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Abstract

Background: Identification of common genes associated with comorbid diseases can be critical in understanding
their pathobiological mechanism. This work presents a novel method to predict missing common genes associated
with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize
network based module separation from two subgraphs produced by mapping genes associated with disease onto
the interactome.

Results: Using cross validation on more than 600 disease pairs, our method achieves significantly higher average
receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data.

Conclusion: Missing common genes prediction is aimed to complete gene set associated with comorbid disease

for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to
comorbid diseases. This method can be further considered for prediction of missing edges to complete the

subgraph associated with disease pair.
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Background

Genetic cause for diseases is complex and complicated,
and can rarely be attributed to a single gene. Instead,
often, multiple factors are involved in manifestation of
disease symptoms. Furthermore, as genes can take on
more than one function and different pathways and pro-
cesses are intertwined and can crosstalk to one another,
it is therefore also quite common that one gene may be
implicated in two or more diseases. As a result, it is
sensible and informative to examine not only the associ-
ated genes of one disease to understand its pathology
but also the overlap between the sets of associated genes
of two diseases of high comorbidity risk in order to shed
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lights on the interplay of the two diseases [1-3]. Yet, the
knowledge that can be gained from a list of genes, or
their product proteins, would be quite limited if not
putting them in the biological context, such as the
signaling  transduction pathways, regulatory and
metabolic pathways in which they are involved.
Numerous efforts are being taken to identify relation-
ship between two diseases [4, 5]. Comorbidity refers to the
phenomenon that two (or more) diseases co-occur. Bar
the pure coincidence, comorbidity would indicate that the
two diseases are somehow pathologically similar. The
similarity may reveal at various levels: from more pheno-
typtic ones, such as disease symptoms or coexpression of
associated genes, to more genotypic ones, such as sharing
common genes between the respective gene sets associ-
ated with the diseases. Indeed, there are reports on disease
relationship which incorporates the fact of common
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genetic origin of diseases [6, 7]. Recently emerged disease
network theory has shifted focus to disease module [4].
Disease module contains those set of genes whose muta-
tions have effect on phenotype, these set of genes are not
scattered by chance in the interactome but they reside
close to each other due to their interactions. These inter-
actions form one or several connected subgraphs called as
“disease module”. Specifically, network based separation
of a disease pair A and B (SAB) is introduced to compare
shortest distances between proteins within each disease to
the shortest distances between disease pair A and B. Rela-
tionships between a pair of diseases that have been re-
vealed via other means, such as gene ontology (GO) term
similarity and relative risk (RR) for comorbidity, are to
correlate with the overlapping of two disease modules,
supporting the hypothesis: cause of disruption leading to
one disease may cause another disease sharing common
characteristics. For example, [4] used the disease history
of 30 million individuals aged 65 and older (U.S. Medi-
care) to determine for each disease pair the relative risk
RR of disease comorbidity, finding that the relative risk
drops from RR >10 for Spp < 0 to the random expectation
of RR = 1 for Spg > 0. While the esults show great prom-
ise, however, a significant challenge presents due to the
limitation of having very few data. For example, there are
only 7% of the disease pairs which overlap with each other
and have negative Ssp value. At the system level, only 20%
of the disease interaction network has been captured [4].

In this study, we attempt to address the issue by a
novel method to predict the missing genes in the disease
module using available information such as genes associ-
ation to diseases, relative risk of cooccurrence of two
diseases and human interactome. Our work starts out
with the findings about disease module separation Sap
from [4] and explores its utility as a powerful indicator
to determine comorbid diseases: smaller SAB indicates
that two selected diseases are more closely located in the
interactome, and hence may show comorbid behavior.
To complete the set of gene associated with disease and
contribute towards completing the interactome, it is crit-
ical to identify missing common genes. The method
formulates the task of searching for missing common
genes as an optimization problem to minimize a
network based module separation between two sub-
graphs formed by mapping the disease associated genes
onto the interactome. Tested on a dataset of more than
600 disease pairs using cross-validation, it is shown that
the method achieves an average ROC score of 0.95.

Methods

In this section, we first briefly introduce the various con-
cepts related to disease module on incomplete interac-
tome, especially a quantity Sap, called module separation,
as given in [4], to measure relationship between two
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disease modules A and B. Then we explain in detail our
method of finding missing common genes for a given pair
of diseases formulated as an optimization problem to
minimize Spp.

Disease module on Interactome and module separation
Interactome contains all protein-protein interactions in
the cell, and can be conveniently represented as a graph
(or network), in which proteins are represented as nodes
and interaction between two proteins is represented as
an edge connecting the two corresponding nodes.
Reconstructing the interactome is a central task in
systems biology, which studies the cell as a system in a
holistic way instead of simple ensemble of isolated items.
Due to the limitation of the current technology, interac-
tome for most organisms, even model organisms, is
incomplete, with missing nodes and edges. Nonetheless,
the incomplete interactome can already provide valuable
insights into many biological processes which cannot be
obtained otherwise. In [4], it is shown how to uncover
disease-disease relationships through the incomplete
interactome. Diseases with genetic causes have been
studied widely, often with a focus to identify the culprit
gene only, to find that in many cases the cause cannot
be attributed to a single gene; instead it is very common
that multiple genes involving in multiple cellular pro-
cesses may be at play. Without putting these pieces in a
bigger context, it is difficult to fully understand the
pathological mechanisms. Work in [4] presents a
systematic study to uncover disease-disease relationships
by mapping the associated genes onto the interactome.
As mentioned by [4], given a pair of diseases A and B,
the genes known to be associated with them are put into
two separate sets G, and Gg respectively. Let graph G
be the interactome, with node set V, and edge set E. Let
map the genes in G, and Gg onto G with two different
colors, say, nodes in G corresponding to genes in G4 are
colored red and nodes in G corresponding to genes in
Gg are colored blue. For any shared gene, i.e., a gene is
known to be associated to both disease A and disease B,
then the corresponding node will be colored half red
and half blue. Although all the red nodes are genes asso-
ciated with disease A, indicating relatedness among
them, they may not form a single connected component
(or subgraph) of graph G of the interactome; often they
form several connected components. This may be due to
either incompleteness of the interactome (i.e., missing
edges) or unknown associated genes, or a combination
of both. However, if the connected components are too
fragmented, say not significantly different from what can
be formed by randomly mapped genes, then it is difficult
to reliably infer useful relationships. So, in [4], the size
of the largest connected component, as a percentage of
the total number of genes associated to a disease, must
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be maintained beyond a threshold, which is set based on
percolation theory and the data used in the study. And
the largest connected component, meeting the size
requirement, is then called module as representative for
the disease. For example, multiple sclerosis (MS) has 69
known associated genes and the largest connected com-
ponent, which is qualified as a module with a size of 11,
and rheumatoid arthritis (RA) has 51 associated gene
and the largest connected component, which is qualified
as module with a size of 9.

To uncover disease-disease relationships, a quantity
called module separate S,y is introduced as follows.

< dpa >+ < dgg >

Sap = < dag > - 5 (1)

where <dap> is the average of the shortest distance for each
gene of disease A to reach a gene of disease B and vice
versa, <daa> is the average of the shortest distance for
every gene in disease A to reach another gene in disease A,
and <dgp> the average of the shortest distance for genes of
disease B to reach another gene in disease B. Figure 1
shows how Sap is computed for a toy example. More com-
prehensive results in [4] demonstrate that this network-
based measurement of disease module separation is more
indicative of pathological manifestations of disease pairs
than simply measuring the overlap between the associated
gene sets, such as Jaccard Index:

J= |GanGg|/|GaUGE | (2)

It is reported in [4] that, when the disease history of
30 million individuals aged 65 and older is used to
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determine the relative risk RR of disease comorbidity for
each disease pair, the relative risk drops from RR > 10
for Sxg < 0 to the random expectation of RR = 1 for
SAB > 0.

Detection of missing shared genes

To further explore the predictive power of the disease
module separation, we use it to tackle the incomplete-
ness of the data. Specifically, for disease pairs that are
known to share high comorbidity and therefore are
expected to have a small, preferably negative, module
separation, but instead have large positive Spp, we
hypothesize that the discrepancy is due to some missing
pieces of information, such as a missing shared gene,
which if recovered should bring the two disease modules
closer, i.e., to decrease Spp. Therefore, we formulate the
detection of missing common genes between two disease
modules as an optimization problem as follows.

x* = argmin SAB[+X] (3)
XE(GAUGB)—(GAHGB)

where x goes over genes distinctly associated to either
disease A or disease B, and Sg[+x] is the module separ-
ation when x is added as a shared gene between disease
A and B, and x* is the predicted missing shared gene
which minimizes the module separation. The
minimization can be achieved either by exhaustive
search when the sets G4 and Gg are not very large or by
some heuristics when the search space becomes huge.
Note that, although Eq. (3) is formulated for finding a
single (most probable) missing common gene, in prac-
tice, Eq. (3) can be applied sequentially multiple times

Gene ssociated with
both diseases

Disease B

Disease A

Fig. 1 lllustration of network separation calculation

Shortest Distance
within Disease A:

Shortest Distance
within Disease B:
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d=1
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d: 1
e:3 des =5/3=1.67
daa=7/5=1.4

Shortest Distance between
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for recovering multiple missing common genes. It is also
worthwhile to note that the set of missing common
genes recovered by using Eq. (3) iteratively one gene at a
time may likely be different from a set of missing com-
mon genes should their candidacy as common gene be
evaluated altogether, possibly due to the topology of the
interactome and how these genes are located. So, if the
number of missing common genes k is known, an alter-
native formulation of the optimization problem can be
defined as follows.

X* = argmin Sagp[+X] (4)
XE(GAUGB)—(GAOGB)

where X* is the optimal set of missing common genes,
and X is any subset of size k from the genes that are dis-
tinctly associated with either disease A or disease B. This
formulation, while theoretically sound and appealing,
has two practical issues: a) the number of missing com-
mon genes k is not known a priori; and b) the increased
computational complexity due to combinatorial in
selecting k out n, where n = |G U Gg| - |Ga n Gg|. Be-
cause of these issues, we only tested Eq. (4) for k = 2
and k = 3, while the results reported in the next section
are mainly based on Eq. (3).

Results

In this section, we tested our method for identifying
missing genes with the data used in [4]. We first de-
scribe briefly the dataset, and then present the results
which are evaluated using a cross validation scheme.

Dataset

The data, including Human interactome, disease gene
association, network properties of disease pairs and co-
morbidity data, was used in the study from [4] and was
downloaded from their website. Comorbidity (RR score)
for several diseases using medicare data from USA has
been calculated by [8]. The dataset contains 913 disease
modules with negative S AB value and known RR score.
The comorbidity value ranges from 0 to 6497. Comor-
bidity value 1.0 or above is considered high [4]. Among
the 605 disease modules, 148 of them have comorbidity
value ranging from 3.0 to 6497, and only 25 disease pairs
with RR score above 100. Most of the disease modules
have pairwise RR score between 0 and 3.0.

While the method is ultimately aimed at finding de
novo missing common genes between a disease pair, for
evaluation purpose, the method is tested, in a cross-
validation scheme, at recovering known common genes.
Therefore, a disease pair must have common genes to be
used in the test. It was found that, out of 913 disease
pairs, there are 605 disease pairs that satisfy the require-
ment, and the remaining 308 disease modules, either do
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not have any common gene or have all the genes com-
mon and hence are removed from the test dataset.

Cross-validation and performance
The cross-validation scheme is designed as follows. For
a disease pairs A and B:

1. Randomly select multiple common genes and
reserve them as positive test examples.

2. Randomly select multiple non-common genes from
G, and Gg respectively, and reserve them as nega-
tive test examples.

3. For each gene x in the test set, run the search
algorithm as given in Eq. (3), and compute Sag[+x],
the module separation when x is marked as shared,
and x goes over all test examples associated with
diseases A and B. Then compute prediction score
s(x) = Sap - Sas[+x].

4. Rank all the test examples x’s by s(x) in a descending
order: the higher the score s(x), the higher that x is
ranked and hence more likely to be a common gene.
Receiver operating characteristic (ROC) score is
computed by comparing the ranked list and the
ground truth of the test examples.

Note that in the experiments reported below, 10 com-
mon genes, if available, were selected from G A n Gg
and 10 uncommon genes were selected from (G, U Gg)
— (G4 n Gp) for cross validation.

The performance is evaluated by using receiver operat-
ing characteristic (ROC) score. From the list of the test
examples ranked by their prediction score s(x), ROC
curve plots the true positive rate as the function of false
positive rate when a threshold moves from the top to
the bottom of the ranked list — test examples with pre-
diction score larger than or equal to the threshold are
predicted as positive and otherwise as negative. ROC
score is the area under the curve of ROC curve and thus
has a range of [0, 1], with 0.5 corresponding to a random
classifier and higher score corresponding to better pre-
dictive power. The average ROC score for the whole
dataset is 0.947, as reported in Table 1. When Eq. (4) is
used in place of Eq. (3), the average ROC score is 0.976
and 0.979 for k = 2 and 3 respectively. This confirms
that considering candidate missing common genes as a
subset can indeed achieve better prediction as compared
to considering candidate missing common genes indi-
vidually, though the gain in performance seems to be
tapering as the value of k increases. Table 1 also lists the
average ROC score for several cases: a) disease pairs
with comorbidity in [0,1], b) disease pairs with comor-
bidity in [1, 2], c) disease pairs with comorbidity in [2, 3],
and d) disease pairs with comorbidity >3.0, with case e)
being all pairs included. It can be seen clearly that
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Table 1 Average ROC Scores with standard deviation, precision and recall for various comorbidity ranges

Comorbidity Range

0-8000 0-1 1-2 2-3 >3

Number of Disease Pairs 605 133 248 76 148
Average ROC Score (Shortest Distance) 0.947 0.966 0.950 0.952 0.920
Stddev (Shortest Distance) 0.094 0.063 0.089 0.072 0.124
Average ROC Score (Average Distance) 0491 0.513 0495 0.508 0458
Stdev (Average Distance) 0.279 0.279 0.288 0.269 0.269
Average ROC Score (Randomization) 0.601 0.606 0614 0.555 0.599
Stedev (Randomization) 0278 0.282 0287 0.258 0.2468
Average Precision (Shortest Distance) 0.88 0.88 0.85 0.89 0.96
Stddev (Shortest Distance) 027 0.28 031 0.25 0.15
Average Precision (Average Distance) 0.72 0.72 0.71 0.69 0.64
Stdev (Average Distance) 031 0.31 0.32 033 0.30
Average Precision (Randomization) 0.66 0.70 063 0.66 0.72
Stedev (Randomization) 029 0.28 029 030 0.29
Average Recall (Shortest Distance) 091 0.94 093 0.93 0.88
Stddev (Shortest Distance) 0.13 0.11 0.13 0.09 0.16
Average Recall (Average Distance) 0.69 0.72 0.70 0.70 0.64
Stdev (Average Distance) 0.30 0.28 0.30 0.31 0.30
Average Recall (Randomization) 0.78 0.80 0.79 0.73 0.76
Stedev (Randomization) 0.26 0.25 0.26 0.26 0.25

high average ROC scores are achieved for all cases,
with case a) achieving marginally the highest. This
finding is noteworthy as it suggests that S,p is a use-
ful indicator across all range of relative risk (RR)
value whereas in [4] strong correlation was observed
between RR drops and Ssp switching from negative
to positive. Precision and recall reported in Table 1
are computed using a threshold on prediction score
s(x) which is set as suggested in [9]. Essentially, the
threshold is set by using ROC curve on the test data
to determine the highest peak point of ROC curve
from the diagonal line, i.e., the prediction score of
the test example that corresponds the peak point is
used as the threshold. Average precision and recall
are reported as 0.88 and 0.91 respectively for comor-
bid disease pairs using shortest distance as method to
measure module separation. Figure 2 represents a
graphical representation of the evaluation metrics (roc
score, precision and recall) used for two methods for
calculating module separation and when used for ran-
domized data.

In addition to the average ROC scores, the histogram
plot of ROC scores is shown in Fig. 3. In the histogram,
a point in a curve shows in the vertical axis the percent-
age of disease pairs that have a performance greater or
equal than ROC score given in the horizontal axis. It
also shows the random ROC score in yellow color.

We further examined how the prediction performance
is affected by the number of common genes, i.e., the size

of the training set. Specifically, we grouped disease pairs
based on the range of overlap between associated genes:
i) 5 ~ 10 common genes, ii) 10 ~ 15, and iii) 15 or more
common genes.

The effect of the size of training set and the range of
RR on prediction performance is reported in Table 2,
which lists the number of disease pairs achieving a given
ROC score range for different groups under different RR
range. For example, 42 pairs with 0~ 5 common genes
and RR between 0 and 1.0 have received ROC score in
the range (0.9, 1.0) The results show that as the number
of common genes increases, the prediction performance
in terms of distribution over various ranges is quite
stable, with slight improvement, suggesting the method
is robust under various conditions. In each case we had
all the results above ROC score 0.5. And, more than
80% of the disease modules provide missing gene predic-
tion ROC score between 0.9-1.

Discussion

It should be noted that the missing common gene prob-
lem, despite of its apparent importance, has not yet been
addressed elsewhere in the literature to our best know-
ledge. Still, in order to get a sense how well the proposed
method does in comparison to a baseline, we randomize
the common genes for each disease pair. Specifically, for
each disease pair, the set of common gene is replaced
with the same number of genes randomly selected from
the whole set of genes in the interactome. The rationale
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Fig. 2 Bar chart for average ROC Score, average Precision and average Recall across comorbidity range

for doing so is to keep the count of common genes for
each disease pair unchanged and also maintain the top-
ology of interactome and the overall relative locations of
the two diseases in the pair. When everything else was
kept the same, it was found that the average ROC score
dropped to 0.601 for the 605 disease pairs with their
common genes randomized. The detailed results for dif-
ferent comorbidity ranges 250 with respect to the ran-
domized baseline are listed in Table 1, and the
histogram of ROC scores for the baseline is shown as
plot F in Fig. 2.

For comparison, we also modify how the module sep-
aration is calculated. Specifically, instead of the shortest
distances used in Eq. (1), we replaced <dp> with the
average distance for all distinct A -B gene pairs, <dsa>
is the average distance for all gene pairs within disease
module A, and <dgp> the average distance for all gene
pairs within disease module B. Use this modified module
separation, let’s call it all-pair-average based module sep-
aration S _ap., we get an average ROC score 0.49 for all
605 disease pairs. The histogram of the ROC scores is
shown in Fig. 2 as plot G. One plausible explanation of
why the all-pair-average based module separation per-
forms poorly is that the module separation has become

much less sensitive to swapping a single gene x’s classifi-
cation in Eq. (3) — from common gene to non-common
gene and vice versa.

From comparison to the baseline of randomized data
and an alternative definition of module separation, the re-
sults show that our proposed method performs very well,
suggesting the optimization formulated in Eq. (3) as a
viable solution to finding missing common genes for a
given pair of diseases. Note that the predictive power is
measured by ROC score, which does not require a pre-set
threshold on the score s(x) when it is used for making
prediction. Not requiring a pre-set threshold on the predic-
tion score contributes to the popularity of ROC as a metric
for assessing predictive power of a binary classifier: the abil-
ity to differentiating positive examples from negative exam-
ples when ranking on these examples by the prediction
score. This is because in reality it is often difficult to set a
priori threshold on the prediction score, although it can be
set in certain ad hoc ways. In our situation, the score s(x),
computed for each module separation sAB, depends on the
interactome topology, the unknown number of missing
genes and other factors, which makes it difficult to have a
preset threshold for any give disease pair, least to say a
common threshold for all disease pairs. Even if we
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Fig. 3 Histogram of ROC Scores. A: comorbidity range 0 ~ 1; B: comorbidity range 1~2; C: comorbidity range 2 ~3; D: comorbidity range > 3; E:
comorbidity range 0 ~ 10,000; F: randomized common genes; G: SAB based on average distance

Table 2 Effect of the size of training set and the range of RR on
prediction performance

ROC Score Comorbidity Range

Range 0-8000 0-1 12 23 >3

i) 0 ~ 5 Common Genes

0.5-06 2 0 2 0 0
0.7-08 5 2 3 0 0
09-10 174 46 81 18 29
Total 181 48 86 18 29

ii) 5~ 10 Common Genes

05-06 0 0 0 0 0
0.7-0.8 2 0 2 0 0
09-1.0 121 36 48 15 22
Total 123 36 50 15 22

iii) 10 - 15 Common Genes

0.5-06 0 0 0 0 0
0.7-0.8 1 0 0 0 1
09-10 46 12 21 4 9
Total 47 12 21 4 10
iv) 15 or more Common Genes
0.5-06 10 1 3 0 6
0.7-0.8 24 1 6 4 13
09-1.0 220 35 82 35 68
Total 254 37 91 39 87

normalize the score s(x) as s(x) = (Sag — Sap[+X]) / Sap it is
unlikely that a threshold set for one disease pair (e.g., by
using the method cited in Ref [9]) would be the same for
another disease pair, because different disease pairs can
have their genes residing on different locations of the
network (and hence having different network topologies)
and can have different number of missing common genes.
So, for practical use of our method, we envision that, for
any pair of diseases with high comorbidity yet a large mod-
ule separation, biologists would suspect some common
genes are missing and then use our method to suggest a
short list of candidates (i.e., these with top ranking score
s(x)) for further investigation.

In this work, we used brute force to search all genes as-
sociated to the disease pair, as our focus is on the viability
of using module separation to detect missing common
genes not on the speed. In the dataset, we used for this
study, the average number of genes in a disease pair is 168
and it takes 2 min 43 s to search all genes in the disease
pair for putative common genes on a desktop computer:
2.90Ghz intel core i7, 8.00Gb memory. While it is desir-
able as a future work to find a faster heuristic algorithm
for search as the number of genes increase, the brute force
approach seems to be acceptable for typical cases.

Conclusions
In this work, we developed a novel method to predict
missing common genes for a given disease pairs. The
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method formulates the task as an optimization problem
of minimizing network based module separation for sub-
graphs formed by associated genes on the interactome,
with the hypothesis that correctly identified missing
common genes would bring the two-module closer. The
results of cross-validation from a benchmark dataset of
more than 600 disease pairs show high prediction accur-
acy on average, measured as ROC score. The method
provides a useful tool to infer better understanding of
disease- disease interaction in terms of related genes.
While the method is tested in cross-validation mode in
this study, it can be easily deployed to predict de novo
missing genes, ie., those genes that are not associated
with any disease but have an impact on the phenotype
of both diseases. It is worthwhile to note that the results
reported in this study are based on incomplete Human
interactome — protein interactions that exist but have
not be detected by experiments and reported in litera-
ture, and thus are referred to as missing edges in the
protein-protein interaction network. Therefore, the
accuracy for missing gene prediction may change, likely
for higher, as the interactome becomes more complete.
In fact, as an effort to address the challenge presented
by missing data, in future work this method could be
extended for predicting missing edges in an incomplete
interactome as well.
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