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Abstract

Background: RNA viruses such as HCV and HIV mutate at extremely high rates, and as a result, they exist in infected
hosts as populations of genetically related variants. Recent advances in sequencing technologies make possible to
identify such populations at great depth. In particular, these technologies provide new opportunities for inference of
relatedness between viral samples, identification of transmission clusters and sources of infection, which are crucial
tasks for viral outbreaks investigations.

Results: We present (i) an evolutionary simulation algorithm V iral Outbreak InferenCE (VOICE) inferring genetic
relatedness, (ii) an algorithm MinDistB detecting possible transmission using minimal distances between intra-host
viral populations and sizes of their relative borders, and (iii) a non-parametric recursive clustering algorithm
Relatedness Depth (ReD) analyzing clusters’ structure to infer possible transmissions and their directions. All proposed
algorithms were validated using real sequencing data from HCV outbreaks.

Conclusions: All algorithms are applicable to the analysis of outbreaks of highly heterogeneous RNA viruses. Our
experimental validation shows that they can successfully identify genetic relatedness between viral populations, as
well as infer transmission clusters and outbreak sources.
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Background
Inferring transmission clusters, transmission directions,
and sources of outbreaks from viral sequencing data are
crucial for viral outbreaks investigation. Outbreaks of
RNA viruses, such as Human Immunodeficiency Virus
(HIV) and Hepatitis C virus (HCV), are particularly dan-
gerous and pose a significant problem for public health.
It is well known that genomes of RNA viruses mutate at
extremely high rates [1]. As a result, RNA viruses exist
in infected hosts as populations of closely related variants
called quasispecies [2, 3]. However, only recently with the
progress of sequencing technologies, it became possible
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to identify and sample quasispecies at great depth [4–9].
Consequently, a contribution of sequencing technologies
to molecular surveillance of viral disease epidemic spread
becomes more and more substantial [10, 11].

Computational methods can be used to infer trans-
mission characteristics from sequencing data. The first
question usually is whether two viral populations belong
to the same outbreak. The methods typically utilize the
simple observation that all samples from the same out-
break are genetically related, so they use some measure
of genetic relatedness as a predictor for epidemiological
relatedness [10–12].

The second question is which samples constitute iso-
lated outbreaks. For this purposes, we define a trans-
mission cluster as a connected set of genetically related
viral populations. The third questions we address in this
article is “Who is the source of infection?”. This ques-
tions is the most difficult to answer, and there were
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only a few attempts to do it computationally using solely
genomic data [13] without invoking additional epidemi-
ological information [14]. To the best of our knowledge,
there is still no freely available computational tool for this
problem.

Computational methods for detection of viral trans-
missions and inference of transmission clusters are often
consensus-based, i.e. they analyze only a single represen-
tative sequence per intra-host population (for example,
consensus sequence). Such methods assign two hosts into
one transmission cluster, if the distances between corre-
sponding sequences do not exceed a predefined threshold
[10, 11]. Although consensus-based methods proved to
be useful, they do not take into account intra-host viral
diversity. Inclusion of whole intra-host populations into
analysis is important, because minor viral variants are
frequently responsible for transmission of RNA viruses
[15, 16].

Recently published computational approach (further
referred to as MinDist) [12] uses the minimal genetic dis-
tance between sequences of two viral populations as a
measure of genetic relatedness of intra-host viral popula-
tions. Since minimal genetic distances between different
pairs of populations can be achieved on various pairs of
sequences, this approach takes into account intra-host
diversity.

However, both consensus-based and MinDist
approaches have further limitations. First of all, they do
not allow to detect directions of transmissions, which is
crucial for detection of outbreak sources and transmis-
sion histories. Secondly, distance thresholds utilized by
both approaches could be derived from analysis of limited
or incomplete experimental data and highly data- and
situation-specific, with different viruses or even different
genomic regions of the same virus requiring specifically
established thresholds.

In this paper, we address the above limitations by
proposing two novel algorithms ReD and VOICE, as
well as by suggesting an improvement of the MinDist
algorithm. The new algorithms allow to infer important

epidemiological characteristics, including genetic relat-
edness, directions of transmissions and transmission
clusters.

• Relatedness Depth (ReD) method uses
clustering-based analysis of intra-host viral
populations. It is a non-parametric algorithm, so it
does not rely on any virus-specific threshold values to
predict epidemiological characteristics.

• Viral Outbreak InferenCE (VOICE) is a
simulation-based method which imitates viral
evolution as a Markov process in the space of
observed viral haplotypes

• MinDistB method is a modification of MinDist [12],
which takes into account the sizes of relative borders
of each pair of viral populations.

The proposed algorithms were validated on the experi-
mental data obtained from HCV outbreaks. Comparative
results suggest that our methods are efficient in epidemi-
ological characteristics inference.

Methods
Relatedness depth (ReD) algorithm
ReD is a deterministic algorithm based on deterministic
hierarchical clustering. The key concept of this method
is a k-clustered intersection of viral populations (we used
similar idea previously for combinatorial pooling [17]).
For two sets of viral sequences P1 and P2, their k-clustered
intersection P1∩P2 is calculated as follows:

1) Partition the union P1 ∪ P2 into k clusters C1, ..., Ck ;
2) P1∩P2 = ⋃

i∈B
Ci, where

B = {i ∈ {1, ..., k} : Ci ∩ P1 �= ∅, Ci ∩ P2 �= ∅}, i.e.
P1∩P2 is the union of clusters, which contain
sequences from both P1 and P2 (see Fig. 1);

The parameter k is a scale of clustering. In particu-
lar, populations P1 and P2 are separable, if P1∩P2 = ∅,
while the fact that P1∩P2 �= ∅ indicates that they may

Fig. 1 k-clustered intersection of two viral populations (blue and red). Union of populations is partitioned into k = 2 clusters (dashed and solid).
Dashed cluster is the k-clustered intersection. Direction of transmission is from the blue population to the red population
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be genetically related. In the most extreme case P1∩P2 =
P1 ∪ P2, i.e. populations are completely inseparable under
the scale k.

The degree of confidence that the samples are genet-
ically close is represented by the relatedness depth
d(P1, P2), which is calculated by Algorithm 1. Simply
speaking, Algorithm 1 tries to recursively separate popula-
tions P1 and P2. At each iteration, k-clustered intersection
is calculated. If two populations are separable, then the
algorithm stops. Otherwise, it continues the separation of
sequences from P1 and P2 within their k-clustered inter-
section. The separation depth is a depth of this recursion.
It is possible that at some iterations of Algorithm 1 two
populations are completely inseparable under a current
clustering scale. In this case, the scale k is increased and
k-clustered intersection is recalculated. The initial value
of k used by Algorithm 1 is k = 2.

Algorithm 1 ReD (relatedness depth calculation)
Input Two sets of viral sequences P1, P2.
Output Relatedness depth d = d(P1, P2)

1: d ← 0
2: k ← 2
3: I ← P1∩P2
4: while I �= ∅ and k ≤ |P1| + |P2| do
5: d ← d + 1
6: if I �= P1 ∪ P2 then
7: P1 ← P1|I , P2 ← P2|I (restrictions of P1 and

P1 on I)
8: k ← 2
9: else

10: k ← k + 2
11: end if
12: I ← P1∩P2
13: end while

k-clustered intersections depend on a clustering
method. Our implementation uses a hierarchical clus-
tering based on neighbor-joining tree (as implemented
in Matlab (MathWorks, Natick, MA)). The algorithm
utilizes a standard Jukes-Cantor distance which is based
on the simplest substitution-based evolutionary model.

Clustered intersections also allow for estimating the
direction of transmissions. It is reasonable to assume that
if two hosts share a population, then a host with more
heterogeneous population is more likely to be the trans-
mission source [18]. Formally, if I = P1∩P2, P1 ⊆ I and
P2\I �= ∅, then we assume that probable transmission
direction is from P2 to P1 (see Fig. 1). The direction is
defined according to the first occurrence of such situation
during execution of Algorithm 1. Note that in some cases
direction may not be identified.

Given the collection of viral populations P =
{P1, ..., Pn}, ReD produces the weighted directed genetic
relatedness graph G = (V , A, d) with V = P . An
arc (Pi, Pj) is in A whenever populations Pi and Pj are
genetically related, i.e., have sufficiently high relatedness
depth; the direction of an arc corresponds to the estimated
direction of transmission and its weight to the related-
ness depth. Transmission clusters are calculated as weakly
connected components of the digraph G. To determine
transmission clusters, the simplest depth cutoff T = 1
can be used. In addition, only components containing at
least one arc a of weight d(a) ≥ 2 were considered as
reliable. For each reliable component, a source s of the cor-
responding outbreak is identified as a vertex with highest
eigenvector centrality.

Viral outbreak inference (VOICE) simulation method
VOICE is another approach to predict epidemiologi-
cal characteristics. Unlike ReD, it is not deterministic.
Instead, it simulates the process of evolution from one
viral population (source) into another (recipient) as a
Markov process on a union of both populations. VOICE
starts evolution from a subset of source sequences called
the border set and estimates the number of generations
required to acquire a genetic heterogeneity observed in
the recipient.

Formally, given two sets of viral sequences P1 and P2,
VOICE simulates viral evolution to estimate times t12
and t21 needed to cover all sequences from the recipi-
ent population under the assumptions that first and sec-
ond host were sources of infection. Based on the value
min{t12, t21}, the algorithm decides whether the popula-
tions are related. The direction of possible transmission
between the related pair is assumed to follow the direction
which requires less time.

The simulation starts from the δ-border set B1, which
contains viral variants that are likely the closest to variants
transmitted between P1 and P2. It is defined as the set of
vertices of P1 minimizing pairwise Hamming distance D
between vertices from P1 and P2 up to a constant δ:

B1 =
{

u ∈ P1 : ∃v ∈ P2 D(u, v) = min
x∈P1,y∈P2

D(x, y) + δ

}

(see Fig. 2). The constant δ is a parameter, with the default
value 1.

The simulated evolutionary process is carried out in
the evolutionary space represented by the variant graph
G(B1, P2), which is constructed as follows. First, construct
a union of all minimal spanning trees of the complete
graph on a vertex set B1 ∪ P2 with the edge weights
equal to Hamming distances between variants (some-
times referred to as a pathfinder network PFNet(n−1, ∞)

[19, 20]). Then substitute every edge in graph with two
directed edges of the same weight. Next, subdivide each
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Fig. 2 δ-Crossing between two viral populations P1 and P2

l ≤ d(u, v) + δ; (a) |Bδ | = 5; (b) |Bδ | = 2

edge (u1, u2) of weight w ≥ 2 with w − 1 vertices
v1, ..., vw−1 and add multiple directed edges as follows: add
w − 1 edges between vertices u1 and v1; w − 2 edges
between v1 and v2; and so forth as shown on Fig. 3. This
model can be explained as follows: to mutate from vertex
u1 to u2 during simulation, there should occur mutations
at w positions that are different between u1 and u2. Dur-
ing the first step, simulation can mutate any of w positions,
then any of w−1 positions on the second step and so forth.

The simulation starts from all border vertices B1 and
runs until all the vertices of the population P2 are reached.
At the beginning of the simulation, border vertices get
count equal to 1, and the rest of the vertices get count
0. Each tact simulates variants replication by updating
vertex counts according to one of the three following
scenarios happening with the specified probabilities (see
Fig. 4). First, if during replication there are no mutations,
then the vertex v replicates itself and its count label is
incremented. This happens with the probability p1 (1).
Second, the vertex can mutate into one of its neighbor-
ing vertices with probability p2 (see Eq. (2)), in which
case the count of the neighbor is incremented. Finally,
with probability p3, vertex does not produce any viable
offspring, in which case vertex counts are not changed.
If the count of a vertex reaches the maximum allowed
variant population size Cmax, then it is not increased.
The probabilities of these scenarios are calculated as
follows:

p1 = (1 − 3ε)L (1)

p2 = p1
ε

1 − 3ε
(2)

p3 = 1 − p1 − p2 deg−(v) (3)

where ε is the mutation rate, L is the genome length and
deg−(v) is an outdegree of a vertex v.

Algorithm 2 represents the flow of the method. The
time t12 is computed as the average over s simulations.
The same procedure is repeated for the opposite direction
of the transmission with its border set B2 and the time
t21 is computed. The value min{t12, t21} determines which
direction of transmission is more likely.

Algorithm 2 VOICE (Viral Outbreak InferenCE)
Input Two sets of viral variants P1, P2.
Output Time t1,2 to evolve from P1 to P2.

1: find the δ-border set B1
2: build the variant graph G = G(B1, P2)
3: t ← 0
4: Assign the number of copies ct

v ← 1 to each variant
v ∈ B1 and ct

v ← 0 to each variant v ∈ P2 \ B1
5: while there are variants v ∈ P2 with ct

v = 0 do
6: ct+1

v ← ct
v for every v ∈ V (G)

7: for each variant v ∈ V (G) do
8: for i = 1, ..., ct

v do
9: with a probability p1, ct+1

v ←
min

{
ct+1

v + 1, Cmax
}

10: with a probability p2, ct+1
u ←

min
{

ct+1
u + 1, Cmax

}
, where u is a randomly chosen

neighbor of v
11: end for
12: end for
13: t ← t + 1
14: end while
15: t1,2 ← t

Data normalization
The sizes of observed intra-host viral populations may
significantly vary due to sampling and sequencing biases.
Since the larger population will require more time to
cover, the estimation of t12 and t21 could be biased. VOICE
avoids such biases by normalizing the intra-host popu-
lation sizes. The deterministic normalization partitions
each viral population into q clusters using hierarchical
clustering and each cluster is replaced with the consensus
of its members. The subsampling normalization randomly
chooses q sequences from each population. The proce-
dure is repeated r times, and the final result is an average
over all subsamplings.
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Fig. 3 Edge subdividing

Identification of genetic relatedness, transmission directions,
clusters and sources of outbreaks
Analogously to ReD, VOICE produces a weighted directed
genetic relatedness graph G = (V , A, w) with V = P . An
arc PiPj is in A whenever populations Pi and Pj are geneti-
cally related, i.e., value min{tij, tji} is less than a threshold.
Weakly connected components of G represent transmis-
sion clusters or outbreaks. To determine the source of
each outbreak, we build a Shortest Paths Tree (SPT) for
every vertex in the corresponding component. The source
is estimated as the vertex with an SPT of minimal weight.

MinDistB method
The method extends the MinDist approach proposed in
[12], which defines the distance between viral populations
as the minimum Hamming distance between their rep-
resentatives. The new approach also takes into account
sizes of border sets, on which the minimum distance is
achieved.

Formally, given an integer δ (by default δ = 1), the δ-
crossing between populations P1 and P2 is the set of pairs
of variants (u, v) from different populations, the Ham-
ming distance D(u, v) between which is within δ from the
minimum Hamming distance:

Bδ(P1, P2) =
{

(u, v) : u ∈ P1, v ∈ P2, D(u, v) ≤ min
x∈P1,y∈P2

D(x, y) + δ

}

(see Fig. 2). Our empirical study shows that in case when
the crossing is large (see Fig. 2a), then the populations are
less likely to be related than in case when the borders are
small (see Fig. 2b).

This effect can be intuitively explained. Two related
populations likely diverge away from the common ances-
tor and from each other, and their borders are formed by
few old survived variants closest to the common ancestor.
Two unrelated populations diverging from two different
ancestors may in time reduce minimum distance from
each other randomly and closest variants are relatively
young and abundant (see Fig. 5).

We define a δ-distance between populations P1 and P2
as follows:

Dδ(P1, P2) = D(P1, P2) + c ln(|Bδ(P1, P2)|) (4)

where c = 3 is an empirically chosen constant.

Identification of genetic relatedness, transmission clusters
and sources of outbreaks
For MinDistB methods, genetic relatedness graph G =
(V , E, w) is a weighted undirected graph with the vertex
set V = P and an edge of weight wi,j connecting popu-
lations Pi, Pj whenever wi,j = Dδ(P1, P2) does not exceed
a threshold. Transmission clusters are estimated as con-
nected components of the graph G. For each transmission
cluster its source could be inferred either as a vertex with
maximum eigenvector centrality or as a vertex with the
shortest paths tree of minimal weight.

Results and discussions
ReD, VOICE and MinDistB were validated using exper-
imental outbreak sequencing data, and their predictions
were compared with the previously published MinDist
method [12].

Fig. 4 All possible moves of a vertex v
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Fig. 5 Intuition behind the MinDistB method. a Related samples – crossing is between old survived variants. b Unrelated samples –crossing is
between many young variants which are close to each other by chance

Data sets
We used the benchmark data presented in [12], which is
a collection of HCV intra-host populations sampled from
335 infected individuals.

• Outbreak collection contains 142 HCV samples from
33 epidemiologically curated outbreaks reported to
Centers for Disease Control and Prevention in
2008–2013. Outbreaks contain from 2 to 19 samples.
Epidemiological histories, including sources of
infection, are known for 10 outbreaks.

• Collection of 193 epidemiologically unrelated HCV
samples.

All viral sequences represent a fragment of E1/E2
genomic region of length 264 bp.

Prediction of epidemiological characteristics
The proposed methods were used to infer the following
epidemiological characteristics:

• genetic relatedness between populations;
• transmission clusters representing outbreaks and

isolated samples;
• sources of outbreaks;
• transmission directions between pairs of samples.

Comparison results are collected in Table 1. The vari-
ants of VOICE with deterministic and subsampling nor-
malizations are referred to as VOICE − D and VOICE − S,
and for them we used the normalization constants q = 10
and q = 4, respectively. For all VOICE runs, five inde-
pendent simulations were performed, and the averages
over that simulations are reported. For each simulation,
VOICE-S performs 50 subsamplings, and the results of
the algorithm are averaged over all subsamplings. For
MinDist, sources of outbreaks were identified as vertices
with highest eigenvector centralities in the corresponding
genetic relatedness graphs, since for MinDist this method
outperform the shortest path tree-based approach.

Genetic relatedness between populations
Viral populations from two samples are genetically related
if they belong to the same outbreak and unrelated,
otherwise. The genetic relatedness is validated on the
union of both collections containing all outbreaks and
unrelated samples. There are 55945 pairs of samples, and 479
of them are related. For all algorithms we choose the best
thresholds, which produce no false positives, i.e. no unrelated
populations are predicted to be related. The values of thre-
sholds T are: ReD : T = 2; MinDist : T = 11; MinDistB :
T = 28.4; Voice − D : T = 1710; Voice − S : T = 4585.

Table 1 Validation results

Methods MinDist MinDistB ReD VOICE-D VOICE-S

Relatedness

Sensitivity, % 90% 92.9% 55.3% 85.2% 86.8%

AUROC 0.992 0.996 N/A 0.993 0.990

Clustering

Sensitivity, % 100% 100% 96.3% 98.2% 98.2%

Source

Accuracy, % 50% 40% 90% 80% 90%

Directions

Accuracy, % N/A N/A 87.1% 83.9% 87.1%
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For each method, the sensitivity (i.e. the percentage of
detected related pairs) was calculated (Table 1). The high-
est sensitivity is achieved by MinDistB method. Figure 6
depict ROC curve for the tested methods (ReD is not
present, since for this method only few viable discrete
thresholds are possible). MinDistB and VOICE − D have
highest areas under a curve value followed by MinDist and
VOICE − S.

Detection of transmission clusters
The similarities between true and estimated partitions
into transmission clusters were measured using an edit-
ing metric [21], which is defined as the minimum number
of elementary operations required to transform one par-
tition into another. An elementary operation is either
merging (joining of two clusters into a single cluster) or
division (partition of a cluster into two clusters) [21]. We
calculate sensitivity by normalizing an editing distance E
by dividing it by the number N of elementary operations
required to transform trivial partition (i.e. the partition
into singleton sets) into the true partition. The number N
is equal to n − k, where n is the total number of samples
and k is the number of true clusters:

Sensitivity = E
n − k

× 100%. (5)

Table 1 shows that MinDistB and MinDist demonstrate
the highest sensitivity.

Source identification
The accuracy of the source identification is defined as the
percentage of correctly predicted sources for outbreaks,
where the correct sources are known. The Source section

Fig. 6 ROC curve for pairs relatedness detection

of Table 1 shows that the best results are achieved by
ReD and VOICE − S which were able to detect sources in
90% of cases. At the same time, MinDist and MinDistB,
which are not able to identify transmission directions,
were significantly less accurate.

Transmission direction
Among tested algorithms, only ReD and VOICE allows for
detection of transmission directions. For that algorithms,
percentages of correctly predicted pairs source-recipient
were calculated (Table 1). Here the highest accuracy of
87.1% was achieved by ReD and VOICE − S.

Running time
All tests were performed on PC with DDR3-1333MHz
4 GBx12 RAM and 2 Intel Xeon-X5550 2.67 GHz proces-
sors. The fastest algorithms were MinDist and MinDistB,
with running times 9 ms for a pair of samples in our
dataset. ReD requires ∼ 0.1s per pair of samples, While
the running time of VOICE is ∼ 35 s per pair.

Conclusions
Currently, a molecular viral analysis is one of the major
approaches used for investigations of outbreaks and
inference of transmission networks. Although modern
sequencing technologies significantly facilitated molecu-
lar analysis, providing unprecedented access to intra-host
viral populations, they generated novel bioinformatics
challenges.

This work proposed three novel algorithms for the
investigation of viral transmissions based on analysis
of the intra-host viral populations, which allow cluster-
ing genetically related samples, infer transmission direc-
tions and predict sources of outbreaks. Evaluation of the
algorithms on experimental data from HCV outbreaks
demonstrated their ability to accurately reconstruct vari-
ous transmission characteristics. It should be noted, that
although ReD was proved to be accurate in estimation of
transmission clusters, directions and sources, its accuracy
of relatedness detection is lower than for other evalu-
ated methods. However, the advantage of this method
over other methods is its non-parametricity (i.e. inde-
pendence from virus-specific and genomic region-specific
thresholds), which makes it more universally applicable
and extremely useful in situations, when the lack of train-
ing data does not allow to establish reliable relatedness
thresholds.

The clustering-based ReD approach may be further
improved using a more scalable clustering similar to
the algorithm proposed in [17]. The simulation-based
approach VOICE presented here may be further improved
by incorporating more complex viral evolution models
taking into account cell proliferation rate and immune
responses against viral variants.
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All algorithms are planned to be integrated into the
pipeline of cloud-based web-system “Global Hepatitis
Outbreak and Surveillance Technology” (GHOST), which
is currently being developed by US Centers for Dis-
ease Control and Prevention (https://webappx.cdc.gov/
GHOST/).
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