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Abstract

Background: The reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory
relationships among genes and gain deep insights into the complicated regulation mechanism of life. However, it is still
a great challenge in systems biology and bioinformatics. During the past years, numerous computational approaches
have been developed for this goal, and Bayesian network (BN) methods draw most of attention among these methods
because of its inherent probability characteristics. However, Bayesian network methods are time consuming and cannot
handle large-scale networks due to their high computational complexity, while the mutual information-based methods
are highly effective but directionless and have a high false-positive rate.

Results: To solve these problems, we propose a Candidate Auto Selection algorithm (CAS) based on mutual information
and breakpoint detection to restrict the search space in order to accelerate the learning process of Bayesian network.
First, the proposed CAS algorithm automatically selects the neighbor candidates of each node before searching the best
structure of GRN. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS + G), which
focuses on finding the highest rated network structure, and a local learning method (CAS + L), which focuses on faster
learning the structure with little loss of quality.

Conclusion: Results show that the proposed CAS algorithm can effectively reduce the search space of Bayesian networks
through identifying the neighbor candidates of each node. In our experiments, the CAS + G method outperforms
the state-of-the-art method on simulation data for inferring GRNs, and the CAS + L method is significantly faster
than the state-of-the-art method with little loss of accuracy. Hence, the CAS based methods effectively decrease
the computational complexity of Bayesian network and are more suitable for GRN inference.

Keywords: Gene regulatory networks, Bayesian network, Candidate auto selection, Breakpoint detection,
Search space reduction

Background
Life activities are regulated through complex intercon-
nections of genes and their products [1]. These interac-
tions between genes form so-called gene regulatory
networks (GRNs) in living cells. Inferring Gene regulatory
networks (GRNs), also known as reverse engineering, is a
critical problem in computational biology [2–4]. The

advent of high throughput technologies has provided
such an opportunity to biologists and bioinformatics
researchers so that they can collect large amount of
omics data that can quantify the activities of genes or
their products. GRNs that constructed from gene
expression data reflect the interactions of the regula-
tory elements in biological systems, such as genes
and proteins [5–7], and the structure of GRN reveals
the inner complex mechanism in adaptability to the
environment and the growth and development of
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organisms [1, 8]. So enthusiasm for inferring GRN
has continued unabated for years.
The availability of transcriptome data have been

immensely improved by high throughput technologies
such as DNA microarrays in recent years. This has led to
the fast development of computational approaches for the
reconstruction of GRN [9]. In computing complexity
aspect, there are also various degrees of flexibility for mod-
eling GRNs that range from complex differential equation
method [10] to simple methods based on correlation coef-
ficients [11]. Each model has its own special feature:
pairwise or systematic, linearity or nonlinearity, etc.
The pairwise methods, which are relatively simple way,

compute the correlation coefficients of genes and then
set different threshold to construct GRNs [12, 13]. Com-
monly used methods to calculate correlations include
Pearson Correlation Coefficient (PCC), mutual informa-
tion (MI) [14], Granger causality [15, 16], etc. Most pair-
wise methods are low complexity, fast computing speed
and adapting to large data set. Nevertheless, most of
pairwise methods cannot identify the directions of regu-
latory interactions and cannot identify casual connec-
tions on system level. In addition, pairwise methods
suffer from false positive/negative problems due to the
simplicity of model and uncertainty of parameters.
Rather than the pairwise method, systematic ap-

proaches try to model the GRN from a holistic perspec-
tive. There are mainly three types of mathematical
model in systematic approaches: Boolean network
method [17–20], Bayesian Network method [21–24] and
differential equation method [25–27]. These systematic
methods can provide the researchers a deeper under-
standing of the regulatory mechanism at network level
and can also identify the directions of regulations in the
network. However, the problem of computational com-
plexity makes them difficult to handle large-scale net-
works. With gradually increasing of computing
complexity, the data size they can process rapidly goes
down. Boolean network, which was first introduced by
Kauffman [28], uses a set of Boolean variables and
Boolean functions to describe gene-gene interactions.
Probabilistic Boolean network, first introduced by
Shmulevich et al., is a stochastic extension of Boolean
network that integrates rule-based dependencies be-
tween variables [29]. Obviously, these crude simplifica-
tions of genes and their interactions cannot reflect the
genetic reality. Differential equation method uses a set
of differential equations to directly describe dynamic
changes of the mRNA content in a precise manner.
Obviously, the differential equation method can capture
more details about the regulation relationships, but we
could not bear such a high degree of computational
complexity in most cases. Bayesian Network methods is
in the middle of all the methods in complexity and

scale. Bayesian Network is a probabilistic graphical
model and tries to find a directed acyclic graph (DAG)
that fits the expression data reasonably. Among all
the models, BN is always a concern, because of its
inherent probabilistic nature. In this paper, we focus
on developing systematic methods based on Bayesian
network to construct GRNs with higher accuracy and
better scalability.
Yet, the Bayesian network method has some limita-

tions. The reconstruction of GRN based on Bayesian
network is NP-hard with respect to the number of
genes, so the exact network structure can be learned
only for relatively small datasets [30]. For large-scale
networks, some variants of heuristic approaches are
applied [31]. Due to the decomposable scoring function
and some reasonable assumptions, the score-search
framework for learning network structures are efficient
[32]. However, heuristic methods do not guarantee the
globally optimal network structure. Furthermore, most of
the time is wasted on examining unreasonable candidates
due to the scale and sparsity of biological networks.
Hence, many researchers have devoted themselves to
accelerating the learning process through reducing the
search space [33]. Sparse candidate [21], maximum num-
ber of parents limitation [34] (also called maxP technique)
and Max-Min Hill-Climbing (MMHC) [35] are typical
methods for speeding up the structure learning.
The sparse candidate method is an iterative optimal

algorithm by combining two steps: restricting the parents
of each variable to a small subset of candidates and then
searching for a network structure that satisfies these
constraints. The learned network will improve the quality
of candidates in the next iteration. The optimal GRN
structure is learned by taking this iteration strategy. The
maxP technique further simplify this idea by directly
limiting the maximum indegree of each node. In the
learning process, the parents of a node no longer increase
until the indegree threshold is reached. The MMHC
algorithm uses a more reasonable way to learn the candi-
dates. It learns the neighbors of each node by using a local
neighbor discovery algorithm called Max-Min Parents and
Children (MMPC) [35].
Commonly, an important tuning parameter k is

needed to indicate the size of candidate set or the
maximum number of parents in sparse candidate or
maxP algorithms. However, we are still far away from
understanding the complex regulation mechanism of
biological networks, so that we know rather little about
GRNs to guide the selection of parameter k, even for
model organisms [36, 37]. According to statistics in
Table 1, degree distributions of known biological
networks have obvious differences. This critical problem
illustrates that the estimation of degree distribution
using known networks is unreasonable. Therefore, no
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reliable estimates exist for parameter k. The arbitrary
selection of parameter k ignores the complexity of
biological networks and compulsorily cut the search space
in a rigid manner. How about using unified correlation
threshold to select candidates? Figure 1 shows the MI
distribution of each node in alarm network. As we can see
in Fig. 1, the distribution varies significantly at different
node. Hence, the selection of candidates is also unreason-
able through a unified correlation threshold, e.g. MI.
MMHC’s heuristic heavily depends on the accuracy of

conditional independence estimation. In MMPC step,
the number of samples grows exponentially to the size
of the conditioning set for accurately estimating the
conditional independence. It is impossible to obtain so
much data in a biological sense. So you can see that the
situation, typically known as “large p, small n” problem,
greatly limits the use of MMPC method for biological
network reconstruction. Moreover, users also need to set
a p value as the threshold of independence. Hence, the
MMPC algorithm does not work well on small dataset,
and leads to a huge amount of false positives.
Based on the analysis above, we can draw the following

conclusions: a) Screening of candidates using global
parameters is unreasonable and unrealistic. These
methods cannot reduce searching time for examining
unreasonable candidates and cannot solve the dependency

on tuning parameter. In addition, we know little to guide
the selection of the tuning parameters. b) Overly complex
model is not suitable for GRN inference due to the limita-
tion of biological data.
As is known to all, MI draws much attention in

biological data analysis because of its ability to measure
the non-linear relationships, which are common in
biology. Previous studies has discussed and compared the
advantages and power of using MI in measuring non-
linear relations [38, 39]. And according to Frenzel’s work
[40], MI can differentiate between direct and indirect
interactions to some extent. Thus far, many re-
searchers have used the MI measure in biological data
analysis and network reconstruction, and get some
achievements [41–43]. Some pairwise methods, such
as CMI, also use an improved MI method as mea-
surements of independence [44].
In this work, we proposed a novel candidate selection

algorithm based on mutual information and the concept
of breakpoint detection, named CAS (candidate auto
selection). The CAS algorithm is designed to reduce the
search space of structure learning and get rid of an
unwanted dependency on tuning parameters. Firstly, the
CAS algorithm utilizes the capability of MI to measure
the non-linear regulatory interactions. Then, the candi-
date selection problem is formalized as a hypothesis test
problem by using breakpoint detection. More import-
antly, this algorithm is a polynomial-time approach and
do not depend on turning parameters. Further, based on
the CAS algorithm, a globally optimal greedy algorithm
(CAS + G) and a local learning algorithm (CAS + L) are
also proposed for reconstruction of GRN. The proposed
CAS + G algorithm aims at finding the optimal BN
structure from data in the restricted search space. Mean-
while, the CAS + L algorithm which learning the struc-
ture in a local way pays more attention to the learning

Table 1 indegree distribution of different network

– % of total gene

Indegree E.coli Yeast

1 5.1757 0.698

2 37.4441 35.6902

3 22.9393 24.454

4 13.8658 14.5913

>4 8.754 7.9261

Fig. 1 Mutual information distribution of each node in alarm network
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rate at little expense of quality. To evaluate the proposed
methods, they are compared with a state-of-the-art
method on different datasets.

Methods
This section consists of three parts: a) Candidate auto se-
lection algorithm based on mutual information and break-
point detection. b) Local learning algorithm (CAS + L) for
reconstruction of the GRN. c) Globally-optimal greedy al-
gorithm (CAS + G) for reconstruction of GRN. The over-
all diagram of aforementioned methods is shown in Fig. 2,
the process on the left side is CAS + G and the process on
the right side is CAS + L.

A. Candidate auto selection (CAS) algorithm based on
mutual information and breakpoint detection
Usually, MI is used as a metric of the correlation be-
tween two variables. Here we choose MI as a correlation
measure of genes, which has been widely used to con-
struct GRN from gene expression data due to its cap-
ability of capturing the non-linear relationships between
genes as mentioned above. However, without consider-
ing the other variables, MI tends to overestimate the
regulation strengths between genes (i.e., false positive
problem). High MI value indicates that there may be a
close relationship between the variables (genes) X and Y,
while low MI value implies their independence.
MI of two discrete variables X and Y is defined as in (1):

Fig. 2 Overall diagram of our method. 1) process the expressing data, 2)estimate mutual information of each pair of genes, 3) construct candidate set
for all nodes using CAS algorithm 4) learn sub-networks on each node for CAS + L (right column), 5) combine all sub-networks into the final network
for CAS + L(right column), or directly learn the final network for CAS + G(left column)
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MI X;Yð Þ ¼ −
X

x∈X;y∈Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ

ð1Þ
where p(x, y) is the joint probability of X and Y under
specific value x, y, and p(x), p(y) are the marginal prob-
ability; H(X),H(Y) are entropies of X,Y; H(X,Y) are joint
entropy of X and Y.
Obviously, in a real case of inferring GRN, node Z or

its descendants are always not in evidence. Hence, we
show all the possible relationships of node X and Y in
the case of no other observations, as shown in Fig. 3:
Node X is closely related to Y in the case of direct con-
nection and common cause, the correlation will decrease
with distance in the case of indirect connection, and
Node X and Y are independent with each other in the
case of common effect (also known as V-structure). In
biological networks, the correlations between a gene and
its regulators or targets are closer than that between this
gene and irrelevant genes. That is, the correlations be-
tween a gene and the genes in common effect branch is
different corresponding to Fig. 3.
With the above analysis and mentioned research

[32, 44], we can conclude that the MI distribution of
highly correlated nodes is different from the distribution
of uncorrelated nodes. According to this conclusion, a
mutual information and breakpoint detection based
method is proposed in this paper aiming at exactly
selecting the candidates. This method achieves the goal of
reducing search space by cutting off all the unrelated
nodes in common effect branch.
To describe the whole method, we start by calculating

the potential neighbors of one target node. The process of
calculating the potential neighbors of one target node is as

follows. The input consists of the data D on the node set
V of size n and a target node gi ∈V. The output is candi-
date set Ci for node gi, which consists of the potential
neighbors of gi. In the first step, all the MIs between node
gi and other nodes are computed and stored in vector X .
These MIs are summarized based on ascending order of
values. At this time, Vector X of size n-1 stores all the
MIs between node gi and other nodes in ascending order.
Then suppose there is a position (breakpoint) in vector X
that divides the nodes into two parts: related nodes and
unrelated nodes. The task of breakpoint detection can be
formalized as a hypothesis-testing problem, which can be
solved using maximum likelihood method. So this break-
point can be found by constructing a statistic and locating
the maximum. The nodes on the left side of the break-
point, whose MI value is smaller than the MI value of the
breakpoint, are identified as unrelated and discard. The
nodes on the right side of the breakpoint with bigger MI
values are added to candidate set Ci. Then nodes in set V
are processed one by one.
Now, the key question is how to construct the statistics

and do hypothesis testing. As mentioned above, given
node gi’s MI vector X , the goal is to determine whether a
significant breakpoint exists or not. The null hypothesis
and the alternative hypothesis are stated as follows:
H0: Null hypothesis – no breakpoint exists.
H1: alternative hypothesis– one significant break-

point exists.
Then we construct statistic Q to decide whether or not

the null hypothesis should be rejected in hypothesis testing.
The incoming data is the MI vector X ¼ x

0
1; x

0
2;…; x

0
m

� �
;

m ¼ n−1. Based on the prior analysis, we suppose that the
MI of node gi with related nodes and node gi with unrelated
nodes are coming from different distributions. For a model
with a breakpoint at k ∈ [1,m], the maximum likelihood is
defined as in (2)

MLðkÞ ¼ log
�
pðX 1:k ; θ1Þ

�
þ log

�
pðX kþ1:n; θ2Þ

�
ð2Þ

Where p(X| θ) in (2) is the probability density function,
θ1, θ2 is the corresponding parameters of each distribu-
tion. Now the testing statistic Q can be defined as (3):

Q ¼ 2 ML kð Þ− log p X1:njθð Þð Þ½ � ð3Þ

p(X1 : n| θ) in (3) is the probability of the null hypothesis.
Usually, we need to choose a constant value c as the

threshold. If Q > c, then we reject the null hypothesis. At
this point, all the position k satisfying Q > c are break-
points which dividing the vector into two different parts.
Obviously, here c is underdetermined. However, for the
goal of finding the best candidates, the maximum of Q
can be considered as the criterion to determine the best
breakpoint, as in (4).

Fig. 3 Possible relationships between X and Y
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k ¼ argmax Qð Þ ð4Þ

The nodes on the left side of the breakpoint k are
unrelated nodes in common effect branch. Then all the
nodes corresponding to MI on the right side of the
breakpoint k are identified as the candidates.
At this time, let us solve the problem of how to calcu-

late the probability. That is to say, how to make reason-
able assumptions about the MI distributions of two
types of nodes. If two nodes (gi and gj) are independent
in the case of common effect, that is, knowing gi does
not give any information about gj and vice versa, so their
mutual information is zero by definition. However, due
to the limit of sample size, the computed MI of these
nodes are statistical noise, which can be modeled by a
normal distribution. In other words, the MI distribution
of unrelated nodes is a normal distribution with param-
eter θ1 = (μ1, σ1). Here, μ1 is the mean or expectation of
the distribution. The parameter σ1 is its standard devi-
ation. As we know, the normal distribution is often used
to represent real-valued random variables whose distri-
butions are not known. Therefore, it is also a reasonable
assumption that the MI of related nodes is also normally
distributed. Obviously, it has a different parameter θ2
= (μ2, σ2).
The full algorithm is as follows:

In algorithm CAS, the while loop is executed n times.
The time requirement inside the loop is dominated by
the procedure of finding breakpoint (the position k) to
maximize the statistic Q. For finding the breakpoint of a
specified node, we must go through all the possible
locations of the MI vector. In this process, the posterior
probability is calculated at most n times for each pos-
sible position. So the time complexity is O(n2). Thus, the
total time requirement of the algorithm is O(n3).

B. Local learning algorithm CAS + L for reconstruction of
GRN
Local learning is a common idea in network structure
learning problem. Based on the proposed CAS algorithm
above, we can obtain the neighbors of each node exactly.
Thus, local learning is a good solution for inferring the
network structure in this case. Hence, we present a local
learning method based on the CAS algorithm for infer-
ring GRNs. To describe the whole idea of this local
learning algorithm, we start with learning the local
structure of a specified node. In the first step, we com-
pute the candidate set C(v) of specified node v by using
CAS algorithm. Then construct potential edge set E(v)
of node v: E(v) = {(v, u), (u, v); u ∈C(v)}. At last, a typical
score-search framework is applied to finding the best
local structure G(v) of node v on the search space de-
fined by E(v). The high-level pseudocode of the full algo-
rithm is as follows:

To combine all the subgraphs in a simple way, we
accept the edge one by one, which do not introduce cy-
cles. By analyzing this algorithm, we can find that this al-
gorithm can be parallelized easily.
Given a node set V of size n, suppose that k candidates

are selected for a node v. That means the algorithm
should only check k possible candidates on one iteration.
To learn the local structure of node v, 2 k candidate edges
should be examined, so the search space complexity is
O(22k). The total time for learning the structure is O(n ×
22k). That is, the boundary of time is restricted by the size
of candidate set. As we know, structure sparsity is one of
the important properties of biological networks. At this
point, we can suppose that the mean number of candi-
dates is far smaller than n, e.g. k = log(n), then the space
complexity is O(n × 22 log n).

C. Globally-optimal greedy algorithm (CAS + G) for
reconstruction of GRN
The local learning algorithm is a quick solution, but
does not guarantee a global optimum. For getting a glo-
bal optimal solution, a global optimal algorithm based
on the CAS method (CAS + G) is also proposed in this
paper. The difference between the local method and the
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global method is that the CAS + G algorithm learning
the structure as a whole in the restricted search space
generated by CAS rather than learning substructures of
each node.

The greedy search procedure adds the highest rated
edge at each iteration with the hope of finding a global
optimal GRN structure. Moreover, the algorithm only
needs to examine the limited edge set at each iteration.
Let us suppose that the average size of candidate set is k.
The search space complexity is O(2nk). At this point, we
also suppose that the mean number of candidates is far
smaller than n according to the sparsity of the structure,
e.g. k = n/4 is a small constant c, then the space
complexity is O(2n × n/4).

Result and discussion
Used networks and datasets for evaluation
In order to evaluate the CAS algorithm presented in this
article, experiments are carried out on two types of net-
works: a. known Bayesian networks, b. Dream challenge
networks. Known Bayesian networks are constructed by
experts, and all the parameters are known. These net-
works are insurance network (27 nodes, 52 arcs), alarm
network (37 nodes, 46 arcs), Barley network (48 nodes,
84 arcs), Hailfinder network (56 nodes, 66 arcs). Five
datasets of different sizes (n = 50, 100, 200, 500, 1000)
are sampled from each network. Ten 100-gene networks
are collected from DREAM3 and DREAM4 challenge.
The corresponding simulation data (210 samples) for
these in-silico networks are generated by GNW software
[45] and then converted into discrete data by K-Means
discretization algorithm.

Results of CAS algorithm
In this section, the effectiveness of the CAS algorithm is
illustrated and compared with MMPC algorithm. The
aim of the CAS and MMPC algorithm is to identify the
neighbors of each node in as few candidates as possible.
So, in classification point, the true positive (TP) is
defined as neighbor nodes correctly identified as candi-
dates, and the recall in this context is defined as the

number of true positives divided by the total number of
the neighbors, as in (5).

recall ¼ TP
TP þ FN

ð5Þ

False negative (FN) are neighbor nodes incorrectly
identified as unrelated nodes. Therefore, TP + FN equals
to the number of true neighbors. In the following test,
the recall and the average number of candidates are the
most important indicators.
We studied the influence of the network size, network

type and the dataset size to validate the effectiveness of
the CAS method on the aforementioned networks. The
alarm network is analyzed in detail.
We mark the identification result of four representa-

tive nodes on the true network to illustrate the detail re-
sult of CAS algorithm. As shown in Fig. 4, triangles with
four colors indicate four different nodes in alarm net-
work: red, black, blue and green corresponding to
LVEDVOLUME, FIO2, ERRCAUTER, PVSAT, respect-
ively. LVEDVLOUME (indicated by red triangles) has
two parent nodes and two sibling nodes. Figure 4 shows
that the CAS algorithm identified 9 candidates, and
these 9 candidates completely cover all 4 true neighbors.
Meanwhile, the candidates except VENTLUNG are
closely related to LVEDVOLUME as mentioned in Fig. 3.
For node FIO2, the candidates identified by CAS con-
tains its child node. In addition, the common effect
branch of FIO2 (the parents of PVSAT) is correctly
cut off by CAS algorithm. For node ERRCAUTER,
when HREKG and HRSAT are not given, HR and
ERRCAUTER are independent in the common effect
case. Hence, as mentioned in the method section, its
child nodes (HREKG, HRSAT) are correctly identified
by the CAS algorithm and the nodes in the common
effect branch (all ancestors and descendants of node
HR) are discarded. At last, we analyze another repre-
sentative node PVSAT, which has a complicated patri-
lineal family. In this situation, the CAS algorithm also
identified its parents and child correctly, and discard
the nodes in common effect branch. We can see that
the candidate set cover more ancestors rather than
descendants. This phenomenon illustrates that node
PVSAT is more affected by its ancestor and is not
closely related to its descendants.
By analyzing the results of CAS algorithm on all nodes

of alarm network, we can conclude that the CAS algo-
rithm can effectively discard the unrelated nodes in
common effect branch and can identify most of the true
candidates correctly in most cases. In addition, the
identification rates increase simultaneously with the
amount of data. Nevertheless, there are still a few nodes
that cannot be identified correctly and these situations
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are not improving with the amount of data in our
experiment. Further analysis indicates that the generated
data cannot reflect the real probability distribution
correctly due to its very small conditional probability in
the conditional probability table. Hence, the generated
data could not provide enough power to distinguish its
neighbors and other nodes, such as INSUFFANESTH.
For these nodes, more data is needed to confirm its
correlation with others.
Figure 5 summarizes the trends of recall and the

average number of candidates of CAS and MMPC on
different networks when sample size gets larger.
Based on the analysis of all these charts, the average
recall of CAS (green line) increases with sample size,
while the average number of candidates (blue bar)
decreases. This situation illustrates that sufficient
samples can improve the performance of CAS
algorithm. Nevertheless, there are different situations
in MMPC method. The average number of candi-
dates decreases as samples increase in numbers (red
bar), but the recall also declines to different extents
(purple line).
As we can see from Fig. 5, when the sample size is

small, the MMPC algorithm takes nearly all nodes as
neighbors. This means that MMPC algorithm breaks
down because of the lack of samples. Especially, it is
more obvious in Barley network. That is mainly be-
cause multivariate variables in Barley network, so that

the data is not enough for accurately estimating the
conditional associations. In insurance network, the
decrease of average recall is mainly because of the
undue screening. Hence, the MMPC cannot provide
adequate performance when the data is insufficient.
However, the CAS algorithm has better filtering
ability in most cases. For example, the CAS algorithm
gives out less candidates than MMPC algorithm for
nearly the same recall rate in alarm network and
Hailfinder network, when the data size is 50. Even in
barley network, the CAS algorithm still shows better
performance than MMPC with the increase of
samples. We can draw a conclusion that the CAS
algorithm is more effective on small data sets. Thus,
it is more suitable for GRN inference which is a
typical “large p, small n” problem.
Moreover, to assess the effectiveness further, the evalu-

ations are also carried out using the simulation data
from DREAM challenge. Although the complexity of the
biological networks and the imperfection of simula-
tion data will impose some performance penalties, it
remains effective to a much larger degree, which will
be validated in the learning phase. The CAS algo-
rithm can effectively reduce the search space through
cutting off the common effect branch. Based on the
above analysis, one can draw a conclusion that the
CAS algorithm outperforms the MMPC algorithm,
especially on small data sets.

Fig. 4 Identification result of CAS algorithm on alarm network. Red triangle indicates the candidates of LVEDVOLUME identified by CAS algorithm.
Likewise, the black triangle and blue triangle green triangle correspond to the candidates of FIO2, ERRCAUTER, PVAST, respectively
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Evaluation of the CAS + G and CAS + L algorithm for
inferring GRNs
The performance of structure learning was evaluated
using the following measures: TP, FP, TN, FN, Precision,
Accuracy, Recall, Specificity and F-score. Experimental
comparisons of CAS based methods against MMHC on
various sample sizes are carried out. A local learning
algorithm named MMHC + L using MMPC as the
candidate selection algorithm is also in comparison. For
purpose of comparison, we choose original greedy search

as benchmark method, which applies the score-search
framework to find the optimal structure. The leading
reason for the choice of greedy search is that there are no
limits on the search space with the hope of finding a
global optimum. Hence, the performance improvement is
the ratio of the performance of a particular algorithm to
the performance of the benchmark. Here BDeu score [46]
is selected from other well-known scores. We examine all
the networks described above, but only some are analyzed
in detail limited by the space. Firstly, the alarm network
and insurance network are analyzed and discussed.
Figures 6 and 7 show the comparison result on the

alarm and insurance network in different sample size.
The first five charts corresponding to five different
sample sizes show comparison results under aforemen-
tioned measures. The sixth subgraph shows the runtime
result with different sample sizes. When sample size is
50, the behavior of MMHC is nearly the same as greedy
search according to the candidate selection results in
Fig. 5. As you can see by comparing subgraphs 1 to 5,
the CAS + G algorithm outperforms the MMHC algo-
rithm with the increase of sample size, mainly because
ample data can improve the performance. Especially in
insurance network, the CAS based methods outperform
MMPC based methods in all sample sized. It is not just
about the learning phase, but also about the quality of
candidate selection, which generates a more exact search
space. When the sample size is larger to more accurately
estimating the conditional independence, the performance
of MMHC algorithm gets better quickly. Nevertheless,
when the sample size is 1000, the recall of the MMPC
algorithm is much lower than CAS according to Fig. 5.
That is, MMPC overly reduces the search space and
rejects many true neighbors. Finally, the proposed global
optimal algorithm CAS + G is superior to the benchmark
and better than MMHC when the sample size is 1000.
The sixth subgraph is the runtime results of different

sample sizes. Firstly, we can see that the proposed CAS-
based learning methods run more stable than MMPC-
based methods and greedy search by taking into the
number of candidates. In particular, CAS + L algorithm
has an obvious advantage on runtime in both networks,
especially in insurance network. The CAS algorithm
does not need to enumerate all the conditional sets, so it
is much faster than MMPC algorithm. Hence, the total
time of CAS + L algorithm is less than the other
methods. For the CAS + L algorithm, the main advan-
tage is its speed without losing much of quality. Never-
theless, much more false positives are found because of
fluctuations in the data and the simple combination
phase. It may be solved by replacing the simple combin-
ation method with a heuristic phase.
In general, sufficient samples provide a performance

boost because of the improvement of CAS algorithm

Fig. 5 Average recall and the proportion of candidates on different
networks. In this figure, subgraphs (from top to bottom) correspond
to alarm network, Hailfinder network, Barley network, insurance
network, respectively. Solid lines corresponding to secondary axis are
changing trends of average recall
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and the score-search phase. There are still swings due to
their heuristic nature, which easily trap into a non-optimal
“local maximum”. According to the above analysis, the
CAS algorithm is more suitable for small datasets.
Knowing the complexity of biological networks and

the “large p, small n” situation, evaluation of the pro-
posed methods should be made on biological datasets.
Therefore, we carried out experiments on the simulation
data of DREAM3 and DREAM4 challenge.
Figure 8 shows the comparison results of five 100-

gene networks from DREAM3 challenge. As can be seen
from Fig. 8, the CAS + G algorithm identified more true
positives than MMHC method. Experimental results
showed that CAS based method compared favorably
against other approaches in the F-score and recall. As
previously mentioned, the MMPC algorithm cannot
accurately estimate the conditional association due to
the lack of samples. Hence, the performance of MMHC
algorithm is similar with Greedy Search. From the
results of Yeast2 network, we can see that both algorithms

trapped into local optimum due to the lack of samples.
However, the performance of the CAS + G and CAS + L
algorithms are better than MMHC algorithm, mainly
because of the conciseness of CAS algorithm, which
reduces data dependencies of the algorithms.
Figure 9 shows the comparison results of five 100-gene

networks from DREAM4 challenge. As can be seen from
Fig. 9, the performances are very similar to DREAM 3
networks overall. Experimental results showed that the
CAS-based approaches outperform other approaches in
the F-score and recall and identify more true positives
than MMHC method on network 1, 3, 4. What we find
once again here is that the performance of MMHC algo-
rithm is similar to Greedy Search due to the limitation of
sample size. However, the CAS + G algorithm identified
less true positives on network 2 and 5. In addition, we
even find the CAS + G algorithm failed on network 2.
According to the analysis, we found that network 2 and 5
are more complex than others. This resulted in more
performance degradation than the MMHC algorithm,

Fig. 6 The performance improvement on alarm network using CAS + G algorithm and CAS + L algorithm compared with normal Greedy search
as benchmark
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which behaves exactly like Greedy search. Yet even so,
MMHC algorithm has little advantage depending on SHD
metric. Form the sixth subgraph, we find that the
proposed CAS-based methods have an obvious advantage
on runtime. Especially the CAS + L algorithm—it takes
advantage of both the reduced search space and the local-
ity. Nevertheless, much more false positives are found due
to noise in the data and the oversimplified combination
phase. We can draw a conclusion that the CAS + G algo-
rithm has equal or better performance than the MMHC
algorithm and greedy search for GRN reconstruction, but
runs faster. Meanwhile, CAS + L algorithm runs signifi-
cantly faster than all others.
The CAS algorithm has several advantages because

of its conciseness and locality. First, there is no turn-
ing parameter to be determined. Erroneous estimation
of turning parameter affects not only efficiency but
also the quality of the reconstruction. This is very
important for unknown situations of biological
networks. The second one is its weak data dependencies,

which makes it more suitable for GRN reconstruction.
However, there are still limitations to consider, especially
the assumption on the distribution of related nodes. The
selection of Gaussian distribution is mostly based on
experience and lack of a detailed study. In the future, we
will study to make a more reasonable assumption.
Another extension is to remove false positive candi-
dates by using biological prior knowledge. In brief, we
believe that the proposed CAS algorithm can identify
the candidates effectively and improve the search
process effectively. Furthermore, the global and local
learning algorithms outperform the other methods on
simulation data. It is clearly that the CAS based algo-
rithms are very suitable for GRN reconstruction, which
is always eager for data.

Conclusion
In this work, we first proposed a novel method CAS to
select candidates of each node automatically. This
algorithm is designed to reduce the search space by

Fig. 7 The performance improvement on insurance network using CAS + G algorithm and CAS + L algorithm compared with normal Greedy
search as benchmark
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restricting the neighbors of each node to a small candi-
date set. Firstly, MIs between nodes are calculated to
reflect the independence. It is reasonable to assume that
the distribution of the MIs of two types of nodes are
different. That is to say, there is a breakpoint in the MI
vector of each node to distinguish related nodes and
unrelated nodes. Then, the breakpoint is located by
hypothesis testing. So far, the candidates of each node
are obtained. In the later learning phase, these candi-
dates exactly restrict the search space. Hence, based on
CAS algorithm, we propose a global optimal method
(CAS + G), which focuses on finding the high-scoring
network structure, and a local learning method
(CAS + L), which focus on faster learning the structure
with small loss of quality. At last, we validate the
proposed algorithms on through experiments. Firstly,
they are verified on known Bayesian networks. Then,
the proposed methods are migrated to simulated
biological data.

In candidate selection phase, the CAS algorithm
correctly identifies the candidates of each node in poly-
nomial time by discarding all nodes in common effect
branch. The algorithm achieves relatively high perform-
ance on known Bayesian network datasets. However, it
degrades on simulated data. Actually, it is not compli-
cated to understand by considering the complexity of
biological systems and the limitations of simulated data.
The results show that CAS algorithm outperforms the
MMPC algorithm. Especially, the CAS algorithm shows
better performance on limited samples.
In structure learning phase, evaluations of CAS + G

algorithm and CAS + L algorithm are carried out. The
comparisons results show that the CAS + G method can
learn the optimal structure and can avoid the local
optimum to some extent benefited from the exactly
restricted search space. Meanwhile, the CAS + L algo-
rithm has obvious superiority in speed compared with
other methods. Therefore, the proposed algorithms are

Fig. 8 Comparison results of five 100-genes networks from DREAM3 challenge. The first five subgraphs show the comparison results of
each network respectively. The last subgraph is the runtime comparison result

The Author(s) BMC Genomics 2017, 18(Suppl 9):844 Page 28 of 49



effective and more suitable for GRN inference than
MMHC algorithm.
Finally, the CAS algorithm is practical to reduce the

search space, especially for limited samples, and
provides enough flexibility to be extended in other
fields. In the future, we would like to study the CAS
algorithm in Markov Blanket view and consider a parallel
implementation of the proposed algorithms.
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