitative reverse transcription-polymerase chain
reaction (qRT-PCR)

qRT-PCR was used to examine the mRNA expression as
described previously [17]. Total RNA was extracted from
samples with Trizol reagent (Takara, Dalian, China) and
then reverse transcribed to cDNA using PrimeScriptTM
RT-PCR Kit (Takara, Dalian, China). Real-time PCR was
performed using SYBR® Premix DimerEraser™ (Perfect
Real Time) (Takara, Dalian, China) in Roche LightCy-
cler 480 II Real-Time PCR system (Roche Diagnostics
Ltd., Rotkreuz, Switzerland). The data were calculated
using the comparative cycle threshold (CT) (2-AACT)
method. All primers were provided in Additional file
2: Table S1. The differences of mRNA expression
level were compared by t test using SPSS 18.0 (SPSS
Inc., Chicago, Illinois, USA).

Functional classification, the cancer genome atlas (TCGA)
data and receiver operating characteristics (ROC) analysis
Gene Ontology analyses were performed by using the
DAVID Functional Annotation Tool [18]. Gene network
and pathway analyses were conducted by IPA (http://
www.ingenuity.com). The NextBio database (http://
www.nextbio.com) was used to analyze the overlap
between our bioset and the other three most highly
correlated NextBio biosets.

DNA methylation datasets in LUSC were down-
loaded from the Cancer Genome Atlas (TCGA) data
portal (http://tcga-data.nci.nih.gov). We selected 343
tumor and 39 paired NTL samples, with both DNA
methylation data and clinical features information
available for performing the correlation analysis. Re-
ceiver operating curves were used to assess the pre-
dictive capacity of each marker. Area under the curve
(AUC) was computed for each curve, and 95% confi-
dence intervals (CI) were also estimated by bootstrap-
ping with 1000 iterations.

Results

Genome-wide DNA methylation patterns in LUSC

In our study, a total of 24 LUSC and matched adjacent
NTL tissues were analyzed, the strategy was diagram-
matically outlined in Additional file 1: Figure S1. Single-
CpG-site methylation levels are quantified by 3, f ranges
from zero (the CpG site is unmethylated) to one (the
CpG site is fully methylated). Firstly, we investigated the
overall distribution of methylation level in tumor versus
NTL, the results showed a bimodal distribution of
methylation (Additional file 3: Figure S2A). Normally,
the methylation site can be grouped based on their pos-
itional context relative to closest CpG island (CGI) and
the nearby transcripts (Additional file 3: Figure S2B).
Thus, we further identified the methylation level distri-
bution of probes located in five CpG island-based
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regions (CGIs, south and north shores, and south and
north shelves) and six gene-based regions (TSS1500,
TSS200, 5'-UTR, first exon, gene body, and 3'-UTR).
As indicated in Additional file 3: Figure S2C, we found
that most CpG sites in CGIs were hypomethylated as
showed by a single peak with the B-value <0.2, while
CpG sites in CGI shelf regions (both north and south)
were hypermethylated as showed by a single peak with
the B-value >0.6. In addition, CpG sites in CGI shore
regions had variable methylation levels as indicated by
a bimodal distribution, and this pattern is symmetric in
the north and south shores of CGIs. In brief, the DNA
methylation levels gradually increased with the CpG
sites far away from CGIs. We further investigated that
methylation patterns at gene context based on genomic
content, the first exon and its upstream area (TSS1500,
TSS200, 5'-UTR) are hypomethylated, while gene body
and 3'-UTR are hypermethylated (Additional file 3:
Figure S2D). We found that the CpG sites which closer
to 3'-UTR have higher methylation levels. We also
compared the methylation level between LUSC and
NTL samples based on these groups, although the
above distribution curves are similar with each other,
our statistical analysis indicated that there were
significant differences in LUSC versus NTL tissues
(Additional file 2: Table S2).

Methylation differences in LUSC and matched NTL tissue

Then, we analyzed the methylation differences in LUSC
and matched NTL tissues. After normalization, 371,000
probes from the methylation array were retained for
analysis. Using the criteria of FDR p-value <0.05 and f
difference > 0.2, we identified 5214 probes (1771 gene)
differentially methylated. Among them, 4001 probes
(77%) were significantly hypermethylated, and 1213
probes (23%) were significantly hypomethylated in tu-
mors (Fig. 1a). A two-dimensional hierarchical clustering
analysis of the 5214 probes revealed a clear sorting of tu-
mors and NTLs, indicating a substantial difference in
DNA methylation profiles between the tumor and non-
tumor samples (Fig. 1b). With these differentially meth-
ylated probes, we investigated their regional distribution
in the gene context, CpG- island neighborhood and
chromosome, respectively. The gene context regions of
the hyper- or hypomethylated CpG sites were distributed
similarly. As indicated in Fig. 1c, most of differentially
methylated probes were located in the Gene body (29%
in hypermethylated and 32% in hypomethylated). How-
ever, the CpG island-based regions of the significantly
hyper- or hypomethylated CpG sites are distributed dif-
ferently. 60% of the hypermethylated CpG sites are in
CpG islands and that fewer are in the CpG shores (24%)
and CpG shelves (4%). In contrast, just 5% of the hypo-
methylated CpG sites were in CpG islands, CpG shores

Page 4 of 12

(14%) and CpG shelves (8%). In addition, chromosome
location analysis showed that the majority of CpGs with
differential methylation mapped to chromosome 2 and
less in other chromosomes. We also added a distribution
analysis of 371,000 probes in Additional file 4: Figure S4,
and we compared the distribution of the differentially
methylated probes and the overall probes in the genomic
context. Compared to the overall distribution of all
probes, the differentially methylated probes are distrib-
uted differently just in the CpG islands, 31% of the total
probes located on the CpG island, 60% of the hyper-
methylated probes were located on the CpG island, and
just 5% of the hypomethylated probes were located on
the CpG island.

Identification of potentially functionally relevant DNA
methylation changes in LUSC

To identify the potential functionally relevant methyla-
tion changes, we further selected 12 paired cancer and
adjacent NTL tissue to detect the genome-scale mRNA
expression profiles. Corrected P-value <0.05 and abso-
lute fold change >2 were used to identify differentially
expressed mRNAs, 3635 genes were identified to be dif-
ferentially expressed. We performed an exploratory two-
dimensional hierarchical clustering of the differentially
expressed probes, the mRNA expression profiles of tu-
mors and NTL resulted in separate clusters (Fig. 2a).
After integrating analysis of differentially methylated
genes (DMGs) and differentially expressed genes
(DEGS), we identified 449 aberrantly methylated genes
accompanied with altered expression. Of these, 184
genes were statistically significantly hypermethylated and
down-regulated (41%), 72 genes (16%) were significantly
hypomethylated and up-regulated, while 98 genes (22%)
were significantly hypermethylated and up-regulated, 95
genes (21%) were significantly hypomethylated and
down-regulated. To identify genes with the greatest
changes, we further set up a fourfold cutoff to the aver-
age change in gene expression (Fig. 2b), the results show
that 44 genes were coordinately hypermethylated and
downregulated in tumors, and 26 genes were coordi-
nately hypomethylated and up-regulated (Additional file
2: Table S3). We next asked whether the different groups
of genes were associated with CpG islands or promoter
regions methylation. As indicated in Fig. 2c, we found
no statistically significant difference between groups
whether or not the probes were located in the promoter
region (P > 0.05). However, there were significant differ-
ences between groups with different locations of probes
in CpG island (P < 0.01), hypermethylated genes were
gathered at CpG island. To further investigate the rela-
tionships between DNA methylation and gene expres-
sion, we selected ten genes for verification. Scatter plot
demonstrated that these probes showed an inverse
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Fig. 1 Identification of DNA methylation differences between LUSC and NTL. a Pie charts showed the distribution of all filtered probes retained
from the microarray, and revealed the methylation differences in LUSC and matched NTL tissues. b Two-dimensional hierarchical clustering was
performed using the 5214 variable DNA methylation probes across all samples (n = 48). ¢ The genomic distribution of differentially methylated
probes in the gene context, CpG-site neighborhood and chromosome, respectively. TSS: transcription start site, UTR: untranslated region, Chr: chromosome
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correlation of methylation with expression in tumor ver-
sus matched NTL, the Spearman correlation coefficient

values for these ten genes were rgpapgerr; = -0.829,
rerpn: = —0.564, Targizio = —0.709, rrpsz = -0.854,
I'rpxs = —0.743, Ircr2r = -0.748, YADHFEI = —0.685,
I'cATA6 = -0.831, I'Gprsy = -0.749, and I'yNFIB = -0.797,

respectively (Fig. 2d).

To study biological functions of the 70 negatively corre-
lated genes, Gene Ontology (GO) analysis was performed.
In terms of the biological processes, most of the genes
were related to development and adhesion. 7 of the top 10
categories of molecular function were related to protein
binding, while cellular component mostly involved the
plasma membrane and cell junction (Fig. 3a). Gene net-
work analysis was further conducted using Ingenuity Path-
ways Analysis (IPA), we found that top two gene networks
might be affected by the aberrant DNA methylation of the
256 negative correlation genes (Fig. 3b). Prominent in the
first network were PP1 protein complex members, actin
gene family, and NFKB signaling pathway members. The

second network was composed primarily of genes regu-
lated by the ERK family, as well as the regulation of PIK3
complex members and Hedgehog signaling pathway
members. Genes involved in the gene networks were asso-
ciated with tissue morphology, organismal development,
respiratory disease, cell death and survival.

Overlap analysis

To compare our study with other investigations, we
employed the NextBio database (http://www.nextbio.com)
to conduct the overlap analysis. The three most highly
correlated NextBio biosets (LSCC, GSE30219, GSE19188)
were selected. As indicated in Fig. 4a, of the 256 genes
with inverse correlations, a total of 229 genes were sig-
nificantly differentially expressed in our study and TCGA
dataset (LSCC), most of the genes were expressed at the
same direction, while 2 up regulated genes were down
regulated in the LSCC dataset, and 4 down regulated
genes were up regulated in LSCC dataset. To learn more
about the overlap between our microarray and GEO
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Fig. 2 Identification of genes showing coordinately changed DNA methylation and gene expression. a Volcano plot and two-dimensional hierarchical
clustering of the differential mRNA expression analysis. Vertical dotted lines: fold change 22 or <2; Horizontal dotted line: the significance cutoff (FDR
p-value = 0.05). Two-dimensional hierarchical clustering was performed using 4687 probes corresponding to 3635 genes across all samples (n = 24). b
Starburst plot integrating differential DNA methylation and gene expression analyses. Vertical dotted lines: the significance cutoff (FDR p-value = 0.05);
Horizontal dotted line: the significance cutoff (FDR p-value = 0.05). Three-dimensional starburst plot of 123 genes, integrating significant changes in
DNA methylation (x-axis) and gene expression (y-axis), with a mean twofold or greater change in gene expression (z-axis). Indicated are genes that are
hypermethylated and down-regulated in tumors (red); hypomethylated and up-regulated in tumors (blue); hypermethylated and up-regulated in
tumors (orange); or hypomethylated and down-regulated in tumors (green). ¢ Gene distribution in CpG islands and promoter region exhibiting hyper-or
hypomethylation and up- or down-regulation. d Correlation plots of DNA methylation versus gene expression in tumors and normal tissues for selected
genes. x-axis: DNA methylation level (8 value), y-axis: mRNA expression level, r: correlation coefficient

database, we compared current study’s differentially for further validation in another independent 56 paired
expressed genes with their results. As showed in Fig. 4b the = LUSC and adjacent NTL tissues. The clinical character-
two studies owned an overlap of 200 genes, just few genes istics of this cohort were summarized in Table 1. DNA
were expressed at the different direction. Similar to this re- methylation was detected by using pyrosequencing,
sult, Fig. 4c showed that 196 genes were overlapped between =~ mRNA expression was identified by using realtime PCR.
our study and GSE19188 dataset. Taken together, there were ~ As indicated in Fig. 5a and b, the results were consistent
183 overlapping genes, highly consistent with the three pre-  with our high-throughput analysis, and we found two
vious studies on tumor and matched NTL (Fig. 4d). hypomethylation and up-regulated expression genes,

four hypermethylation and down-regulated expression
Validation of the methylation biomarkers for LUSC diagnosis ~ genes. Next, receiver operating characteristics (ROC)
To confirm our previous results, we selected six genes analysis was performed to assess the diagnostic value of
(CLDN1, TP63, TBX5, TCF21, ADHFE1 and HNF1B) each individual biomarker to detect LUSC. Areas under
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the ROC curve (AUC) of tumor and NTL group were sig-
nificantly different (P < 0.01) for all six genes with the fol-
lowing values AUCcpn; = 0836, AUCrps3 = 0919,
AUCTBXS = 0.737, AUCTCFZJ = 0.968, AUCADHFE] =0.761
and AUCgnr;s = 0.809 (Fig. 5¢). Considering that our study
was limited by the number of patients, we expanded the
sample size to further validation by using the Cancer
Genome Atlas (TCGA) database. A total of 343 LUSC pa-
tients and 39 N'TL tissue samples were selected (Additional
file 2: Table S4). The methylation levels of the six selected
genes were similar to those of our clinical validation cohort
with significant differences between tumor and NTL
(Additional file 5: Figure S3A), suggesting that the methyla-
tion statuses of the six selected biomarkers are a common
feature for LUSC. Then, we performed ROC analysis to
assess the performance of each individual biomarker to
detect LUSC. Importantly, all the genes showed significant
difference (P < 0.01) in AUC (AUCcipn; = 0919,

AUCTP63 = 0.958, AUCTBX; = 0.984, AUCTCFZ] = 0.985,
AUCpyre; = 0.852 and AUCynris = 0.908), suggesting
that they could be suitable as potential predictive bio-
markers for LUSC diagnosis (Additional file 5: Figure
S3B). Details of the CGs dinucleotides for these six genes
are listed in Additional file 2: Table S5.

Subclassification of LUSC by methylation patterns

Finally, to explore the effect of clinical pathological fea-
tures on DNA methylation, we performed correlation
studies based on the stratification of clinical characteris-
tics. Patients were divided into two groups according to
each of the following five factors: age (<60 or >60 years
old), smoking status (smokers or non-smokers), differenti-
ation (poorly or moderately), complication (with or with-
out) and TNM stages (I/II or III). The results showed that
all factors mentioned above were highly associated with
DNA methylation,respectively; and associations of each
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factor with DNA methlylation were more evident in NTL
groups relative to tumor group (Fig. 6a). Then, to identify
squamous cell lung cancer DNA methylation-based sub-
classes, we used the 5214 differentially methylated probes
to perform an unsupervised hierarchical clustering. 24 tu-
mors were clearly divided into two independent categor-
ies: Clusterl (# = 10) and Cluster 2 (n = 14), Cluster 1
tumors were significantly hypomethylated as compared
with Cluster 2 tumors (Fig. 6b). We also used the 2470
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differentially methylated probes on the CpG island to per-
form an unsupervised hierarchical clustering, which sug-
gested more significant differences between the two
tumor subclusters (Fig. 6¢).

Discussion

In the present study, we investigated the genome-wide
DNA methylation patterns in 24 paired LUSC and adja-
cent NTL tissues by microarray, and identified 5214
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probes showing significantly differential DNA methyla-
tion in cancer tissues. By integrating DNA methylation
and mRNA expression data, 449 aberrantly methylated
genes accompanied with altered expression were identi-
fied. GO analysis of these genes indicated that the most
significantly related terms were development and bind-
ing. Pathway analysis highlighted many pathways which
were closely related to the carcinogenesis of LUSC, such
as ERK family, NFKB signaling pathway, Hedgehog sig-
naling pathway, providing new clues for understanding
the molecular mechanisms of LUSC pathogenesis. To
verify the results of high-throughput screening, we used
56 paired independent tissues for clinical validation by
pyrosequencing. Subsequently, another 343 tumor tis-
sues from the TCGA were utilized for further validation.
Then, we identified a panel of DNA methylation bio-
markers in LUSC. Furthermore, we performed ROC ana-
lysis to assess the performance of each biomarker,
results suggested that they could serve as potential pre-
dictive biomarkers for LUSC diagnosis. Finally, hierarch-
ical clustering analysis of the DNA methylation data
identified two tumor subgroups, one of which showed
increased DNA methylation.

The pattern of DNA methylation in some certain types
of cancers has been investigated including NSCLC [12].
DNA methylation analysis of cell-free blood samples has
a substantial potential to serve as a minimally invasive
tool for early diagnosis and clinical monitoring of can-
cer. Wielscher et al. found a model of four genes
(HOXD10, PAX9, PTPRN2 and STAG3) that were able
to differentiate lung cancer from controls, fibrotic ILD,
and COPD [19]. NSCLC comprise multiple distinct bio-
logic groups (such as epithelial-like NSCLCs and
mesenchymal-like NSCLCs) with different prognoses.
Walter et al. showed that patterns of DNA methylation
can divide NSCLCs into these two phenotypically dis-
tinct subtypes of tumors and provide proof of principle
that differences in DNA methylation can be used as a
platform for predictive biomarker discovery and devel-
opment [20]. Another research identified differentially
methylated genes by comparing the global DNA methy-
lation patterns between lung adenocarcinoma samples
from smokers and nonsmokers. Their study provides an
insightful perspective on smoking-associated DNA
methylation and its role in tumorigenesis of the lung
[21]. We investigated the genome-scale DNA methyla-
tion profile in LUSC and identified 5214 differentially
methylated probes. Certain aberrantly methylated genes
that were found in our study were also reported in previ-
ous other studies, which supported the result for each
other. One of the previously reported methylated genes
was SOX17, a canonical WNT antagonist previously
shown functionally hypermethylated in breast, colorectal
and lung cancers [22-24]. In our study, SOX17 was also
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a hypermethylated and down-regulated expression gene.
Another example was WIFI, an extracellular antagonist
that acts by binding to Wnt ligands. According to current
findings, WIF1 promoter methylation was a frequent
event as an epigenetic field manner and could be
considered as a useful prognostic marker for adenocarcin-
oma patients [25]. In agreement with this report, our
results also showed that WIF1 expression was down-
regulated by promoter hypermethylation in LUSC. How-
ever, most of the differentially methylated genes identified
in this study were novel. The top hypomethylated and up-
regulated gene, aldo-keto reductase family 1 member B10
(AKR1B10), has been demonstrated previously to be
specifically up-regulated in smoking-associated cancers
such as squamous cell carcinoma and adenocarcinoma
[26]. B-arrestin-1 (ARRBL1), a scaffolding protein involved
in the desensitization of signals arising from activated G-
protein-coupled receptors, has been shown to play a role
in invasion and proliferation of cancer cells, including
nicotine-induced proliferation of NSCLC [27].

We selected several genes for clinical validation, and
six genes (CLDN1, TP63, TBX5, TCF21, ADHFE1 and
HNF1B) were identified. CLDN1 serves as an oncogene
or a tumor suppressor in a tissue-specific manner. There
is a significant correlation between down regulation of
CLDN1 expression and methylation of its promoter
CpG-island in estrogen receptor positive breast cancer
[28, 29]. While our results suggested that hypomethyla-
tion might contribute to the upregulation of CLDN1 in
LUSC and CLDNI overexpression may play a role in the
pathogenesis of LUSC. For the other genes, p63 was re-
ported to be overexpressed in many tumors especially in
LUSC [30-32], whereas adenocarcinoma and small cell
carcinomas were almost all p63 low expression. TBX5 is
a member of a phylogenetically conserved family of
genes involved in the regulation of development,it is a
novel functional tumor suppressor gene inactivated by
promoter methylation in colon cancer [33]. TCF21
hypermethylation and reduced protein expression are
ubiquitous in NSCLC [34]. TCF21 is expressed in nor-
mal lung airway epithelial cells, however, it is aberrantly
methylated and silenced in the majority of head and neck
squamous cell carcinomas and in NSCLC [35]. ADHFE],
a member of the group III metal dependent alcohol de-
hydrogenase family. The hypermethylation of ADHFE1
has recently been reported to be associated with colorectal
cancer differentiation [36]. We performed receiver operat-
ing characteristics (ROC) analysis to assess the perform-
ance of each individual biomarker to detect LUSC. Our
results suggested a strong diagnostic potential for these
markers, and we hoped that they are potentially applicable
in improving early LUSC diagnosis.

To further validate our findings, we asked if the findings
of the three most highly correlated investigations (LSCC,



Shi et al. BMC Genomics (2017) 18:901

GSE30219, GSE19188) are consistent with our results. For
the overlapped genes, our study and the previous investi-
gations had high consistency with each other. The high
reliability and reproducibility of the microarray technology
in identifying the six genes are essential for its application
in discovering the clinical biomarkers.

This study lays a foundation for the diagnosis, treat-
ment and functional research of LUSC. However, there
are some limitations in this study. We just examined the
methylation of the target genes in tissue samples. In the
future, we will also detect the methylation of these bio-
markers in minimally/non-invasive samples.

Conclusions

In summary, we have identified and independently vali-
dated a powerful epigenetic signature of LUSC in tissue
samples. We also described the clinicopathological cha-
racteristics of distinct molecular LUSC subgroups. The
current study demonstrated that differences in genome-
wide DNA methylation and gene expression patterns exist
between LUSC and NTL. Our results suggested that DNA
methylation plays critical roles in lung tumorigenesis and
may potentially be proposed as a diagnostic biomarker.
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