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Abstract

Background: In addition to additive genetic effects, epistatic interactions can play key roles in the control of
phenotypic variation of traits of interest. In the current study, 475 male birds from lean and fat chicken lines were
utilized as a resource population to detect significant epistatic effects associated with growth and carcass traits.

Results: A total of 421 significant epistatic effects were associated with testis weight (TeW), from which 11
sub-networks (Sub-network1 to Sub-network11) were constructed. In Sub-network1, which was the biggest
network, there was an interaction between GGA21 and GGAZ. Three genes on GGA21 (SDHB, PARK7 and
VAMP3) and nine genes (AGTPBP1, CAMK4, CDC14B, FANCC, FBP1, GNAQ, PTCH1, ROR2 and STARD4) on GGAZ that
might be potentially important candidate genes for testis growth and development were detected based on
the annotated gene function. In Sub-network2, there was a SNP on GGA19 that interacted with 8 SNPs located
on GGA10. The SNP (Gga_rs15834332) on GGA19 was located between C-C motif chemokine ligand 5 (CCL5)
and MIR142. There were 32 Refgenes on GGA10, including TCF12 which is predicted to be a target gene of
miR-142-5p. We hypothesize that miR-142-5p and TCF12 may interact with one another to regulate testis
growth and development. Two genes (CDH12 and WNT8A) in the same cadherin signaling pathway were
implicated as potentially important genes in the control of metatarsus circumference (MeC). There were no
significant epistatic effects identified for the other carcass and growth traits, e.g. heart weight (HW), liver
weight (LW), spleen weight (SW), muscular and glandular stomach weight (MGSW), carcass weight (CW), body
weight (BW1, BW3, BW5, BW7), chest width (ChWi), metatarsus length (MeL).

Conclusions: The results of the current study are helpful to better understand the genetic basis of carcass and
growth traits, especially for testis growth and development in broilers.
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Background
Epistasis arises due to interactions, either between single
nucleotide polymorphisms (SNPs), genes or quantitative
trait loci (QTLs), which result in non-linear effects that
control variation in phenotypes. Epistasis can have a large
influence on phenotypic variation of traits such as starva-
tion resistance, startle response, and chill coma recovery in

Drosophila [1]. Identification of epistatic effects associated
with quantitative traits will help us to better understand
the genetic architecture that underlies complex variation of
phenotypes for both humans and animals [1, 2]. Therefore,
more and more attention has been placed on epistasis,
which has resulted in some valuable insights [3–8].
With the advent of SNP arrays and genomic re-

sequencing, it is relatively easy to genotype a wide array
of individuals. As a result, many genome–wide associ-
ation studies (GWAS) have been carried out in the past
several years. Most of these studies have focused on
single locus additive genetic tests. However, this is not
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that only type of genetic association. A genome wide
SNP-SNP interaction analysis should provide new in-
sights into the genetic architecture that underlies vari-
ation in complex traits.
Recently, genome wide SNP-SNP interaction analysis

have been conducted in humans [4, 9] and domestic
livestock species [10–12]. In chicken (Gallus gallus), it
has been suggested that epistatic interactions between
genes (or QTLs) are important for variation in quantita-
tive traits [8, 13, 14]. However, the study of epistatic inter-
actions at the whole genome level have been limited [15].
Two Northeast Agricultural University broiler lines

that have been divergently selected for abdominal fat
content (named as NEAUHLF) for more than 10 years
were used in the current study. Previously, we reported
that 52 pairs of SNPs had significant epistatic interac-
tions that were associated with abdominal fat weight
[15]. In the current study, the significant epistatic inter-
actions for carcass and growth traits were identified. The
results of this study may provide some helpful informa-
tion to better understand the genetic basis of carcass
and growth traits in broilers.

Methods
Experimental populations
Two Northeast Agricultural University broiler lines that
have been divergently selected for abdominal fat content
(NEAUHLF) were used to identify epistatic interactions.
The NEAUHLF lines have been selected since 1996
using abdominal fat percentage (AFP = abdominal fat
weight/body weight at 7 weeks of age) and plasma very
low-density lipoprotein (VLDL) concentration as selec-
tion criteria. The G0 generation of NEAUHLF came
from the same grandsire line, which originated from the
Arbor Acres broiler, which was then divided into two
lines according to their plasma VLDL concentration at
7 weeks of age. The G0 birds were mated (one sire: four
dams) to produce 25 half-sib families for each line, with
an average of 70 G1 offspring per family in two hatches.
From G1 to G11, the birds of each line were raised in
two hatches with five birds per cage. Plasma VLDL con-
centrations were measured for all male birds, which had
free access to feed and water at 7 weeks, and the AFP of
the male birds in the first hatch was measured after
slaughter at 7 weeks. Sib birds from the families with
lower (lean line) or higher (fat line) AFP than the aver-
age value for the population were selected as candidates
for breeding, considering the plasma VLDL concentra-
tion and the body weights of male birds in the second
hatch and the egg production of female birds in both
hatches. These birds were kept under the same environ-
mental conditions and had free access to feed and water.
Commercial corn-soybean-based diets that met all Na-
tional Research Council (NRC) requirements were

provided. From hatch to 3 weeks of age, the birds re-
ceived a starter feed (3,000kal ME = kg and 210 g = kg
CP) and from 4 weeks of age to slaughter the birds were
fed a grower diet (3100 kal ME = kg and 190 g = kg CP).
The birds used in the current study included 475 male
individuals from the 11th generation of NEAUHLF [15].
The birds were weighed at 0, 1, 3, 5 and 7 weeks of age
(BW0, BW1, BW3, BW5 and BW7). At 7 weeks of age,
the metatarsus length (MeL), metatarsus circumference
(MeC) and chest width (ChWi) were measured prior to
slaughter as described previously [16]. Carcass weight
(CW), testis weight (TeW), heart weight (HW), liver
weight (LW), spleen weight (SW), muscular and glandu-
lar stomach weight (MGSW) were obtained after the
birds were slaughtered.

SNP genotyping
Genotyping was carried out using the Illumina Inc.
(San Diego, CA, USA) chicken 60 K SNP chip, which
contained 57,636 SNPs. After quality control, 48,824
SNPs in 475 individuals were used in the epistatic inter-
action analyses. The quality control of the SNP geno-
types was described previously by Zhang et al. [17].

Genome-wide Pairwise interaction analysis
The EPISNP3 module in epiSNP_v4.2_Windows soft-
ware package was used to identify significant epistatic ef-
fects [18]. The statistical model used to test for epistatic
effects associated with carcass and growth traits was as
follows: y = Xg + Zb + e, where y is the column vector
of phenotypic values, g is the effects of SNP genotypes,
X is the design matrix of g, b is the fixed effects of Line
and BW7 (or BW0), Z is the model matrix of b, and e is
the random error.
The P-values of the epistatic effects were Bonferroni

corrected for multiple testing (5.96 × 109 independent
tests, with a significance threshold of P < 0.05), which
resulted in P < 8.39 × 10−12 as a significance threshold.
Significant interactions, including additive by additive
(AA), additive by dominance (AD) or dominance by
additive (DA) and dominance by dominance (DD),
between two SNPs on the same chromosome were
deleted because these interactions may potentially be
markers for a haplotype effect that contains a single
QTL [12]. The remaining significant SNP interactions
were further filtered with the criterion that only those
interaction with at least 10 animals in every genotype
combination were considered [12], which is roughly
equivalent to a 15% minor allele frequency for each vari-
ant in an additive by additive epistatic interaction.

SNP-SNP network
The figures that illustrate the SNP-SNP networks with
the significant epistatic effects for carcass and growth
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traits were drawn using the epiNet option within the
epiSNP_v4.2_Windows software package [18].

Linkage disequilibrium (LD) analysis
The linkage disequilibrium (LD) between SNPs was cal-
culated using Haploview software (version 4.2). The solid
spine method within the package was used to define the
LD block.

Annotation of SNP-SNP network
Genes within 1 Mb (upstream and downstream) of the
SNPs that had significant interactions with another SNP
for carcass and growth traits were retrieved from UCSC
(https://genome.ucsc.edu/) (Galgal4). Functional annota-
tion of genes was performed using DAVID bioinformatics
resources 6.8 (http://david.abcc.ncifcrf.gov/summary.jsp)
for Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis. Statistical
significance was set at the nominal P-value < 0.05.

Results
Phenotypic and SNPs information
Phenotypic summary statistics for carcass and growth
traits are shown in Table 1 and the phenotypic distribu-
tions for the traits in the lean and fat lines respectively
are shown in Additional file 1: Figure S1. There were
extremely significant differences (P < 0.01) in Chwi,
MeL, MeC, LW, SW, TeW and significant difference
(P < 0.05) in HW between the lean and fat lines. After
quality control, 48,824 SNPs were utilized for epistatic
interaction analyses (Table 2). These SNPs were distrib-
uted on 28 autosomes, Z chromosome, two linkage
groups, and SNPs not assigned to any chromosomes in

chickens. These markers covered about 1027.01 Mb
of the chicken genome, with an average SNP density
of 16.08 kb/SNP.

Epistatic analysis of carcass trait
The pairwise interaction effects between every two SNPs
across the whole chicken genome for TeW were calcu-
lated using EPISNP3 [18]. After filtering, 421 pairs of
SNPs were significantly associated with testis weight
(P < 8.39 × 10−12). Of these 421 significant SNP by
SNP interactions, 403 (95.72%) exhibited an additive
by additive interaction, 18 (4.28%) exhibited an additive by
dominance (or dominance by additive) interaction, and no
dominance by dominance interactions were detected
(Additional file 2: Table S1). The most significant additive
by additive effect detected occurred between GGA3
(GGaluGA22768) and GGA10 (Gga_rs14722408). The
phenotypic distributions of the four different genotype
classes of this additive by additive effect are showed in
Additional file 3: Figure S2.
To investigate the complex mechanism of epistatic ef-

fects on TeW, networks were constructed using the 421
significant SNP by SNP interactions. The epistatic inter-
action sub-networks that contained more than three
nodes are shown in Additional file 4: Figure S3. Eleven
sub-networks were detected (Additional file 4: Figure S3).
Sub-network1 was the biggest and contained 372 pairs of
SNP by SNP interaction effects. Based on LD information,
a simpler sub-network, which was derived from Sub-
network1, was obtained, in which numerous SNPs are
represented by a single LD block (Fig. 1, Additional file 5:
Figure S4). The blocks in the simpler sub-network
represented the SNPs that contained in the LD blocks.

Table 1 The Mean ± Standard deviation (SD) of the carcass and growth traits in lean and fat lines, respectively, and in the
combined population

Traits Combined population (475 birds) Lean line (203 birds) Fat line (272 birds)

BW1 (g) 121.97 ± 12.34 121.05 ± 12.80 122.68 ± 11.95

BW3 (g) 615.22 ± 65.97 617.35 ± 71.98 613.65 ± 61.23

BW5 (g) 1491.19 ± 142.53 1487.53 ± 159.13 1493.91 ± 129.10

BW7 (g) 2400.97 ± 221.65 2419.53 ± 246.45 2387.11 ± 200.51

ChWi (cm) 9.23 ± 0.74 9.54 ± 0.70A 9.00 ± 0.68B

MeL (cm) 9.25 ± 0.46 9.56 ± 0.37A 9.02 ± 0.38B

MeC (cm) 5.10 ± 0.39 5.46 ± 0.27A 4.84 ± 0.20B

CW (g) 2170.03 ± 203.31 2164.95 ± 225.19 2173.84 ± 185.59

LW (g) 57.54 ± 9.08 55.35 ± 8.44B 59.18 ± 9.21A

HW (g) 10.68 ± 1.72 10.86 ± 1.78A 10.54 ± 1.67a

SW (g) 3.25 ± 1.05 2.88 ± 0.86B 3.53 ± 1.09A

MGSW (g) 31.10 ± 5.57 31.46 ± 6.07 30.83 ± 5.15

TeW (g) 1.03 ± 0.85 1.39 ± 1.03A 0.77 ± 0.55B

Note: Different letters indicate significant differences between the lean and fat lines. Uppercase (P < 0.01) and lowercase (P < 0.05) letters indicate
significant differences
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Two hundred and fifty-five of the interactions in Sub-
network1 were between GGA21 and GGAZ, which indi-
cated an interaction between the two chromosomes. The
255 interactions detected between GGA21 and GGAZ in-
volved 24 SNPs on GGA21 and 19 SNPs on GGAZ, which
spanned 572 kb (from 76,023 bp to 647,587 bp) and
9.5 Mb (from 37,246,321 bp to 46,745,968 bp), respect-
ively. There were 13 Refgenes in the 572 kb region on
GGA21 and 41 Refgenes in the 9.5 Mb region on GGAZ

(Table 3). Six GO terms, including protein-arginine deimi-
nase activity, protein citrullination, positive regulation of
collateral sprouting, cytoplasm, cell fate determination and
protein autophosphorylation, were significantly (P < 0.05)
enriched. No significant KEGG pathways were detected.
Three genes on GGA21 (SDHB, PARK7 and VAMP3) and
nine genes (AGTPBP1, CAMK4, CDC14B, FANCC, FBP1,
GNAQ, PTCH1, ROR2 and STARD4) on GGAZ might be
important for testis growth and development based on
their basic functions.
Sub-networks 2, 3, 4, 5, 8 and 11 each had several

SNPs in the same LD block on one chromosome, which
interacted with a single SNP on another chromosome.
For example, in Sub-network2 eight SNPs on GGA10
interacted with the SNP (Gga_rs15834332) on GGA19
(Fig. 2). The eight SNPs on GGA10 were spread across a
4.3 Mb region that contained 32 chicken Refgenes
(Fig. 2). The SNP Gga_rs15834332 on GGA19 was lo-
cated between two genes, C-C motif chemokine ligand 5
(CCL5) and MIR142, which is related to two miRNAs,
miR-142-5p and miR-142-3p. Interestingly, five genes in
the 4.3 Mb region on GGA10 are predicted to be target
genes of miR-142-5p and miR-142-3p (Table 4).
Among these five target genes, transcription factor 12
(TCF12) was the only gene that was predicted to be
the target gene of miR-142-5p by three different packages,
including TargetScan (http://www.targetscan.org), miRDB
(http://mirdb.org) and PicTar (http://pictar.mdc-berlin.de).
Unfortunately, it was impossible to predict which genes in
the other regions of the genome may be good candidates
to control testis growth and development.
For CW, HW, LW, SW and MGSW, no significant

epistatic interactions were detected.

Epistatic analysis of growth trait
For BW1, BW3, BW5, BW7, ChWi and MeL, no sig-
nificant epistatic interactions were detected. Fifteen
pairs of SNPs with significant interaction effects on
MeC were detected (Table 5). These 15 interactions
were all additive by additive interactions, which impli-
cated an interaction between GGA2 and GGA13
(Table 5). There was a single network that contained all
15 interactions (Fig. 3). The fifteen interactions oc-
curred between five SNPs in a single LD block on
GGA2, and three SNPs in a single LD block on GGA13
(Fig. 3). The genes inside the two LD blocks and within
0.5 Mb 5′ and 3′ of the LD blocks were found. There
was only a single Refgene (Cadherin-12, CDH12) in the
region on GGA2. There were fifteen Refgenes (CDX1,
CSF1R, NPY7R, FLT4, CANX, HNRNPH1, DGUOK,
RUFY1, MAPK9, RASGEF1C, HNRNPAB, NME5,
WNT8A, FAM13B and NPY6R) located in the region
on GGA13.

Table 2 Summary information of the genome-wide SNP
markers

GGA1 SNPs
number

GGA length
(Mb)

Mean distance
(kb)

1 7538 200.95 26.66

2 5652 154.79 27.39

3 4322 113.65 26.30

4 3518 94.16 26.77

5 2295 62.23 27.11

6 1814 35.84 19.76

7 1907 38.17 20.01

8 1486 30.62 20.61

9 1240 24.02 19.37

10 1379 22.42 16.26

11 1312 21.87 16.67

12 1425 20.46 14.36

13 1204 18.32 15.21

14 1062 15.76 14.84

15 1082 12.93 11.95

16 16 0.42 26.12

17 922 10.61 11.51

18 917 10.89 11.87

19 880 9.90 11.25

20 1574 13.92 8.84

21 796 6.95 8.73

22 327 3.89 11.90

23 643 6.02 9.37

24 758 6.37 8.40

25 181 2.02 11.17

26 670 5.03 7.51

27 506 4.84 9.56

28 607 4.47 7.37

LGE22C19W28_E50C23 115 0.88 7.67

LEG64 3 0.02 6.80

Z 2001 74.59 37.28

UNa 672 / /

Total/Mean value 48,824 1027.01 16.08
aThese SNPs were not assigned to any chromosomes
1GGA is an abbreviation for Gallus gallus
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Discussion
The birds from lean and fat chicken lines used in the
current study had significantly different amounts of ab-
dominal fat content and significantly different testis
weight, which was an ideal population to study the
genetic architecture of abdominal fat deposition and
testis growth and development [19]. The birds used in
the current study were 7-week-old, therefore, the results
of the current study could reflect early testis develop-
ment. Testis weight has been reported to be controlled
by genetic factors in both chickens and mice [20–24].
Roosters with small testes often have poor fertility [25].
There have been previously reported studies on the gen-
etics of testis development in chicken [19]. However,
most of the previous studies focused on additive genetic
effects, while, epistatic effects were ignored. It is un-
known how important epistatic interactions are for de-
velopment of the testis. In the current study, we used
475 birds from lean and fat lines to conduct epistasis
analysis for testis weight and other carcass and growth
traits in chickens.
The two lines used in the current study were selected

for 11 years and some regions of the genome may be
fixed because of selection pressure. If this occurred, it

would not be possible to identify epistatic interactions in
these regions of the genome. In contrast, if the two lines
were crossed, it would be possible to detect epistatic ef-
fects in this intercross population. Despite this problem,
some epistatic effects were detected in these two lines
using epiSNP. Due to the selection applied to these
population, it is possible that genomic stratification has
occurred. epiSNP, which was used to conduct these ana-
lyses is capable of adjusting for family structure [18].
In this study, the SNP by SNP interaction effects for

carcass and growth traits were filtered by three criteria.
First, to correct for multiple testing comparisons, a
Bonferroni correction was used instead of false discover-
ing rate (FDR) method to minimize false positives.
Utilization of the Bonferroni correction method will
however also decrease the discovery of true interactions
compared to the use of a false discovery rate correction.
Therefore, the SNP X SNP interaction detected in this
study may be fraction of the interactions that affect
these. Second, when considering the linkage disequilib-
rium (LD) between the SNPs and the QTL for traits of
interest, an interaction between two SNPs on the same
chromosome may detect a haplotype effect but not an
interaction. In other words, it is not possible to separate

Fig. 1 A simplified network of Sub-network1 using the LD information. The blocks are from the LD information in Additional file 3: Figure S2 and
the lines between two nodes depicts an interaction between these two nodes. The colors of the nodes represent the P-value of an interaction
(P < 1.0 × 10−16 = red; P < 1.0 × 10−15 = blue; P < 1.0 × 10−14 = green; P < 1.0 × 10−13 = white). The color of the edge indicates the type of
epistatic effect (AA = red; AD = purple; DA = blue; DD = green)
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true interaction effects from haplotype effects if the two
SNPs are located on the same chromosome. Therefore,
in order to increase the power to detect the true inter-
action effects for the growth and carcass traits, we de-
leted interactions that occurred on the same
chromosome [12]. Third, the smaller the number of
birds in any given genotype class, the less likely it is to
get a good estimate of the genotype effect. Thus, in
order to increase the power to detect the true interac-
tions, only those interactions that contained at least 10
animals in every genotype combination were considered
[12]. We carried out the filter of the interactions accord-
ing to these criteria in order to reduce the chances of
obtaining false-positive results (type I errors).
For testis weight, a total of 421 pairs of SNP-SNP epi-

static interactions were detected. These pairs of SNPs

comprised 211 single SNPs, and none of these individual
SNPs were identified in our previous GWAS analysis for
testis weight [19]. A similar phenomenon was also de-
tected by Wu et al. for psoriasis in human [26]. These
results indicated that all SNPs on the chip should be
tested for identifying potential interaction effects. In
contrast, testing for interactions between SNPs that have
been previously identified in GWAS is not enough.
There were 11 sub-networks with at least three nodes

that were identify by using the 421 pairs of interaction
effects. Sub-network1 was the biggest one and most of
the interactions in Sub-network1 occurred between
GGAZ and GGA21. The two regions on GGA21 and
GGAZ that may harbor genes important for testis
growth and development spanned 572 kb and 9.5 Mb,
respectively. Three genes on GGA21 (SDHB, PARK7 and

Table 3 The SNPs on GGAZ interacted with the SNPs on GGA21, and the Refgenes in the two important regions

Chr Position Locus RS# Refgenes

Z 37,246,321
37,440,770
37,562,582
38,066,346
38,424,448
38,545,044
38,795,339
39,120,198
39,189,946
39,223,668
39,256,770
39,415,378
40,393,058
40,411,585
40,514,085
41,304,561
45,300,030
45,695,927
46,745,968

Gga_rs14765324
Gga_rs16768474
Gga_rs14765605
Gga_rs16768723
Gga_rs14766107
GGaluGA351567
Gga_rs16047676
Gga_rs16781643
Gga_rs14745723
Gga_rs16131986
Gga_rs14787078
Gga_rs16781713
Gga_rs14787751
Gga_rs16782083
Gga_rs16754179
Gga_rs16132921
Gga_rs14015526
GGaluGA352176
Gga_rs14016510

rs14765324
rs16768474
rs14765605
rs16768723
rs14766107
rs317567123
rs16047676
rs16781643
rs14745723
rs16131986
rs14787078
rs16781713
rs14787751
rs16782083
rs16754179
rs16132921
rs14015526
rs316100592
rs14016510

VPS13A, AGTPBP1, AUH, CAMK4, CDC14B, CDC42SE2, CFC1B, CKS2,
CTSL2, DAPK1, FANCC, FBP1, GADD45B, GNAQ, HABP4, HINT1, ISCA1,
LOC427470, LOC770548, MIR1456, MIR23B, MIR24-2, MIR27B, MIR7-1,
MIR7439, NAA35, NFIL3, NREP, NTRK2, PTCH1, REEP5, RMI1, ROR2,
SEMA4D, SLC25A46, SPINZ, STARD4, SYK, TLE4, WDR36, ZCCHC6

21 76,023
87,719
113,769
125,790
140,660
145,617
153,135
165,390
197,067
219,311
277,332
291,087
297,203
299,152
304,979
320,390
332,352
332,687
362,742
402,941
423,299
493,436
631,537
647,587

Gga_rs15179992
GGaluGA181809
Gga_rs15179999
Gga_rs10732124
Gga_rs15180005
Gga_rs15180007
GGaluGA181823
Gga_rs16176404
Gga_rs15180023
Gga_rs15180012
Gga_rs15180032
Gga_rs15180041
Gga_rs16176409
Gga_rs16176412
GGaluGA181852
Gga_rs16176425
GGaluGA181865
GGaluGA181868
GGaluGA181877
Gga_rs14281175
Gga_rs13602346
Gga_rs14281291
Gga_rs16176824
GGaluGA182048

rs15179992
rs312621287
rs15179999
rs10732124
rs15180005
rs15180007
rs315641745
rs16176404
rs15180023
rs15180012
rs15180032
rs15180041
rs16176409
rs16176412
rs314825899
rs16176425
rs314965954
rs313888034
rs316891294
rs14281175
rs13602346
rs14281291
rs16176824
rs312963281

PADI3, PADI1, PADI2, SDHB, MRPS16, PARK7, UTS2, PER3, VAMP3,
PHF13, ZBTB48, ICMT, RPL22
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VAMP3) and nine genes (AGTPBP1, CAMK4, CDC14B,
FANCC, FBP1, GNAQ, PTCH1, ROR2 and STARD4) on
GGAZ might be important for testis growth and devel-
opment based on their annotated functions. The previ-
ous result indicated that the motility and viability of
sperm were positively correlated with mitochondrial
SDHB [27]. Therefore, SDHB may serve as a marker of
sperm quality and male fertility [28]. PARK7 (DJ1) is
highly expressed in human testes and has been shown to
be essential for sperm maturation and fertilization [29–
32]. VAMP3 has been shown to play an important role
in the process of fertilization of sperms in pig [33]. In
mice, AGTPBP1 was important for spermatogenesis,
moreover, it was important for the survival of germ cells
from the spermatocyte stage onward [34]. In mice and
rats, the the CAMK4 gene encodes two proteins, Ca2
+/calmodulin-dependent protein kinase IV (CaMKIV)
and calspermin (CaS) [35–38]. CaMKIV is highly
expressed in mouse testis and ovary and plays a essential
role in male and female fertility [38–40]. CDC14B mu-
tant mice were less fertile than the wild-type control
[41]. Reduced fertility was reported for Fancc−/− mice
[42]. The expression of some proteins, including FBP1,
were altered and their functions may be damaged in in-
fertile men with unilateral varicocele [43]. The results of

a previous study identified that Gnaqd/d male mice were
subfertile [44]. The desert hedgehog (Dhh)-null mutant
male mice had less mature sperm cells and lower num-
bers of Leydig cells (LCs), and Dhh played an important
role in spermatogenesis by acting in a paracrine manner
through the Ptch1 receptor component [45–47]. In mice,
female Ror2W749FLAG/W749FLAG were fertile, however,
Ror2W749FLAG/W749FLAG male mice showed a decreased
in fertility [48]. StarD6 was testis-specific expressed
which indicated that it may be important for fertility
[49]. StarD6 is homology to StarD4, which indicated that
StarD4 may have similar function as StarD6. In Sub-
network2, eight SNPs on GGA10 all interacted with the
SNP (Gga_rs15834332) on GGA19, which could be seen
as the hub site of Sub-network2. Thus, Gga_rs15834332
may be the important node which interacts with a
4.3 Mb region on GGA10. The Gga_rs15834332 on
GGA19 was located between CCL5 and MIR142. A total
of 32 Refgenes were located in the 4.3 Mb region of
GGA10. Among these genes, TCF12 was predicted as a
target gene for miR-142-5p [50]. We also detected that
TCF12 was the only gene that was predicted to be the
target of miR-142-5p using three packages online.
Therefore, it is proposed that miR-142-5p and TCF12
might work together to regulate the reproductive

Table 4 Target genes of miR-142-5p and miR-142-3p in the 4.3 Mb region on GGA10 in Sub-network2 for TeW predicted by three
packages online

Gene symbol Description Position (Mb) MiRNA Packages

RNF111 Ring Finger Protein 111 6.32–6.36 miR-142-3p Targetscan

TCF12 transcription factor 12 6.90–7.00 miR-142-5p MIRDB, Targetscan
PicTar

ARPP19 cAMP–regulated phosphoprotein, 19 kDa 8.23–8.24 miR-142-5p Targentscan

MYO5A myosin VA (heavy chain 12, myoxin) 8.24–8.33 miR-142-3p Targentscan

MAPK6 Mitogen–Activated Protein Kinase 6 8.42– 8.45 miR-142-5p Targentscan

Fig. 2 Sub-network2 for testis weight (TeW) and the LD information. The color of the node represents the P-value of an interaction (P < 1.0 × 10−16 = red;
P < 1.0 × 10−15 = blue; P < 1.0 × 10−14 = green; P < 1.0 × 10−13 = white). The color of the edge indicates the type of epistatic effect (AA = red;
AD = purple; DA = blue; DD = green). The genes located in the 4.3 Mb regions of GGA10 were listed
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function of male broilers. Furthermore, TCF12 was a
partner of TCF21, which was detected as an important
gene for testis growth and development in our previous
GWAS result [19].
For MeC, 15 pairs of SNPs with significant epistatic ef-

fects were detected, which indicated an interaction be-
tween GGA2 and GGA13. It is proposed that CDH12 on
GGA2 and WNT8A on GGA13, which are both located
in the same cadherin signaling pathway, may be im-
portant for bone growth. It had been shown that the
pathway was involved in many biological processes,
such as development, neurogenesis, cell adhesion, and
inflammation, and also involved in many disease, such
as cancer [51].

Conclusions
In the current study, a large number of epistatic inter-
actions were found to be significantly associated with
testis weight in chicken. It appears that miR-142-5p
along with its target gene TCF12, and some other genes
in GGA21 and GGAZ (SDHB, PARK7, VAMP3,
AGTPBP1, CAMK4, CDC14B, FANCC, FBP1, GNAQ,
PTCH1, ROR2 and STARD4) might be important for
testis growth and development. In contrast, very few
significant epistatic interactions were identified for
other carcass and growth traits. These results indicate
that epistatic interaction may play very different roles
in the control of phenotypic variation for different
traits in chickens.

Fig. 3 Epistatic network among SNPs with significant epistatic effect on metatarsus circumference (MeC). A node represents a SNP. The chromosome
in which the SNP is located is shown in the circle. A pair of SNPs connected by an edge had a significant interaction. The color of a node represent
the P-value of the interaction (P < 1.0 × 10−12 = red; P < 1.0 × 10−11 = blue; P < 1.0 × 10−10 = green; P < 1.0 × 10−9 = white). The color of the edge
indicates the type of epistatic effect (AA = red; AD = purple; DA = blue; DD = green). Genes in the LD blocks were listed

Table 5 Significant epistatic effects on MeC

Chr1 Position1 Locus1 RS# Chr2 Position2 Locus2 RS# Test P_value

2 73,383,598 Gga_rs14204534 rs14204534 13 13,041,051 Gga_rs14998703 rs14998703 AA 3.39 × 10−12

2 73,383,598 Gga_rs14204534 rs14204534 13 13,361,236 Gga_rs14998801 rs14998801 AA 3.39 × 10−12

2 73,383,598 Gga_rs14204534 rs14204534 13 13,343,436 Gga_rs15704596 rs15704596 AA 3.39 × 10−12

2 73,420,901 Gga_rs14204566 rs14204566 13 13,041,051 Gga_rs14998703 rs14998703 AA 3.39 × 10−12

2 73,420,901 Gga_rs14204566 rs14204566 13 13,361,236 Gga_rs14998801 rs14998801 AA 3.39 × 10−12

2 73,420,901 Gga_rs14204566 rs14204566 13 13,343,436 Gga_rs15704596 rs15704596 AA 3.39 × 10−12

2 73,507,376 Gga_rs16037701 rs16037701 13 13,041,051 Gga_rs14998703 rs14998703 AA 3.44 × 10−12

2 73,507,376 Gga_rs16037701 rs16037701 13 13,361,236 Gga_rs14998801 rs14998801 AA 3.44 × 10−12

2 73,507,376 Gga_rs16037701 rs16037701 13 13,343,436 Gga_rs15704596 rs15704596 AA 3.44 × 10−12

2 73,559,761 GGaluGA153643 rs317095612 13 13,041,051 Gga_rs14998703 rs14998703 AA 3.44 × 10−12

2 73,559,761 GGaluGA153643 rs317095612 13 13,361,236 Gga_rs14998801 rs14998801 AA 3.44 × 10−12

2 73,559,761 GGaluGA153643 rs317095612 13 13,343,436 Gga_rs15704596 rs15704596 AA 3.44 × 10−12

2 73,584,220 Gga_rs14204639 rs14204639 13 13,041,051 Gga_rs14998703 rs14998703 AA 4.47 × 10−12

2 73,584,220 Gga_rs14204639 rs14204639 13 13,361,236 Gga_rs14998801 rs14998801 AA 4.47 × 10−12

2 73,584,220 Gga_rs14204639 rs14204639 13 13,343,436 Gga_rs15704596 rs15704596 AA 4.47 × 10−12
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