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Abstract

Background: The therapeutic management of obesity is challenging, hence further elucidating the underlying
mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent
and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network
analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression
profile data of 7 discordant monozygotic twins.

Results: In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were
with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive
regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and
peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG
database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among
the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation
with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase
activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport,
intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density
lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide
hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion
molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB,
TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module
(212 genes) was also significantly correlated with BMI (r = 0.56, P = 0.04), and hub genes of KCNN1 and AQP10
were differentially expressed.

Conclusion: We identified significant genes and specific modules potentially related to BMI based on the
gene expression profile data of monozygotic twins. The findings may help further elucidate the underlying
mechanisms of obesity development and provide novel insights to research potential gene biomarkers and
signaling pathways for obesity treatment. Further analysis and validation of the findings reported here are
important and necessary when more sample size is acquired.
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Background
Obesity, as a complex disorder mediated by the interplay
between genetic and environmental factors [1], has been
a public health and policy problem due to its prevalence,
costs, and health effects [2]. The therapeutic manage-
ment of obesity includes lifestyle changes, medications,
and surgery. However, the treatment of obesity is chal-
lenging because of diverse patient conditions, prolonged
and chronic nature of disease, difficulty of maintaining
dieting and physical exercise frequently [3–5], limited ef-
fectiveness and side effects of the medication [6], and
high cost and risk of complications of surgery [7]. Other
efforts are focused in the development of novel thera-
peutics, yet the effectiveness requires to be tested and
confirmed [8–10] and the safety requires to be assessed
[11]. Therefore, for the purpose of identifying new diag-
nostic biomarkers and therapeutic targets and develop-
ing novel therapeutic strategies which not only produce
sufficient weight loss but also lack side effects, further
elucidating the molecular mechanisms underlying obes-
ity development is necessary and urgent.
Recently, gene expression profiling analysis has yielded

insights into the measurement of alterations in genetic
expression patterns, and has facilitated the identification
of differentially expressed genes (DEGs) being crucial to
obesity. In a study conducted by Roque DR, et al., obesity
related genes, such as LPL, IRS-1, IGFBP4, and IGFBP7,
etc., were found to be upregulated with increasing BMI
among endometrial cancer patients [12]. The study of
Gruchala-Niedoszytko, M, et al. also found a series of
genes (PI3, LOC100008589, RPS6KA3, LOC441763, IFIT1,
and LOC100133565) with a different expression that may
be related to an increased BMI [13]. And genes of PGC1-
α, FNCD5, and FGF, which play roles in adipose tissue de-
velopment and function, were abundantly expressed in
subcutaneous, visceral, and epigastric adipose tissues of
extreme obesity patients based on gene expression profil-
ing [14]. However, due to the gene expression profiling
analysis merely focused on the effect of individual genes
and transcripts, without regard to their correlated patterns
of expression and the effect of networks of genes, it may
fail to detect important biological pathways or gene-gene
interactions related to obesity.
Weighted gene co-expression network analysis (WGCNA)

is a systems biology method for analyzing the correlation
patterns of large and high-dimensional gene expression data
sets [15]. It can be used to find modules of highly correlated
genes, correlate module eigengenes (MEs) to external sam-
ple traits, calculate module membership (MM) and gene sig-
nificance (GS), and find intramodular hub genes, etc.
WGCNA has yielded novel insights into the molecular as-
pects to identify candidate biomarkers or therapeutic targets.
At present, it has been increasingly applied to analyze vari-
ous gene expression profiles of hepatocellular carcinoma

[16], pneumocyte senescence induced by thoracic irradiation
[17], psoriasis [18], severe asthma [19], coronary artery dis-
ease [20], and lung cancer [21], etc. Although widely being
employed, the WGCNA has, to our knowledge, not yet been
applied to analyze the expression profiles of BMI-discordant
monozygotic twin pairs.
While monozygotic twins are characteristic of the

genetic similarity and rearing-environment sharing, they
show phenotypic discordance for certain complex traits
and diseases. Thus, the discordant monozygotic model is
becoming a popular and powerful tool for identifying
non-genetic contributions to a phenotype variation
including subtle difference in gene expression not
mediated by cis- or trans-eQTL effects, and for linking
environmental exposure to differential epigenetic regula-
tion while controlling for individual genetic make-up
[22–24]. Therefore, to reveal the potential molecular
mechanisms of obesity, we performed both differential
gene expression analysis and WGCNA to analyze the ex-
pression profiles of BMI-discordant monozygotic twin
pairs. The potentially important DEGs were identified,
and the modules correlated with external traits and the
hub genes related to BMI were determined. The results
may help further elucidate the underlying mechanisms
of obesity and provide novel insights to research poten-
tial gene biomarkers and signaling pathways for the
treatment of obesity.

Methods
Subjects recruitment
The sampling of monozygotic twins was based on the
Qingdao Twin Registry at the Qingdao Center for Disease
Control and Prevention [25]. Twins were recruited to a
clinical investigation after sampling randomly through
residence registry and the local disease control network
(2012–2013). Written informed consent was obtained
from all subjects. We excluded subjects (i) being pregnant
or breastfeeding, (ii) undergoing diabetes, (iii) undergoing
cardiovascular disease, and (iv) taking any medications
within 1 month before participation, and incomplete twin
pairs were dropped. The zygosity of twin pairs was
determined by DNA testing using 16 short tandem repeat
DNA markers. Finally, a total of 7 BMI-discordant
monozygotic twin pairs with median age of 52 years
(range: 43–65 years) were identified.
For each subject, we took three anthropometric

measurements following standard procedures with at least
one-minute interval and calculated the mean of these
three measurements. Height was measured to the nearest
centimeter using a vertical scale with a horizontal moving
headboard. And body weight was measured to the nearest
0.1 kg using a standing beam scale. Then BMI was calcu-
lated as weight (kg) divided by the square of height (m).
Besides, BMI was classified into three classes: Class I,
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18.5 ≤ BMI < 24 kg/m2, normal; Class II,
24 ≤ BMI < 28 kg/m2, overweight; and Class III,
BMI ≥ 28 kg/m2, obesity. Blood sample was kept fro-
zen at −80 °C for 6 months before sending to routine
laboratory testing.

RNA library construction and sequencing and quality
control
After total messenger RNA (mRNA) being extracted from
whole blood by using TRIzol reagent (Invitrogen, San
Diego, USA), the RNA concentration and purity were
tested with NanoDrop 2000 Spectrophotometer (Termo
Fisher Scientifc, Wilmington, USA) and the RNA integrity
was measured with RNA Nano 6000 Assay Kit of Agilent
Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, USA).
Then the high-quality RNA was sent to Biomarker

Technologies Corporation (Biomarker Technologies
Corporation, Beijing, China) for further analysis. The
RNA-Seq libraries were constructed with NEBNext
UltraTM RNA Library Prep Kit for Illumina (New
England Biolabs, Ipswich, USA) following the manufac-
turer’s recommendations as follows: purifying mRNA
with NEBNext Poly (A) mRNA Magnetic Isolation
Module, randomly fragmenting isolated mRNA, synthe-
sizing and purifying double-stranded cDNAs, selecting
fragment sizes using Agencourt AMPure XP system,
and obtaining cDNA library by PCR enrichment. At
last, we sequenced the prepared cDNA library using the
Illumina HiSeq 2500.
To obtain high-quality clean data (Q30 > 85%), quality

control for the raw sequencing data was performed by
removing reads containing adapter sequences, unknown
nucleotides >5%, and low-quality reads. After mapping
to the human genome by TopHat2 [26], we estimated
the gene expression levels with fragments per kilobase of
exon per million fragments mapped (FPKM) value by
Cufflinks software [27].

Differential expression analysis
In the differential expression analysis between the 7
BMI-discordant twin pairs using EBSeq [28], the
Benjamini-Hochberg method corrected P-value, i.e.,
False discovery rate (FDR), was estimated to circumvent
false positive results which occurred in the multiple tests
[29, 30]. The fold change (FC) of the expression values
between twins was also calculated. Then DEGs were
defined as those met the criteria of |log2FC| > 1and
FDR < 0.01.

Weighted gene co-expression network analysis (WGCNA)
The WGCNA package in R is a comprehensive collec-
tion of R functions for performing various aspects of
weighted correlation network analysis [15, 31]. Based on

the expression profiles of 7 monozygotic twin pairs, the
network construction, module detection, module and gene
selection, calculations of topological properties,
visualization, and interfacing with external software pack-
age were conducted following the tutorials provided.

Modules identification
Briefly, after calculating Pearson correlations between
each gene pair, we established a weighted adjacency
matrix by raising the co-expression similarity to a power
β = 29. Subsequently, we constructed the topological
overlap matrix (TOM) using correlation expression
values [32–34]. Then each TOM was used as input for
hierarchical clustering analysis [35], and gene modules
(i.e. clusters of genes with high topological overlap) was
detected by using a dynamic tree cutting algorithm
(deep split = 2, cut height = 0.27). The co-expression
module structure was visualized by heatmap plots of
topological overlap in the gene network. Relationships
among modules were summarized by a hierarchical clus-
tering dendrogram of the eigengenes and by a heatmap
plot of the corresponding eigengene network.

Relating modules to external traits
To identify modules that were significantly associated
with the traits of interest-BMI, BMI classes, and disease
status (obesity versus non-obesity), we correlated the
MEs (i.e. the first principle component of a module)
[36] with external traits and searched the most
significant associations.

Hub genes analysis
The MM was defined as the correlation of gene expres-
sion profile with ME. And the GS measure was defined
as (the absolute value of) the correlation between gene
and external traits. Genes with highest MM and highest
GS in modules of interest were natural candidates for
further research [37–40]. Thus, the intramodular hub
genes were chosen by external traits based GS > 0.2 and
MM> 0.8 with a threshold of P-value <0.05 [41]. The
gene-gene interaction network was constructed and vi-
sualized using VisANT 5.0 [42].

Functional annotation and enrichment analysis
Genes identified in the differential expression analysis
and in module of interest in WGCNA were annotated
by utilizing BLAST software within the following
databases: NCBI nonredundant protein sequences (NR)
[43], Clusters of Orthologous Groups (COG) [44], KOG
[45], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [46, 47], and Gene Ontology (GO) [48, 49].
Subsequently, we drew histogram by mapping GO func-
tion of genes in modules of interest to the corresponding
secondary features on the background of all genes’ GO
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annotation. The Pearson Chi-Square test was applied to
indicate significant relationships between the two input
datasets if all the expected counts were greater than or
equal to 5 for 2 × 2 matrixes. And the Fisher’s exact test
was applied if one of the expected counts was less than
5. Then we implemented GO enrichment analysis based
on a hypergeometric test [50] and calculated a Fisher’s
Exact P-Value which was then corrected by Benjamini-
Hochberg method. Besides, the KEGG pathways enrich-
ment analysis was conducted by applying the KEGG
Orthology-Based Annotation System (KOBAS) utilizing
a hypergeometric test [51]. The P-value <0.05 was used
as the enrichment cut-off criterion.

Results
Differential expression analysis
A total of 7 BMI-discordant monozygotic twin pairs with
median age of 52 years were included for the gene ex-
pression profiling analysis (Table 1). The extracted
cDNA samples from twins were subjected to sequencing
using an Illumina HiSeq2500 platform. The Q30 of each
sample was not less than 92.26% and the mapped rate
ranged from 87.62% to 93.18% (Additional file 1: Table
S1). Under the threshold of |log2FC| > 1 and FDR < 0.01,
a range from 360 to 1116 DEGs were identified between
co-twin pairs (Table 1). It appeared that 32 DEGs were
with a trend of up-regulation in at least three of twins
with higher BMI when compared to their siblings (Add-
itional file 2: Table S2). Of these, three genes were found
up-regulated in 4 twin pairs, and the others were found
up-regulated in 3 twin pairs.

As the summarized results of enrichment analysis
within GO and KEGG databases shown (Table 2), several
potentially important findings emerged (Corrected
P-value < 0.05), including positive regulation of nitric-
oxide synthase biosynthetic process (P = 5.34E-03),
positive regulation of NF-kappa B import into nucleus
(P = 1.04E-02), peroxidase activity (P = 6.82E-03), and
NF-kappa B signaling pathway (P = 4.49E-02). Genes of
NAMPT, TLR9, PTGS2, HBD, and BCL2L1 were
involved in these significant findings. In addition,
PCSK1N gene might also be associated with obesity. We
compared previously implicated BMI-related gene ex-
pression differences in study of Homuth, G, et al. [52]
with ours to validate the findings further. This com-
parison revealed consistency for positive BMI-
associated expression differences, including HBD, XK,
SELENBP1, SNCA, LAS2, PLEK2, GLRX5, TMOD1,
SLC4A1, BCL2L1, TRIM58, DCAF12, NFIX, BSG,
PLVAP, and PCSK1N.

WGCNA
Modules identification
WGCNA was applied to investigate gene sets that were
related to traits of interest-BMI, BMI classes, and disease
status using the gene expression data of 7 monozygotic
twin pairs. After using a dynamic tree cutting algorithm,
a total of 20 distinct co-expression modules containing
48 to 9274 genes per module were identified, and 1912
uncorrelated genes were assigned into a grey module
which was ignored in the following study (Fig. 1, and
Additional file 3: Table S3). The heatmap plot of topo-
logical overlap in the gene network is depicted (Fig. 2).

Relating modules to external traits
To understand the physiologic significance of the mod-
ules, we correlated the 20 MEs with traits of interest and
searched for the most significant associations. According
to the heatmap of module-trait correlation (Fig. 3), genes
clustered in coral1 module (68 genes) had the strongest
positive correlation with BMI (r = 0.56, P = 0.04) and dis-
ease status (r = 0.56, P = 0.04), whereas statistically non-
significant correlation was found with BMI classes (r =
0.51, P = 0.06). Nevertheless, the ME of saddlebrown
module (212 genes) was only significantly correlated
with BMI (r = 0.56, P = 0.04). Thus, we would mainly
consider coral1 module in the following because this
module may indicate external traits more accurately.
None of the other modules had a significant association
with external traits.

Relationships among modules
To study the relationships among modules and determine
their correlation with trait of BMI, we correlated the MEs.
The eigengene network using a dendrogram and a heatmap

Table 1 The characteristics of the BMI-discordant monozygotic
twin pairs (43–65 years) and summary of differentially expressed
genes

Subject
ID

Height,
m

weight,
kg

BMI,
kg/m2

DEG Set All
DEGs

Up-
regulated

Down-
regulated

E01 1.56 72 29.6

E02 1.54 62 26.1 E02_vs_E01 462 418 44

E03 1.62 89 34.1

E04 1.63 73 27.5 E04_vs_E03 1116 579 537

E05 1.65 53 19.5

E06 1.6 65.3 25.5 E05_vs_E06 656 356 300

E07 1.73 67.7 22.6

E08 1.72 75.9 25.7 E07_vs_E08 576 426 150

E09 1.67 81.4 29.2

E10 1.66 67.2 24.5 E10_vs_E09 360 163 197

E11 1.7 55.9 19.3

E12 1.7 71.2 24.6 E11_vs_E12 625 187 438

E13 1.55 63 26.2

E14 1.56 71 29.2 E13_vs_E14 661 426 235

Note: DEG: differentially expressed gene; Up-regulated: the number of up-
regulated genes; Down-regulated: the number of down-regulated genes
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plot are depicted in Fig. 4. The dendrogram (Fig. 4a) indi-
cated that the coral1 and saddlebrown modules were highly
correlated, and trait of BMI fell within the meta-module
grouping together the two modules. The heatmap plot
(Fig. 4b) showed the detailed eigengenes adjacencies of all
modules and trait of BMI.

Functional annotation and enrichment analysis for coral1
module
In order to provide an interpretation of the biological
mechanism associated with the genes clustered in
module of interest–coral1, we conducted functional
annotation (Additional file 4: Table S4) and enrich-
ment analysis.
Three main annotated categories-biological process,

cellular component, and molecular function were
obtained in GO database (Fig. 5, and Additional file 5:
Table S5). The proportion of genes in coral1 module
increased significantly in certain subgroups, including
single-organism process (P = 0.024), multicellar organ-
ismal process (P = 0.004), developmental process (P =
0.009), localization (P = 0.002), signaling (P = 0.005),
extracellar region (P = 0.009), and transporter activity
(P = 0.023).
As the summarized results of enrichment analysis

within GO database shown (Table 3), several potentially

important findings emerged (Corrected P-value < 0.05).
In the biological processes, categories of positive regula-
tion of phospholipase activity (P = 2.91E-03), high-
density lipoprotein particle clearance (P = 4.36E-03),
chylomicron remnant clearance (P = 4.36E-03), reverse
cholesterol transport (P = 2.24E-02), and positive regula-
tion of axon extension (P = 2.61E-02) were significantly
enriched. Among the 6 enrichment categories in the
cellular component, intermediate-density lipoprotein
particle (P = 2.74E-03), chylomicron (P = 9.97E-03), low-
density lipoprotein particle (P = 1.89E-02), and very-low-
density lipoprotein particle (P = 2.74E-02) were related
to lipid transport and metabolism. And categorie of
voltage-gated potassium channel complex (P = 1.43E-02)
may be potentially involved in the regulating energy
homeostasis. In the molecular function, the categories
of cholesterol transporter activity (P = 9.72E-03) and
neuropeptide hormone activity (P = 1.98E-02) should
also be highlighted.
As shown in Additional file 6: Table S6, the KEGG

annotation results were classified according to KEGG
pathway classification. Two pathways of alcoholism and cell
adhesion molecules (CAMs) were significantly enriched in
KEGG database (Table 3). And the COG function
classification results are shown in Additional file 7:
Table S7.

Table 2 The results of GO and KEGG pathway enrichment analysis for differentially expressed genes with a trend of up-regulation

Category Term Gene symbol Corrected
P-value

Gene Ontology term–Biological Process Porphyrin-containing compound biosynthetic process (GO:0006779) SPTB; ANK1 1.04E-03

Gene Ontology term–Biological Process Decidualization (GO:0046697) BSG; PTGS2 4.53E-03

Gene Ontology term–Biological Process Positive regulation of nitric-oxide synthase biosynthetic process
(GO:0051770)

NAMPT; TLR9 5.34E-03

Gene Ontology term–Biological Process Positive regulation of NF-kappa B import into nucleus (GO:0042346) PTGS2; TLR9 1.04E-02

Gene Ontology term–Biological Process Embryo implantation (GO:0007566) PTGS2; BSG 2.92E-02

Gene Ontology term–Biological Process Adult locomotory behavior (GO:0008344) TMOD1; SNCA 4.20E-02

Gene Ontology term–Cellular
Component

Cortical cytoskeleton (GO:0030863) TMOD1; SLC4A1; ANK1 1.88E-04

Gene Ontology term–Cellular
Component

Spectrin-associated cytoskeleton (GO:0014731) ANK1; SPTB 1.30E-03

Gene Ontology term–Cellular
Component

Basolateral plasma membrane (GO:0016323) ANK1; SLC4A1; TLR9 3.62E-02

Gene Ontology term–Molecular
Function

Ankyrin binding (GO:0030506) SLC4A1; SPTB 5.97E-03

Gene Ontology term–Molecular
Function

Peroxidase activity (GO:0004601) PTGS2; HBD 6.82E-03

Gene Ontology term–Molecular Function Structural constituent of cytoskeleton (GO:0005200) ANK1; TUBB2A; SPTB 9.49E-03

Gene Ontology term–Molecular
Function

Kinesin binding (GO:0019894) SNCA; KLC3 1.43E-02

KEGG pathway Small cell lung cancer (ko05222) PTGS2; BCL2L1 3.10E-02

KEGG pathway NF-kappa B signaling pathway (ko04064) PTGS2; BCL2L1 4.49E-02
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Hub genes analysis in coral1 module
Figure 6 shows the scatterplots of GS for traits of BMI,
BMI classes, and disease status versus MM in coral1
module. MM and GS for BMI (Fig. 6a), BMI classes
(Fig. 6b), and disease status (Fig. 6c) exhibited very
significant positive correlations, implying that the most
important (central) elements of coral1 module also tended
to be highly correlated with these external traits. The
identified 21 hub genes (Additional file 8: Table S8)
included GAL, ASB9, KCNT1, NPPB, TBX2, KCNK15,
IL17C, APOE, LBX1, LRRC38, LINGO1, ABCG4, LCN15,
RFLNA, SOX18, C1orf146, APOC2, PRSS29P,
LOC102724223, C7orf71, and IGKV1D-17. The visualized
plot of the gene-gene interaction network in coral1
module is shown in Fig. 7.
The 21 hub genes were involved in several enriched

functional items (Table 3), including high-density lipo-
protein particle clearance, chylomicron remnant clear-
ance, phospholipid efflux, reverse cholesterol transport,
chylomicron, voltage-gated potassium channel complex,
very-low-density lipoprotein particle, and cholesterol

transporter activity, most of which were associated with
lipid transport and metabolism. None of the 68 genes in
coral1 module was identified as DEGs.

Saddlebrown module
In the functional annotation analysis within GO data-
base, the proportion of genes in saddlebrown module in-
creased in subgroups of extracellular region (P = 0.002)
and extracellular region part (P = 0.019) (Additional file 9:
Figure S1, and Additional file 10: Table S9). The categor-
ies of structural constituent of eye lens (P = 1.14E-02)
and troponin T binding (P = 2.75E-02) were significantly
enriched in the molecular function, whereas no categor-
ies were significantly enriched in biological process and
cellular component. The results of KEGG pathway clas-
sification and COG function classification are shown in
Additional file 11: Table S10 and Additional file 12:
Table S11, respectively. BMI based GS and MM exhib-
ited a very significant correlation in saddlebrown module
(Additional file 13: Figure S2), and hub genes of KCNN1,
CNN1, and AQP10 were identified as DEGs.
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Fig. 1 Gene dendrogram obtained by average linkage hierarchical clustering. The color row underneath the dendrogram shows the assigned original
module and the merged module
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Discussion
In the differential expression analysis based on the
gene expression data of 7 BMI-discordant monozy-
gotic twin pairs, we identified 32 genes with a trend
of up-regulation in twins with higher BMI when com-
pared to their siblings. Several potentially important

enrichment findings emerged, including positive regu-
lation of nitric-oxide synthase biosynthetic process,
positive regulation of NF-kappa B import into nu-
cleus, peroxidase activity, and NF-kappa B signaling
pathway (Table 2). And up-regulated genes-NAMPT,
TLR9, PTGS2, HBD, and PCSK1N might be associated

Fig. 2 Heatmap plot of topological overlap in the gene network. In the heatmap, each row and column corresponds to a gene, light color denotes
low topological overlap, and progressively darker red denotes higher topological overlap. Darker squares along the diagonal correspond to modules.
The gene dendrogram and module assignment are shown along the left and top
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with obesity risk. In addition, we also applied WGCNA to
quantitatively analyze the interconnectedness of gene ex-
pression data and assessed the importance of genes within
the networks. Among the 20 distinct co-expression mod-
ules identified, genes clustered in coral1 module had the
strongest positive correlation with BMI and disease status
(Fig. 3), indicating that the highly co-expressed genes in this
module had potential biological significance. Functional en-
richment analysis revealed several significant enrichments

of BMI-related categories for coral1 module. Importantly,
several hub genes were strongly related to lipid transport
and metabolism (Table 3) and may be particularly valuable
for identifying the candidate biomarkers and therapeutic
targets for obesity assessed by BMI. Besides, the ME of sad-
dlebrown module was also significantly correlated with
BMI (Fig. 3) and 3 hub genes were identified as DEGs.
Obesity is a complex disease under the control of both

genetic and environmental factors through the interface

Module−trait relationships
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Fig. 3 Relationships of consensus module eigengenes and external traits. Each row in the table corresponds to a consensus module, and each
column to a sample or trait. Numbers in the table report the correlations of the corresponding module eigengenes and traits, with the P-values
printed below the correlations in parentheses. The table is color coded by correlation according to the color legend
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of epigenetics, where different combinations of genetic
and epigenetic variations can lead to a common pheno-
type. Considering this, we would not necessarily expect
each of the 7 BMI-discordant monozygotic twin pairs to
present exactly the same series of gene aberrations, and
the stringency of the criterion on the commonality of
gene changes was relaxed. In the differential expression
analysis, it appeared that 32 genes were with a trend of
up-regulation in at least three of twins with higher BMI
when compared to their siblings (Additional file 2: Table
S2). Besides, four potentially important enrichment find-
ings emerged and 5 up-regulated genes associated with
obesity risk were identified as follows (Table 2).
Nitric oxide (NO), whose production is mostly through

the action of the nitric oxide synthase (NOS) family of
enzymes, is emerging as a central regulator of energy me-
tabolism and body composition. The isoform of inducible
nitric oxide synthase (iNOS)-derived NO can promote

insulin resistance and inflammation in key peripheral
tissues such as liver, skeletal muscle, and adipose tissue. In
addition, iNOS may affect glucose homeostasis. Thus, the
iNOS isoform appears to promote deleterious changes in
metabolism [53]. Considering this, the two up-regulated
genes (NAMPT and TRL9) involved in the category of
positive regulation of nitric-oxide synthase biosynthetic
process should be considered notably (Table 2). And it is
indicated that the protein of NAMPT gene can directly
activate pathways leading to iNOS induction [54].
It has been revealed that a characteristic feature of obes-

ity linking it to insulin resistance is the presence of
chronic low-grade inflammation which is indicative of ac-
tivation of the innate immune system. The IKK/NF-κB
pathway is a well-known inflammatory signaling pathway
involved in the pathogenesis of obesity [55, 56], and the
two genes-PTGS2 and TLR9 involved in this enrichment
term should also be focused (Table 2). In addition, the

Fig. 4 Relationships among modules. a Hierarchical clustering of module eigengenes that summarize the modules found in the clustering analysis.
Branches of the dendrogram (the meta-modules) group together eigengenes that are positively correlated. b Heatmap plot of the adjacencies in the
eigengene network including the trait of interest-BMI. Each row and column in the heatmap corresponds to one module eigengene (labeled by color)
or BMI. In the heatmap, red represents high adjacency, while blue color represents low adjacency. Squares of red color along the diagonal are
the meta-modules
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Fig. 5 GO classification in coral1 module. Annotation statistics of genes in the secondary node of GO. The horizontal axis shows secondary nodes
of three categories in GO. The vertical axis displays the percentage of annotated genes versus the total gene number. The left columns display
annotation information of the total genes and the right columns represent annotation information of the genes clustered in coral1 module

Table 3 The results of GO and KEGG pathway enrichment analysis for genes clustered in coral1 module

Category Term Gene Symbol Corrected P-value

Gene Ontology term–Biological Process Positive regulation of phospholipase activity (GO:0010518) CYR61; APOC2* 2.91E-03

Gene Ontology term–Biological Process High-density lipoprotein particle clearance (GO:0034384) APOC2*; APOE* 4.36E-03

Gene Ontology term–Biological Process Chylomicron remnant clearance (GO:0034382) APOC2*; APOE* 4.36E-03

Gene Ontology term–Biological Process Phospholipid efflux (GO:0033700) APOE*; APOC2* 1.30E-02

Gene Ontology term–Biological Process Reverse cholesterol transport (GO:0043691) APOC2*; APOE* 2.24E-02

Gene Ontology term–Biological Process Positive regulation of axon extension (GO:0045773) APOE*; RAB25 2.61E-02

Gene Ontology term–Cellular Component Intermediate-density lipoprotein particle (GO:0034363) KCNJ1; KCNT1*; KCNA1 2.74E-03

Gene Ontology term–Cellular Component Chylomicron (GO:0042627) APOE*; APOC2* 9.97E-03

Gene Ontology term–Cellular Component Voltage-gated potassium channel complex (GO:0008076) TBX2*; LBX1*; SOX18* 1.43E-02

Gene Ontology term–Cellular Component Low-density lipoprotein particle (GO:0034362) TRH; GAL* 1.89E-02

Gene Ontology term–Cellular Component Very-low-density lipoprotein particle (GO:0034361) APOC2*; APOE* 2.74E-02

Gene Ontology term–Cellular Component Dendrite (GO:0030425) MYO1A; NKD2 3.63E-02

Gene Ontology term–Molecular Function Cholesterol transporter activity (GO:0017127) ABCG4*; APOE* 9.72E-03

Gene Ontology term–Molecular Function Neuropeptide hormone activity (GO:0005184) GAL*; TRH 1.98E-02

KEGG pathway Alcoholism (ko05034) SHC2; GRIN2C; HIST3H2BB 1.79E-02

KEGG pathway Cell adhesion molecules (CAMs) (ko04514) SDC1; CADM3; CLDN6 2.00E-02

Note: * represents the hub genes in coral1 module
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protein encoded by PTGS2 gene is indicated to be linked
with energy homeostasis and metabolic processes based
on a cohort of children presenting with syndromic obesity
[57]. Even though both these two genes were enriched to
the NF-kappa B signaling pathway in KEGG database
(Table 2), PTGS2 gene was involved in the inflamma-
tion process while BCL2L1 gene might be related to
survival process.
In mammals, the peroxidases comprise 8 glutathione

peroxidases (GPx1–GPx8) so far identified. Too much
data regarding the association between obesity and
GPx1, GPx3, GPx4, and GPx7 has been reported [58].
Thus, the two genes of PTGS2 and HBD could be regard
as the candidates for further research (Table 2).
Moreover, SNPs in or near PCSK1 loci may also con-

tribute to obesity risk [59, 60]. The associations with
BMI for other DEGs should be explored further.
To validate the identified DEGs further, we compared

previously implicated BMI-related gene expression differ-
ences [52] with ours. This comparison revealed consistency
for positive BMI-associated expression differences including
HBD, XK, SELENBP1, SNCA, LAS2, PLEK2, GLRX5,
TMOD1, SLC4A1, BCL2L1, TRIM58, DCAF12, NFIX, BSG,
PLVAP, and PCSK1N. Two consistent genes (SNCA and
DCAF12) were also revealed when compared with the
BMI-related genes by the Data-driven Expression Priori-
tized Integration for Complex Traits (DEPICT) method.
In the WGCNA, the proportion of genes in coral1

module increased significantly in subgroups of develop-
mental process, signaling, extracellar region, and trans-
porter activity (Fig. 5, and Additional file 5: Table S5),
indicating that these functions may be associated with
metabolism and accelerated growth and development of
obesity individuals. Notably, GO enrichment analysis
also provided more significant results with more bio-
logical meanings as follows (Table 3).
Obese subjects frequently suffer atherogenic dyslipid-

emia which is commonly manifested as elevated plasma
free fatty acids, triglycerides (TG) and very low-density
lipoprotein (VLDL) levels, decreased high-density lipo-
protein cholesterol (HDL-C) levels, and abnormal low-
density lipoprotein cholesterol (LDL-C) [61, 62]. Our
study suggested that categories involved in lipid metab-
olism and transport were significantly enriched within
the coral1 module, including high-density lipoprotein

Module membership vs. gene significance for BMI

Module membership vs. gene significance for BMI classes 

Module membership vs. gene significance for disease status

a

b

c

Fig. 6 Scatterplots of gene significance (GS) for external traits versus
module membership (MM) in the coral1 module. MM and GS for
BMI, BMI classes, and disease status exhibit very significant
correlations, implying that the most important (central) elements of
coral1 module also tend to be highly correlated with these external
traits. a Module membership vs. gene significance for BMI; (b)
Module membership vs. gene significance for BMI classes; and (c).
Module membership vs. gene significance for disease status
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particle clearance, reverse cholesterol transport, low-
density lipoprotein particle, cholesterol transporter
activity, chylomicron, chylomicron remnant clearance,
very-low-density lipoprotein particle, and intermediate-
density lipoprotein particle (Table 3).
Category of positive regulation of phospholipase

activity was also enriched in the coral1 module (Table 3).
Phospholipids were identified as potential biomarkers
for obesity [63]. And it was reported that members of
the phospholipase A2 (PLA2) family of enzymes, such as
PLA2G1B [64], PLA2G5, and PLA2G2E [65], can serve
a distinct role in generating active lipid metabolites,
which can promote inflammatory metabolic diseases
including obesity [66, 67]. In addition, AdPLA enzyme
in white adipose tissue can function as a regulator of lip-
olysis through increasing prostaglandin E2 (PGE2)
formation and decreasing intracellular cAMP [68].
The hypothalamic peptides, such as neuropeptide Y

(NPY) and melanin concentrating hormone (MCH) [69],
and the peripheral neuropeptides, such as hormone leptin
[70], play important roles in regulating food intake and
maintaining energy balance [71]. Normally, a dynamic
equilibrium exists between orexigenic peptides and
anorexigenic peptides [70]. And after receiving stimulus
information of neural signal, hormone signal, and metabo-
lites, etc., the hypothalamus appestat maintains the

dynamic equilibrium of energy by neuro-humoral response.
Therefore, the enriched category of neuropeptide hormone
activity may also exert a significant meaning regarding
obesity (Table 3).
Another significant GO enriched category was voltage-

gated potassium channel (Kv) complex (Table 3). Studies
had suggested the relation of subtype-Kv1.3 to insulin
sensitivity and the participation of Kv1.3 in regulating
energy homeostasis and body weight [72, 73]. Hence,
Kv1.3 may be a putative and promising pharmacological
target for the treatment of obesity, type II diabetes melli-
tus and related metabolic diseases [72].
Two pathways of alcoholism and cell adhesion mole-

cules (CAMs) were significantly enriched in KEGG data-
base (Table 3). A growing body of literatures indicate
that overlapping central pathways may be involved with
uncontrolled eating and excessive ethanol drinking [74].
And emerging link between familial alcoholism risk and
obesity in women and possibly in men is identified in re-
cent years [75]. Furthermore, some genetic variants are
associated with both alcohol dependence and obesity
[76, 77]. Therefore, the genes involved in the alcoholism
pathway may be used as potential links between alcohol-
ism and obesity, and as promising targets for controlling
ethanol abuse and food intake. As for the CAMs, a re-
view concluded that anthropometric indicators, body

Fig. 7 Interaction of gene co-expression patterns by VisANT 5.0 in the coral1 module. The node size and edge number are proportional to degree
and connection strength, respectively. Eight red nodes indicate the hub genes potentially related to BMI in the coral1 module. Among the 8
genes, GAL, APOE, APOC2, and NPPB have been demonstrated to be associated with obesity and the others would be associated with obesity as
the related works suggested
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composition and eating pattern positively modulate the
subclinical inflammation of obesity through reducing
CAMs and chemokines [78]. Moreover, a recent study
also identified the relationship of adiposity to several
CAMs [79].
We visualized the gene-gene interaction network in

coral1 module to obtain an insight on the hidden mech-
anisms (Fig. 7), and a total of 21 hub genes were identi-
fied (Additional file 8: Table S8). The hub genes were
involved in various gene families and might serve as can-
didates for additional mechanistic studies and thera-
peutic interventions. Hub genes of GAL, APOE, APOC2,
and NPPB have been demonstrated to be associated with
obesity as follows: (I) GAL: Galanin peptides, as the pro-
tein for GAL, is undoubtedly involved in the regulation
of food intake and body weight. It has been identified
that both central galanin and peripheral galanin can
affect appetite, food intake and body weight of animals,
and the latter can also affect gastrointestinal motility
and brown adipose tissue activity [80, 81]. Particularly,
newly discovered galanin-like peptide (GALP) may play
a role in boosting appetite, body weight, and obesity [80,
82]. Overall, galanin and its receptors may serve as a
novel anti-obesity strategy in the future. (II) APOE:
ApoE synthesized by adipocyte is a polymorphic glyco-
protein in humans, and is a major constituent of HDL,
VLDL, and remnant lipoproteins (RLPs). ApoE was
identified playing an important role in the development
of obesity and insulin resistance in experimental mouse
models [83], and the mutation in APOE was involved in
lipid metabolism [84] and lipid levels [85] in population
studies. Moreover, an equally vital role in adipocyte tri-
glyceride accumulation and VLDL-induced adipogenesis
was summarized [86]. Overall, it has been identified that
APOE expression serves as a key peripheral contributor
to the development of obesity and related metabolic dys-
functions [83, 87]. (III) APOC2: Apolipoprotein C-II
(ApoC-II), as a constituent of chylomicrons, VLDL, LDL
and HDL, is a cofactor for lipoprotein lipase, which can
hydrolyze TG. The gene APOC2 mutation can result in
hypertriglyceridemia, which is one of the main charac-
teristics of obese subjects [88]. Besides, an excess of
ApoC-II is related to increase of triglyceride-rich parti-
cles and alterations in HDL particle distribution [89].
(IV) NPPB: A growing body of evidence indicates that
the natriuretic peptides (NPs) system holds the potential
to be amenable to therapeutical intervention against
obesity. Vila, G, et al. demonstrate that B-Type Natri-
uretic Peptide (BNP) plays an important role in reducing
circulating ghrelin concentrations, decreasing hunger,
and increasing feeling of satiety in healthy individuals
[90]. Moreover, the function of enhancing lipolysis and
energy expenditure, and modulating adipokine release
and food intake is also identified [91]. In addition, one

recent review emphasized the ability of NPs to regulate
body weight and energy homeostasis by driving lipolysis,
facilitating beiging of adipose tissues, and promoting
lipid oxidation and mitochondrial respiration [92].
Moreover, another review drew the similar conclusion
[93].
Although there was no strong indication that TBX2,

ASB9, IL17C, and ABCG4 were the causal variant of
obesity in the population, studies showed that these
genes may also be part of the multifactorial etiology of
this complex condition as follows: (I) TBX2: The results
of a prospective cohort on the associations of menarche-
related genetic variants with pubertal growth in adoles-
cents indicated that SNPs (rs757608) near TBX2 is asso-
ciated with a rapid weight gain [94]. (II) ASB9: It
indicated that overexpression of ASB9 can induce ubi-
quitination of ubiquitous mitochondrial creatine kinase
(uMtCK) [95] in a specific, SOCS box-independent man-
ner [96]. The intracellular creatine kinase (CK) system
may be involved in the storage of fat and the develop-
ment of obesity [97–99]. Besides, one cross-sectional
study recently provided further evidence that CK may
play a role in the pathophysiology of obesity and serve
as a marker to identify individuals at risk for obesity
[100]. (III) IL17C: Obesity, in some sense, is considered
to be an inflammatory predisposition. And interleukin-
17 (IL-17) may impact adipose tissue due to the associ-
ation with induction of tissue inflammation. Particularly,
the potential implications of IL-17 in relation to obesity
has been consolidated by Ahmed, M and Gaffen, SL
[101]. And one study also suggested a linear negative as-
sociation between IL-17 and visceral adipose tissue
thickness [102]. However, the exact role of IL-17C in
obesity remains to be explored. (IV) ABCG4: An add-
itional hub gene that should be further investigated is
ABCG4, one member of the ABCG family. Studies indi-
cated that ABCG4 promotes cholesterol efflux from cells
to HDL [103, 104].
Even though no sufficient studies showed the associ-

ation of two genes of KCNT1 and LBX1 with obesity,
the results of functional annotation and enrichment ana-
lysis indicated that they were involved in intermediate-
density lipoprotein particle and voltage-gated potassium
channel complex, respectively. Thus, they may also be
regarded as the targets for etiology research of obesity.
Other hub genes in coral1 module were of unknown
function in terms of obesity currently, whereas they may
also be interesting potential candidates to be future
researched and validated.
Among the hub genes in saddlebrown module,

KCNN1, CNN1, and AQP10 were up-regulated with in-
creasing BMI in twins. (I) KCNN1: The lipotoxicity in
morbid obesity can gradually impair insulin action in the
liver and muscle, aggravating insulin resistance [105],

Wang et al. BMC Genomics  (2017) 18:872 Page 13 of 17



and Ye, J proposed an energy-based concept of insulin
resistance, in which insulin resistance is a result of
energy surplus in cells [106]. The protein of gene
KCNN1–small conductance calcium-activated potassium
channel protein 1, can serve as a key regulator of excit-
ability and endocrine function in beta cells [107]. (II)
AQP10: Aquaglyceroporins, such as AQP10, represent
novel additional pathways for the transport of glycerol in
human adipocytes [108], and the deregulation in the
expression of aquaglyceroporins in adipose tissue is as-
sociated with human obesity [109, 110].
Several strengths must be noticed in our study. First,

gene expression levels may be under the effect of sub-
jects’ genetic background, gender, age, and environmen-
tal exposures as well as by some experimental variables
related to clinical sampling, processing, and data ana-
lysis. However, the discordant monozygotic model,
which is characteristic of the genetic similarity and
rearing-environment sharing, is becoming a popular and
powerful tool for identifying non-genetic contributions
to a phenotype variation including difference in gene
expression. Hence, our results of WGCNA, based on the
expression data generated from BMI-discordant mono-
zygotic model, may be more credible. Another strength
of our study was that the WGCNA provides information
on the correlated patterns of expression and the effect of
networks of genes, which is useful for detecting import-
ant biological pathways or gene-gene interactions related
to obesity. Specifically, a set of genes sharing similar
functions and correlated to one another in coral1 and
saddlebrown modules were identified in our study, some
of which have already been verified to play efficient roles
in obesity.
Nevertheless, our study has potential limitations as

well. First, our study was with small sample size and lim-
ited statistical power resulting from the challenges of
identifying and recruiting qualified monozygotic twins
discordant for BMI. The BMI-discordant monozygotic
model, however, helps to mitigate confounding factors
associated with genetic polymorphisms in studies of un-
related human subjects and to identify non-genetic con-
tributions to a phenotype variation including difference
in gene expression. Besides, we had identified significant
genes and specific modules potentially related to BMI.
It’s still important and necessary to validate our findings
when more sample size is acquired. Second, we couldn’t
validate our results with an external and independent
dataset because of lacking public BMI-discordant mono-
zygotic dataset with adequate size currently. However,
we compared previously implicated BMI-related gene
expression differences with our findings, and 16 consistent
positive BMI-associated findings were revealed. Third,
some genes may be involved in multiple processes/func-
tions which require different gene sets. However, it was

difficult to characterize such gene interactions because of
the impossibility of forming overlapping modules by
WGCNA. Fourth, as in any other studies based on micro-
array technology, changes in protein levels may not reflect
similar changes in mRNA levels accurately because post-
translational modification also acts importantly in control-
ling biological processes. Hence, it may be necessary to
validate our results by other techniques. And fifth, in sad-
dlebrown module, the 3 hub genes also identified as DEGs
were differentially expressed in just one twin pair. More
studies are needed to confirm these results.

Conclusions
In summary, we identified 32 DEGs with a trend of up-
regulation in twins with higher BMI when compared to
their siblings in the differential expression analysis and de-
termined one module most positively correlated with BMI
and several hub genes in the WGCNA. The potentially
significant genes and pathways correlated with BMI iden-
tified in our analysis may help further elucidate the mo-
lecular mechanisms underlying obesity development and
provide novel insights regarding future prognostic and
therapeutic approaches. Further analysis and valid-
ation of the candidate biomarkers of obesity reported
here are necessary, including those that have not yet
been definitely identified.
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